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A B S T R A C T

Behavioral and neuroscience studies have shown that we can easily identify material categories, such as metal and
fabric. Not only the early visual areas but also higher-order visual areas including the fusiform gyrus are known to
be engaged in material perception. However, the brain mechanisms underlying visual short-term memory (VSTM)
for material categories are unknown. To address this issue, we examined the neural correlates of VSTM for objects
with material categories using a change detection task. In each trial, participants viewed a sample display con-
taining two, four, or six objects having six material categories and were required to remember the locations and
types of objects. After a brief delay, participants were asked to detect an object change based on the images or
material categories in the test display (image-based and material-based conditions). Neuronal activity in the brain
was assessed using functional magnetic resonance imaging (MRI). Behavioral results showed that the number of
objects encoded did not increase as a function of set size in either image-based or material-based conditions. By
contrast, MRI data showed a difference between the image-based and material-based conditions in percent signal
change observed in a priori region of interest, the fusiform face area (FFA). Thus, we failed to achieve our research
aim. However, the brain activation in the FFA correlated with the activation in the precentral/postcentral gyrus,
which is related to haptic processing. Our findings indicate that the FFA may be involved in VSTM for objects with
material categories in terms of the difference between images and material categories and that this memory may
be mediated by the tactile properties of objects.
1. Introduction

The visual perception of materials is based on the estimation and
categorization of a wide range of properties inherent to an object
(Fleming, 2014). For example, it is important for us to estimate an
object's state and make decisions based on material perception (Komatsu
and Goda, 2018; Fleming, 2014; e.g., decide whether or not a strawberry
is fresh and can be eaten). Previous studies of material perception have
focused on glossiness, translucency, and surface roughness (e.g., Nishida
and Shinya, 1998; Fleming et al., 2003). It has been demonstrated that
both the lower and higher visual areas of humans and nonhuman pri-
mates are engaged in material perception, such as the V4, posterior
inferior cortex, and fusiform gyrus (e.g., Cant and Goodale, 2011; Hir-
amatsu et al., 2011; Goda et al., 2014). However, it is unclear how we
store information related to material categories in the visual memory.
Here, we examined the neuronal mechanisms associated with the visual
short-term memory (VSTM) for objects with material categories.
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Several previous studies of material properties have focused on the
visual estimation of specific properties such as glossiness and surface
roughness (see Fleming, 2014). For example, Nishida and Shinya (1998)
reported that participants could judge the specular reflectance of a glossy
surface simulated by a computer. Motoyoshi and Matoba (2012) indi-
cated that the statistical characteristics of the illumination influenced the
perceived glossiness. Additionally, Ho et al. (2006) reported that the
judgment of surface roughness is systematically biased by the illumina-
tion. By contrast, material categorization refers to the ability to judge
which class a material belongs to, and this helps us to guess its properties
(Fleming et al., 2013). Thus, material categorization results in a simple
label, such as metal, glass, and fabric, and this may not require a precise
representation of the material properties. Psychological research has
shown that we can rapidly perceive and categorize the material for ob-
jects made of plastic and fabric (Sharan et al., 2009). For example, in the
study by Fleming et al. (2013), participants viewed images of different
material categories and rated subjective qualities, such as hardness,
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1 We did not perform a priori power analysis. However, our sample size is
comparable to that of some previous studies of VSTM (Hakim et al., 2019; Todd
and Marois, 2004; Xu and Chun, 2006).
2 As pointed out by Fleming (2014), there are a considerable number of

variations in the possible appearance of a broad material class such as plastics.
Hence, polyethylene bags, straws, and containers have widely diverging shapes
and colors. A given exemplar, such as a container, can have many different
shapes. Therefore, it should be noted that plastic may have any shape or color
and that these low-level features were rarely diagnostic for plastic objects. We
corrected all material and color stimuli in advance to make screen gamma values
to 2.2 using Mcalibrator2 software (Ban and Yamamoto, 2013). However, we
used monochromatic images of material objects.
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glossiness, and prettiness. Even when they did not know that the samples
belonged to different classes, the subjective ratings of the samples were
systematically classified into material categories. These results suggest
that we can group materials according to the visual appearance of the
material properties. Additionally, Cant and Goodale (2007), Cant et al.
(2009), and Cavina-Pratesi et al. (2010a, b) have reported that brain
areas around the collateral sulcus and the fusiform gyrus are involved in
the processing of individual features of surface properties (e.g., color or
texture). Cavina-Pratesi et al. (2010b) have indicated that the medial
regions of the occipitotemporal cortex are engaged in the estimation of
surface materials.

How do we identify and categorize the material of an object from
these properties? Recently, using functional magnetic resonance imaging
(fMRI), Hiramatsu et al. (2011) examined how information about ma-
terials (e.g., low-level image features such as spatial frequency) was
encoded and transformed into perceptual representations in the brain
when participants viewed the images of nine materials such as metal,
ceramic, and glass. As a result, the neural representations gradually
shifted from image-based representation in early visual areas (V1/V2) to
perceptual-category representations in higher-order visual areas around
the fusiform gyrus. Similar results have also been observed in the visual
cortex of macaque monkeys (Goda et al., 2014). Additionally, Suzuki
(2015) reported that a patient with damage to the left ventromedial
occipitotemporal cortex, which included the fusiform gyrus and lingual
gyrus, experienced difficulty matching and naming the textures of real
materials. These results indicate that material categorization requires
more than the low-level processing of material images, and the fusiform
gyrus and its surrounding regions play an important role in the percep-
tion of material categories.

This study aimed to clarify the neuronal mechanisms in the brain
associated with VSTM for material information using event-related
functional MRI. As described above, previous studies have identified
the brain areas engaged in perceiving the low-level features of material
properties and forming material categories. However, it is still unclear
whether there are neural representations of VSTM for materials and, if so,
which region is involved in the maintenance of material information. To
address this issue, we used a change detection task (e.g., Todd and
Marois, 2004; Xu and Chun, 2006), in which participants are required to
remember colors, shapes, or relatively complex features from the same
set of objects. They first view one to four or six (or eight) objects in a
sample display. As items in the display increase, it is presumed that visual
working memory load also increases, which requires more of the store's
capacity (Ma et al., 2014). After a brief delay, participants are required to
detect a shape-feature change in a test display. Previous studies have
demonstrated that people can retain memories pertaining to three to four
simple features of objects or colors (Hakim et al., 2019; Luck and Vogel,
1997; Todd and Marois, 2004; Xu and Chun, 2006). By contrast, the
number of complex objects encoded does not increase with set size and
reaches a plateau of about 1.5 at set size two (e.g., Alvarez and Cavanagh,
2004; Brady and Alvarez, 2015; see also Awh et al., 2007).

According to this slot model (e.g., Cowan, 2001; Luck and Vogel,
1997), individuals store each item in independent memory slots. Instead
of the slot model, a resource model proposed that people allocate their
resources to distinct items, and this item can be recalled when enough
resources are allocated to it (e.g., Bays and Husain, 2008; Ma et al., 2014;
Wilken and Ma, 2004). More recently, it has been shown that
higher-order summary information and ensemble representations of
items presented in a display, which are not separate in visual working
memory, influence performance in a change detection task (Brady and
Tenenbaum, 2013; Liesefeld and Müller, 2019; Liesefeld et al., 2019).
Additionally, brain activation in the lateral occipital cortex and intra-
parietal sulcus (IPS), specifically the superior IPS, reflects the VSTM for
colors or objects during encoding and maintenance (e.g., Todd and
Marois, 2004; Xu and Chun, 2006).

Consistent with the previous neuroscience studies of VSTM (e.g.,
Todd and Marois, 2004; Xu and Chun, 2006) and material perception
2

(Hiramatsu et al., 2011), we assessed the neural responses to memory for
material categories using a region of interest (ROI) approach and
calculated the averaged signal changes from two functionally defined
ROIs: the superior IPS, which is engaged in VSTM (e.g., Todd andMarois,
2004; Xu and Chun, 2006), and the fusiform face area (FFA), which is
sensitive to the perception of material categories (Hiramatsu et al.,
2011). In this study, we used two types of change detection tasks to
measure VSTM for material categories: an image-based change detection
task and a material-based change detection task. In the image-based
change detection task, participants were required to decide whether
the test display image itself had changed in relation to the sample display.
By contrast, in the material-based change detection task, participants
decided whether a material category had changed in the test display.
Consequently, if the VSTM for material categories were represented in
the superior IPS and the FFA, a difference between the signal changes in
image (i.e., object shape)-based and material-based change detection
tasks would emerge in these regions. Therefore, we also examined the
association between the brain activities in the superior IPS and the FFA
using a correlation analysis.

2. Material and methods

2.1. Participants

Twenty-six participants from the participant pool at Kyoto University
took part in this experiment (13 males and 13 females, mean age: 21.4
years; age range: 20–27 years).1 They participated in this experiment in
exchange for a book coupon (5,000 yen). Data from four participants
were excluded from the following analyses because there were signifi-
cantly several no-responses in the main scan (more than 50%) or because
of anatomical findings (atrophy in the left temporal region). All partici-
pants were right-handed based on the H. N. Handedness Inventory
(Hatta, 1975), had self-reported normal or corrected-to-normal visual
acuity with non-magnetic glasses, and had normal color vision based on
the Ishihara test for color blindness (Ishihara, 1968). All experimental
protocols were approved by the Institutional Review Board of Kyoto
University. All participants provided informed consent for inclusion in
the study.

2.2. Stimuli and procedure

Forty-eight images rendered on eight nonsense shapes were selected
from those in Hiramatsu et al. (2011), and these belonged to six material
categories (metal, glass, stone, bark, leather, and fur; Figure 1). We
created monochromatic images from each original image, by trans-
forming the photograph from RGB to the x*y*Y* color mode and sub-
sequently discarding the chromatic components x* and y* of the colored
images, leaving only Y* (luminance information).2 These images were
presented on a gray background.

Visual stimuli were displayed using a digital projector with a refresh
rate of 60 Hz (U2-X2000, Plus, Japan). Image resolution was 1,024� 768
pixels. Participants viewed visual stimuli with a mirror, which was
positioned above the eyes, at a viewing distance of approximately 20 cm.



Figure 1. Material images used in this study, from Hiramatsu et al. (2011). The labels presented at the bottom of the images arranged in tandem represent the name of
the materials (starting from the left, metal, glass, stone, bark, leather, and fur).
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Figure 3. Examples from the material-based change detection task in the main
scan. In the material-based change detection task, participants were required to
decide whether the object in the test display changed at the material level.
Hence, the test display in the material-based detection task always contained a
stimulus of a shape different from the sample display, both in the same and in
the different conditions. That is, in the different condition of the material-based
task, both shape and material category changed in the test display (e.g., from
stone to fur), whereas in the same condition, only the shape changed in the test
display and the material category remained the same (e.g., metal).
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The experiment was controlled by MATLAB (The MathWorks, Inc.,
Natick, MA) and the Psychophysics Toolbox (Brainard, 1997; Pelli,
1997). Behavioral responses were collected using an MRI-compatible
fiber-optic button box.

First, participants took part in one main scan consisting of four runs:
two runs of image-based and two runs of material-based change detection
tasks. The order of two change detection tasks was counterbalanced
across participants. In other words, half of the participants first per-
formed the image-based change detection task (two runs) and subse-
quently performed the material-based change detection task (two runs).
The remaining participants did the two tasks in the opposite order:
participants were informed whether the task was an image-based or a
material-based change detection task in advance. In each trial, a sample
display with two, four, or six objects on the circumference of a circle was
presented for 500 ms, and participants were required to remember what
images or materials were presented at each location. Each object sub-
tended a visual angle of approximately 9.7� vertically and 6.3� hori-
zontally, and the eccentricity between the fixation point and each object
was approximately 11.4�. No two or more objects with the same cate-
gories were ever presented in a sample display. Following a delay screen
for 1,500ms, a test display was presented for 2,000 ms. Participants were
required to detect a change in an object's image (Figure 2) or material
(Figure 3) (50% of the trials were no change trials; the remaining 50% of
the trials were change trials). The participants were to press with their
index finger for a change response and with their middle finger for a no-
change response. The finger configuration for making a response was
counterbalanced across participants. Thus, half of the participants used
their index finger for a change response and their middle finger for a no-
change response, while the inverse of this configuration was used by the
remaining participants. In the material-based change detection task,
participants were required to decide whether the object in the test
display changed at the material level. Hence, the test display in the
Figure 2. Examples from the image-based change detection task in the main
scan. Participants performed the change detection task by deciding whether an
image itself had changed or not, irrespective of whether the material categories
were the same or different. In the image-based change detection task, there were
two types of different conditions. In different condition (1), both shape and
category changed in the test display (e.g., from stone to fur). In different con-
dition (2), only the shape changed in the test display and the material category
remained the same (e.g., bark). In the image-based task, the shape and category
did not change in the same condition (e.g., metal).
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material-based detection task always contained a stimulus of a shape
different from the sample display, both in the same and in the different
conditions. We did not include objects for which there was no change in
either shape or material in the material-based condition to exclude the
possibility that participants would perform the material-based change
detection task using shape information. Note that in the image-based
change detection task, there were two types of different conditions. In
the material-change condition (different condition 1), both shape and
material category changed in the test display, and participants had to
judge it as different. In the shape-change condition (different condition 2),
only the object shape changed in the test display, while the material
category remained the same (e.g., bark shown in both the sample and test
displays). In this case, these two objects were different at the image level;
therefore, participants had to judge them as different. In the image-based
task, neither the shape nor the category changed in the same condition.
While at first, the image-based change detection task contained both
shape-change and material-change detection, participants were only
instructed to decide whether the object in the test display changed at the
image level. The rest period was 2,000, 4,000, or 6,000 ms. Participants
were required to press the button within 4,000 ms after the test display.
Furthermore, there were several blank trials, in which only the fixation
dot was presented for 6,000 ms. The presentation order of the set size (2,
4, and 6) and blank trials was random in each run. Each participant was
tested with four runs (two runs for each task), each containing 12 trials
per set size and 12 blank trials, resulting in 96 trials for each task (the
image-based change detection task included 18 trials in the same condi-
tion, nine trials in different condition 1, and nine trials in different condition
2 in each run; the material-based change detection task included 18 trials
each in the same and different conditions, respectively, in each run).

To define the superior IPS, we conducted a color-based change
detection scan with a design identical to that of the main scan, consisting
of two runs (e.g., Todd and Marois, 2004; Xu and Chun, 2006). This
procedure was the same as that of the main scan, except that we used six
colors (red, green, blue, cyan, yellow, and magenta), each color square
subtended a visual angle of approximately 6.3� vertically and horizon-
tally, and for each trial, participants decided if a color change had
occurred during the test display (Figure 4).
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Finally, to define the FFA, participants took part in one run of an
additional localizer scan. Each block consisted of 12 faces (six male faces
and six female faces) from those in Matsumoto and Ekman (1988) or 12
scenes (six indoor scenes and six outdoor scenes) from the SUN database
(Xiao et al., 2010). Figure 5 depicts the face and scene stimuli used in the
localizer scan. The two categories alternated every 30 s. The order of
blocks was counterbalanced across participants. Participants judged
whether the faces were male or female or whether the scenes were in-
doors or outdoors by pressing one of the two buttons. For each block, a
fixation cross was displayed for 6 s with an instruction about finger/key
constraints (“press with your index finger for a male or indoor scene” and
“press with your middle finger for a female or outdoor scene”). Each
image was subsequently presented for 500 ms with a 1,500-ms inter-
stimulus interval, resulting in 30-s blocks. There were eight blocks of
each type, resulting in 16 blocks.

Before the experiment, participants performed practice trials for each
run outside the scanner. Additionally, they classified which objects
belonged to each of the six material categories (Figure 1).
2.3. fMRI data acquisition

Data were collected on a 3T Siemens scanner (3.0T MAGNETOM
Verio) at Kokoro Research Center, Kyoto University. Functional data
were acquired with a T2*-weighted gradient-echo, echo-planar imaging
(EPI) sequence (echo time [TE] ¼ 25 ms; repetition time [TR] ¼ 2,000
ms; flip angle¼ 75�; matrix¼ 64� 64; field of view¼ 224mm; 3.5� 3.5
� 3.5 mm voxel size) with 34 axial slices. We acquired 180 volumes for
each test run, 180 volumes for each color-localizer run, and 240 volumes
for the additional localizer run. Structural images were acquired using a
T1-weighted anatomical sequence (three-dimensional [3-D] magnetiza-
tion-prepared rapid acquisition with gradient echo; TE ¼ 3.51 ms; TR ¼
2250 ms; flip angle ¼ 9�; matrix ¼ 256 � 256; 1.0 � 1.0 � 1.0 mm voxel
size).
2.4. Preprocessing

Preprocessing and statistical analyses were performed using the Sta-
tistical Parametric Mapping software (SPM) (SPM 8; http://www.fil.ion.
ucl.ac.uk) in MATLAB. Images were corrected for slice acquisition time,
motion-corrected with realignment to the first volume, spatially
Figure 4. Examples from the color-based change detection task in the localizer
scan. In the color-based change detection task, participants performed the
change detection task by determining whether a color changed or not in the test
display. In the different condition of the color-based task, a color changed in the
test display (e.g., from blue to red), whereas in the same condition, the color
remained the same (e.g., cyan).
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normalized using the Montreal Neurological Institute EPI template, and
spatially smoothed using an 8-mm Gaussian kernel.

2.5. Data analyses

To examine how neural responses differed with respect to the image-
based andmaterial-based change detection tasks within two a priori ROIs
from the localizer scans (bilateral FFA and superior IPS), we ran three
general linear model (GLM) analyses using SPM. First, we ran one GLM
analysis on the data from the test scan, with four event types (set size 2,
set size 4, set size 6, and blank trials) and task conditions (image-based
vs. material-based) as separate regressors. To localize the superior IPS for
each participant, we ran the second GLM analysis on the data from the
color-localizer scan, with four event types as separate regressors and the
behavioral performance as a covariate. Finally, to localize the FFA for
each participant, we ran the third GLM analysis on the data from the
additional localizer scan, with two block types (facial images and natural
images) and fixation durations as separate regressors. As covariates of no
interest, we also included six regressors for each dimension of head
motion in each GLM analysis. These models estimated the contribution of
each condition to the blood-oxygen-level dependent response using a
boxcar function that was convolved with a canonical hemodynamic
response function.

Next, to localize the superior IPS for each participant, we conducted a
voxel-wise contrast for all set size conditions versus the blank trials on
the data from the color-localizer scan. Facial images were also contrasted
with images of natural scenes to localize the FFA for each participant. In
each region, the voxel showing the greatest t value was selected as the
center of a 4-mm spherical ROI, only if the t value reached a cluster level
of significance threshold of p < 0.05 corrected (the voxel level threshold
p < 0.001 uncorrected). Additionally, we set the cluster size threshold as
at least 20 k, consistent with that of the previous studies (Lieberman and
Cunningham, 2009; Woo et al., 2014). We used the MarsBaR ROI toolbox
to calculate percent signal changes in the test scan (Brett et al., 2002).
Percent signal changes were calculated separately in the left and right
regions, and these data were collapsed.

Additionally, we examined the association between the brain activ-
ities in the superior IPS and the FFA.

3. Results

3.1. Behavioral results

First, we analyzed the behavioral data from the main scan. Accuracy
in the change detection task decreased as a function of set size in both the
image-based (set size 2, 79.8%; set size 4, 68.0%; set size 6, 60.8%) and
material-based blocks (set size 2, 64.8%; set size 4, 61.6%; set size 6,
56.7%). Consistent with the previous studies (Todd andMarois, 2004; Xu
and Chun, 2006), we used Cowan's K formula (Cowan, 2001) to estimate
the number of objects encoded: K ¼ (hit rate þ correct rejection rate – 1)
N for each set size, where K is the number of objects encoded and N is the
number of objects presented. If the number of objects encoded increases
with an increase in set size, the trend in Figure 6 will show a linear in-
crease up to three or four. However, different from the previous studies
using the change detection task with color or object stimuli (e.g., Hakim
et al., 2019; Luck and Vogel, 1997; Todd andMarois, 2004; Xu and Chun,
2006), the number of objects encoded for each set size did not increase in
either the image-based or the material-based change detection tasks (see
Figure 6). We performed a two-way within-subjects analysis of variance
(ANOVA) on K values in the main scan, with the task (image-based vs.
material-based) and set size conditions (2, 4, vs. 6). Although we
observed a significant effect of task (1.29 in the image-based condition
vs. 0.77 in the material-based condition), F(1, 21) ¼ 10.49, p ¼ 0.004,
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Figure 5. Face and scene stimuli used in the localizer scan (Matsumoto and Ekman, 1988; Xiao et al., 2010).
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neither an effect of set size, F(2, 42) ¼ 1.39, p ¼ 0.262, nor interaction
between task and set size conditions was observed, F < 1.3

Next, we compared correct responses between the image-based and
material-based conditions using only the same trials. We performed a
two-way within-subjects ANOVA with the task (image-based vs.
material-based) and set size (2, 4, vs. 6) and observed a significant effect
of task (image-based task, 53.0%; material-based task, 36.0%), F (1, 21)
¼ 37.13, p < 0.001. This result suggests that same trials in the material-
3 We performed the same ANOVA on K values with all 26 participants.
Although we observed a significant effect of task (1.23 in the image-based
condition vs. 0.81 in the material-based condition), F(1, 25) ¼ 5.68, p ¼
0.025, neither an effect of set size, F(2, 50) ¼ 1.01, p ¼ 0.370, nor interaction
between task and set size conditions was observed, F < 1. As described in the
“ROI analyses” section (3. 2. 1.), we observed the effect of set size only in the
color-based change detection task used in the localizer scan (see Figure 6).
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based change detection task are more difficult than those in the image-
based change detection task.

3.2. Results of fMRI

3.2.1. ROI analysis
It should be noted that images from trials with errors were not

included in the first-level analysis of the fMRI data. We examined VSTM
for objects with material categories within two a priori ROIs: the superior
IPS and the FFA. First, according to Xu and Chun (2006), the effect on
VSTM was examined by comparing responses for the task and set size in
our superior-IPS ROIs, identified in each participant from the functional
localizer of a color-based change detection experiment. ROIs were found
in 18 participants. Although we performed a two-way within-subjects
ANOVA on the signal changes with the task (image-based vs.



Figure 6. The number of objects encoded during the change detection task for
the main and color-localizer scans as a function of the type of task (image-based
vs. material-based) and set size (2, 4, and 6). Error bars represent the standard
errors of the means.
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material-based) and set size (2, 4, vs. 6), we did not observe any signif-
icant difference in signal change as a function of each condition, Fs < 1.

Next, we performed the same ANOVA on the signal changes in our
bilateral FFA ROIs. ROIs were found in 18 participants; however, the data
for one participant were excluded from the ANOVA as an outlier (the data
of this participant deviated by at least 2 standard deviations from the
mean signal changes). Figure 7 shows percent signal changes as a func-
tion of each condition. We observed a significant main effect of task,
indicating lower activation under the material-based than the image-
based conditions (0.06 vs. 0.11), F(1, 16) ¼ 4.83, p ¼ 0.043. However,
neither the effect of set size nor interaction was significant, F(2, 32) ¼
1.75, p ¼ 0.190, and F < 1, respectively.

We did not observe any reliable difference in signal changes between
the same and different conditions (i.e., we did not observe either an effect
of same/different trials or interaction including this factor) in either the
superior-IPS or the FFA ROIs, which suggests that our results would not
be explained by adaptation (repetition) effects.

One important issue for behavioral results is that we did not observe
an effect of set size in either the image-based or material-based change
detection task. One possible explanationmight relate to the visual objects
with material categories that were used in this study. In other words, it
might have been more difficult for participants to memorize material
objects than colors. In fact, we performed a two-way within-subjects
ANOVA including the behavioral data from the color-localizer scan and
observed a significant interaction between the task (image-based,
material-based, vs. color-based) and set size (2, 4, vs. 6), F(4, 84) ¼ 5.19,
p¼ 0.001, which indicated that the effect of set size was significant in the
color-based change detection task, F(2, 20)¼ 56.41, p< 0.001, but not in
Figure 7. Percent signal change in the fusiform face area as a function of the
type of task and set size (including both the same and different conditions).
Error bars represent the standard errors of the means.
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the image-based and material-based tasks, F(2, 20)¼ 1.04, p¼ 0.371 and
F(2, 20) ¼ 1.21, p ¼ 0.321, respectively. Multiple comparisons (Bonfer-
roni-corrected) showed that the VSTM capacity for set size 4 and 6 (3.3
and 3.2, respectively) was higher than that for set size 2 (1.8), ps< 0.001
(see Figure 6). According to the behavioral data, the neural responses in
the superior IPS increased as a function of set size. A two-way within-
subjects ANOVA on the signal changes in the superior IPS revealed a
marginally significant interaction between the task (image-based,
material-based, vs. color-based) and set size (2, 4, vs. 6), F(4, 68) ¼ 2.33,
p ¼ .065, which indicated that the effect of set size was significant in the
color-based change detection task, F(2, 16) ¼ 5.17, p ¼ .019, but not in
the image-based and material-based tasks, F(2, 16) ¼ 1.93, p ¼ .178 and
F(2, 16) ¼ 0.15, p ¼ .862, respectively. Multiple comparisons (Bonfer-
roni-corrected) showed that the signal changes for set size 4 (0.40) and
set size 6 (0.38) were higher than that for set size 2 (0.31), with signif-
icance only for set size 4 (p¼ .013; set size 6, p¼ .321), in the color-based
change detection. The pattern of these results is consistent with that of
some previous studies that showed that people can retain an average of
three to four simple features of objects or colors (Hakim et al., 2019; Luck
and Vogel, 1997; Todd and Marois, 2004; Xu and Chun, 2006). These
findings suggest that our manipulation of set size in the change detection
task was adequate, and no effect of set size in either the image-based or
material-based tasks attributes to the stimuli. It is possible that the low
performance in the main scans is due to the removal of color information
from material objects.

3.2.2. Correlation analyses
To examine the association between the brain activities in the supe-

rior IPS and the FFA, we performed a correlation analysis on the
parameter estimates of the activity in the superior IPS and the FFA during
the image-based versus material-based conditions (both the superior IPS
and the FFA were localized in 16 participants). Because we did not
observe a significant effect of set size in the behavioral and ROI analyses,
we collapsed this variable. The correlation analysis was not significant,
r(16) ¼ .033, p ¼ 0.904.

Next, we used the difference in parameter estimates between the
image-based and material-based change detection tasks in the bilateral
FFA or superior IPS as a covariate and performed a whole-brain analysis
using the data from the main scan to examine the association between
neural activation in the FFA or the superior IPS and other brain areas.
Voxels were judged to show a significant difference for image-based
versus material-based change detection tasks only if the t value
reached a cluster level of significance threshold of p< 0.05 corrected (the
voxel level threshold p < 0.001 uncorrected). This analysis revealed that
activation was greater in the bilateral region of the precentral/post-
central gyrus (right, 60, –4, 12; left, –64, –22, 20; ps < 0.05 corrected;
extent¼ 637/533; peak ts¼ 5.34/6.94) for image-based versus material-
based change detection tasks, including all three set size conditions,
dependent on the FFA (Figure 8A and B).4 By contrast, we did not observe
any significant regions dependent on the superior IPS.

4. Discussion

This study examined the brain mechanisms underlying VSTM for
objects with material categories. To address this issue, we used a change
detection task for visual shapes with six material categories. First, we
defined two ROIs based on the localizer scans, and performed ROI
4 We labeled each region using the Talairach Client (Lancaster et al., 1997,
2000) after converting from the Montreal Neurological Institute to Talairach
coordinates (http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach). It is
not surprising that we also observed greater activation in the regions of the
parahippocampal place area/fusiform face area (right, 32, –38, –12; left, –30,
–48, –14; ps < 0.05 corrected; extent ¼ 376/518; peak ts ¼ 8.66/6.83) for
image-based versus material-based change detection tasks.



Figure 8. Whole-brain analysis from the main scan contrasting between the image-based and material-based change detection tasks with the parameter estimate in
the bilateral fusiform face area (FFA) as a covariate. (A) The bilateral precentral/postcentral gyrus was activated in the image-based versus material-based change
detection tasks. (B) Scatter plot of the parameter estimate between the bilateral FFA and bilateral precentral/postcentral gyrus.
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analyses with the FFA and superior IPS as our ROIs. Although we did not
observe any significant difference in percent signal changes in the su-
perior IPS between the two conditions, we observed a significant dif-
ference in percent signal changes in the FFA between the image-based
and material-based change detection tasks, which might be comparable
to the previous studies on the perception of material categories (Hir-
amatsu et al., 2011; Suzuki, 2015). Our results indicate that the FFA may
be involved in VSTM for objects in material categories in terms of the
difference between images and material categories, which is related to
the perceptual processing of multiple visual features such as color and
texture, as shown by Cant and Goodale (2011).

It is worth noting that signal changes in the FFA were lower in the
material-based change detection task than in the image-based task. One
possible explanation is that the material-based change detection task
might have contained more decision processes than the image-based
task. For example, when one metal shape was presented in the upper
left of a sample display and another metal shape was presented at the
same position on a probe display, “change” detection may have been
based on the visual features of the two metal shapes. However, partici-
pants might subsequently have had to correct their decisions to “no
change” based on the material information of the two metal shapes. This
additional step in the change detection task might have decreased both
the capacity K value and signal changes in the FFA in the material-based
condition. Indeed, our results indicate that no-change trials in the
material-based change detection task were more difficult than those in
8

the image-based task. Alternatively, it is possible that our results rely on
the difference in the conditions between the image-based and material-
based change detection tasks. As mentioned in the “Stimuli and pro-
cedure” section, the image-based change detection task contained two
types of different conditions in which there was a change in either shape
or shape and material category, whereas the material-based task con-
tained one different condition in which there was a change in both the
shape and material category. Thus, participants could have just attended
to the shape only in the image-based change detection task and moni-
tored a shape change without the need to encode its material property. In
other words, the difference between these two conditions might not be
whether material was relevant to change detection but whether shape
was relevant. Consequently, differential activity in the FFA might have
reflected the processing of shape information in the image-based change
detection rather than that of material information in the material-based
change detection. Indeed, Cant and Goodale (2011) have shown that
compared with perception of the surface texture, that of surface shape
elicited stronger signal changes in the right FFA. However, Cant and
Goodale have also reported stronger signal changes in the same regions
when perceiving material properties rather than surface shape in their
Experiment 2.

Additionally, differential activity between the image-based and
material-based change detection tasks might depend on whether partic-
ipants needed to ignore irrelevant changes rather than to store relevant
information for change detection. Indeed, the shape of objects in the test
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display changed during each trial, but participants had to ignore this type
of change in the material-based change detection task. In other words,
participants were required to respond no change when only the shape of
objects changed. Alternatively, there were no irrelevant changes in the
image-based change detection task. More recently, Liesefeld et al. (2017)
reported that redundant changes (color and orientation) for a change
detection task shortened reaction times in change detection, similar to
pop-out in a visual search task. In our experiment, irrelevant changes of
shapes might enforce different strategies on participants between the two
conditions. Although it has been shown that visual search does not
require accumulation of information about objects (Horowitz and Wolfe,
1998), it may be that VSTM for irrelevant information influences per-
formance in a change detection task. Some of these factors might have
contributed to the counterintuitive findings that the FFA activity was
lower in the material-based condition than in the image-based condition.

More interestingly, however, we observed a significant positive as-
sociation between the activations in the FFA and bilateral precentral/
postcentral gyrus. In other words, we observed less brain activity in the
left and right precentral/postcentral gyri in the material-based versus
image-based change detection tasks, and these results were dependent on
brain activity in the FFA. It has been demonstrated that these areas in
particular are engaged in haptic perception (e.g., Bodegård et al., 2001;
Reed et al., 2004). This association suggests that even when we encode
and maintain visual representations of material categories, haptic pro-
cessing of visual information, such as roughness and glossiness, may be
related to the VSTM for objects with material categories. Although some
previous studies have reported that brain regions such as the ventrolat-
eral occipitotemporal cortex and early visual cortex are involved in
cross-modal interactions between visual and haptic processing (e.g.,
Masson et al., 2016; Snow et al., 2014), this study provides a novel hy-
pothesis that both the higher visual areas and somatosensory cortex may
play important roles in the VSTM for objects with material properties.
More recently, Sun et al. (2016) used fMRI to examine whether
visual-tactile cross-modal activation occurs when people only observe
material surfaces. In their study, participants observed 3-D objects made
of four types of materials: Glossy, Glossy Control (Matte), Rough, and
Rough Control (Textured). Participants observed a stream of these ob-
jects and were required to perform a 1-back matching task. Using
multi-voxel pattern analysis to calculate classification accuracies for the
above materials, Sun et al. (2016) showed that differences between
Glossy and Rough conditions were decoded not only by the visual areas
(e.g., V1, V2, V3, V4, and the lateral occipital region) but also by the
secondary somatosensory cortex. In contrast, they did not observe a
reliable difference between the Glossy Control and Rough Control con-
ditions in the somatosensory cortex.5 Additionally, they showed that
decoding performance was higher for the Gloss vs. Rough comparison
than for the Glossy Control vs. Rough Control comparison only in the
secondary somatosensory cortex. Sun et al. (2016) suggested that surface
properties retrieved from visual stimuli activate a visual-tactile cross--
modal network, which facilitates the multisensory processing of texture
and roughness. Although we examined neural correlates of VSTM for
objects with material properties comparing brain activities between the
material-based and image-based conditions, it is possible that the
image-based change detection is not adequate as a control task, different
from the control conditions in Sun et al., because of the contamination
accompanied by manipulation (i.e., the image-based change detection
task in our control condition required participants to detect changes in
5 For example, in both the Glossy Control and Rough Control conditions, the
objects looked matte because participants could not utilize the information for
each perception (Sun et al., 2016). Brain encoding predicts brain response
patterns from the sensory stimuli and experimental conditions, and brain
decoding predicts behavioral responses from brain responses with computation
of classification accuracies for stimuli and conditions (c.f. Kriegeskorte and
Douglas, 2019).
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either shape or in shape and material), making it difficult to interpret
differential brain activities. In future studies, we will need to examine
brain regions responsible for VSTM for material properties with a control
task that is identical in all except for VSTM for material properties.

However, note that the above hypothesis is the reverse inference from
the involvement of the somatosensory cortex with VSTM for objects with
material properties. Thus, we need to take care of interpretation of our
results, and conduct further studies to examine this issue in more detail,
for example, with a combination of behavioral and fMRI data and the
usage of neuroimaging databases (see Poldrack, 2006). Furthermore, it is
unclear whether our results were actually reflective of VSTM, specifically
the maintenance of visual representations of material categories rather
than the perceptual processing of material categories. To dissociate
whether brain activations observed in the IPS were reflective of VSTM
encoding, maintenance, or retrieval, Todd and Marois (2004) conducted
a change detection task with the retention interval extended to 9,200 ms
(see also Experiment 3 by Xu and Chun, 2006). This additional experi-
ment showed that the IPS was more activated at larger set sizes than
smaller set sizes (set size 3 > set size 1) during both encoding and
maintenance, but not during retrieval. They discussed that the IPS is
sensitive to working-memory load during encoding and maintenance.
However, we did not conduct this type of additional fMRI experiment to
shorten the experiment time in this study.

As described in the “Results” section, we did not observe an effect of
set size in either the image-based or material-based but in the color-based
change detection tasks. Regarding the no effect of set size, we failed to
achieve our research aim. One possible explanation is that participants
might have had difficulty in discriminating the monochromatic visual
objects with material-category changes. For this reason, participants
might have used a different strategy in both the image-based and
material-based change detection tasks from that used in the color-change
detection task (e.g., memory of luminance or contrast of the visual ob-
jects presented in the display).6 It is possible that this unexpected strategy
might have disguised the effect of set size. Alternatively, it might have
been more difficult for participants to memorize the visual objects with
material categories than colors. Previous studies have revealed that the
VSTM capacity for facial expressions is slightly lower than four (�Svegar,
2011). Because Xu and Chun (2006) observed lower memory capacity for
more complex objects than simple objects, they examined whether
behavioral performance was due to perceptual processing or memory
limitations. As a result, longer encoding times for sample displays did not
improve the VSTM capacity, and they concluded that the reduced VSTM
capacity for more complex objects was due to memory rather than
perceptual processing limitations. Thus, an upper storage limit of
approximately four items can be observed for simple objects. As the
amount of visual information per item increases, the storage limit de-
creases to lower levels (Alvarez and Cavanagh, 2004). Instead of the slot
model, as used in our study (e.g., Cowan, 2001; Luck and Vogel, 1997),
the performances on the change detection tasks may be explained by
flexible resource models (e.g., Bays and Husain, 2008; Ma et al., 2014;
Wilken and Ma, 2004). According to resource models, resources are
allocated to all of the items in a sample display. In conditions with
smaller set size, the resources are sufficient for allocation to all of the
items in the display, thus resulting in a higher precision of recall and a
better decision in the change detection. In contrast, in conditions with
larger set size, with sustained visual working memory capacities, the
memory resources can be unevenly distributed among the items, thus
resulting in prioritization of the items that are stored with enhanced
precision compared to those that are not prioritized. Additionally,
Machizawa et al. (2012) have shown that the amplitudes of the neural
6 We examined the mean luminance (metal: 83.06; glass: 90.95; stone: 86.71;
bark: 83.83; leather: 82.69; fur: 85.87) and root mean square contrast of visual
objects with material-category changes (metal: 39.99; glass: 20.00; stone: 28.29;
bark: 27.43; leather: 26.64; fur: 26.21).
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signals that are sensitive to the number of items in working memory (the
contralateral delay activity) correlate with precision. More importantly,
these resource models account for the variability of the visual working
memory capacities in the stimulus category (Ma et al., 2014). Consid-
ering the results of these previous studies, our results may not necessarily
suggest memory capacities of less than one for material categories. It is
possible that the maintenance of the memories for material objects re-
quires more memory resources than those for color stimuli, thus resulting
in a lack of effect of set size. Additionally, in the material-based change
detection task, the participants needed to maintain memories for the
visual features and the categorical information of the materials. In other
words, the material-based change detection task required the partici-
pants to use more memory resources than the image-based task did,
which might have resulted in less precision in the material-based task.
Thus, we need to do further research to determine whether the precision
in the material categories depends on set size in the memory displays
using delayed estimation tasks (Wilken and Ma, 2004), instead of typical
change detection tasks with Cowan's K.

5. Conclusion

Although the present study was conducted with the aim of elucidating
the neuronal mechanisms associated with VSTM for objects with material
categories, we failed to achieve this research aim. However, our findings
suggest that the FFA may be involved in VSTM for objects belonging to
material categories, in terms of the difference between images and ma-
terial categories and that this memory is mediated by the tactile prop-
erties of objects. It will guide further work to clarify the mechanisms
underlying material perception, cognition, and memory.
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