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Coronavirus disease 2019 (COVID-19) is a respiratory infectious disease that seriously
threatens human life. The clinical manifestations of severe COVID-19 include acute
respiratory distress syndrome and multiple organ failure. Severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19, spreads
through contaminated droplets. SARS-CoV-2 particles have been detected in the saliva
of COVID-19 patients, implying that the virus can infect and damage the oral cavity. The
oral manifestations of COVID-19 include xerostomia and gustatory dysfunction.
Numerous studies showed that the four structural proteins of SARS-CoV-2 are its
potential pathogenic factors, especially the S protein, which binds to human ACE2
receptors facilitating the entry of the virus into the host cells. Usually, upon entry into
the host cell, a pathogen triggers the host’s immune response. However, a mount of multi-
omics and immunological analyses revealed that COVID-19 is caused by immune
dysregulation. A decrease in the number and phenotypes of immune cells, IFN-1
production and excessive release of certain cytokines have also been reported. In
conclusion, this review summarizes the oral manifestations of COVID-19 and multi-
omics analysis of SARS-CoV-2 infection.
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1 INTRODUCTION

Coronavirus disease 2019 (COVID-19) is an ongoing pandemic caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) (1, 2). SARS-CoV-2 is a kind of zoonotic
virus affecting both humans and animals (3). It mainly infects the respiratory tract (4), the nervous
system (5, 6), and the gastrointestinal tract (7). COVID-19 can develop into acute respiratory
distress syndrome (ARDS), causing multiple organ failure and death (8). Since the oral cavity is
directly connected to the external environment, it is easy to come into contact with viruses and other
org July 2022 | Volume 13 | Article 8797921

https://www.frontiersin.org/articles/10.3389/fimmu.2022.879792/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.879792/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.879792/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:liuweiw@jlu.edu.cn
https://doi.org/10.3389/fimmu.2022.879792
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.879792
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.879792&domain=pdf&date_stamp=2022-07-04


Hao et al. The Oral Manifestations in COVID-19
microorganisms through the oral cavity, including herpesvirus,
retrovirus, cytomegalovirus, influenza virus, etc. (9). A variety of
viruses can infect oral mucosa and salivary glands, causing oral
symptoms. SARS-CoV-2 can be transmitted through droplets,
aerosols, and contact with contaminated surfaces. Therefore,
growing evidence suggests that the SARS-CoV-2 infection
occurs when a person touches surfaces contaminated with
SARS-CoV-2 and then directly touches the mucous
membranes of the oral cavity and nose (10, 11). In addition to
affecting the respiratory and immune systems, COVID-19 is
manifested through different oral pathological features, including
gustatory dysfunction, xerostomia, and salivary gland diseases
(9, 12).

SARS-CoV-2 is a member of b-coronavirus genus (13). It
contains four major structural proteins, including the spike (S)
protein (14), which is an important virulence factor of SARS-
CoV-2, mediating the entry of the virus into the host cells (4).
Increasing evidence suggests that the occurrence and
development of COVID-19 are related to the immune
dysregulation caused by SARS-CoV-2 (15, 16). SARS-CoV-2
inhibits the secretion of type I interferon (IFN-1) and causes
the cytokine storm (17, 18). Since the binding of SARS-CoV-2 to
the oral cavity host cells is mediated by the angiotensin-
converting enzyme 2 (ACE2) receptors (19), the virus can
infect the epithelial cells of the oral mucosa and salivary
glands, especially the epithelial cells of the tongue (20–22). In
this review, we summarize the oral manifestations of COVID-19
and clarify the etiology and immunological pathogenesis of
COVID-19 using multi-omics analysis.
2 ORAL MANIFESTATIONS OF COVID-19

COVID-19 is a respiratory disease that manifests with fever,
cough, dyspnea, headache, chest discomfort, and general body
pain (23). Loss of taste and smell in early COVID-19 infection
has been reported in some patients (24). A systematic analysis of
COVID-19 clinical symptoms revealed that some patients
present with unique symptoms, including oral disorders, such
as gustatory dysfunction, oral mucosal diseases, salivary gland
diseases, gingivitis, and periodontitis (9, 25).

2.1 Gustatory Dysfunction
Gustatory dysfunction is one of the most common oral
manifestations of COVID-19 (26). Some COVID-19 patients
reported taste and smell dysfunctions (25, 27–29). Given the
increase in the number of COVID-19 patients with taste and
smell dysfunctions, the Centers for Disease Control and
Prevention (CDC) has included “New loss of taste or smell” as
a symptom of COVID-19 diagnosed as SARS-CoV-2 infection.
In one research involving 69 patients with olfactory and taste
dysfunctions, 75.4% were diagnosed with COVID-19 (30). In
addition, gustatory dysfunction can be used as a criterion for
diagnosing COVID-19 (31). Overall, these findings suggested
that gustatory dysfunction is a critical symptom of COVID-19,
which may be helpful for the diagnosis of COVID-19.
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2.2 Salivary Gland Diseases
Xerostomia is a common oral symptom of the early stage of
COVID-19 disease (22, 25, 32, 33). A report showed the
appearance of xerostomia symptoms in COVID-19 (34). In
one research, over 70% of patients with xerostomia and loss of
taste and smell tested positive before the COVID-19 diagnosis
(35). Therefore, xerostomia and taste and smell dysfunctions are
prodromal or unique early symptoms of COVID-19 and can be
relied on to control the spread of the virus.

Dysphagia and frequent swelling or pain in the salivary glands
or face are other oral COVID-19-related symptoms (36, 37).
Salivary gland ectasia is a common oral manifestation (32).
Reports of COVID-19-related parotitis and sialadenitis of the
submandibular gland suggest that acute parotitis may be an early
manifestation of COVID-19 (38, 39). In an analysis of oral
involvement, salivary gland ectasia was observed in 43% of
COVID-19 patients, suggesting that excessive inflammatory
response in the salivary glands may indicate SARS-CoV-2 (32).
Interestingly, SARS-CoV-2 virions have been detected in the
patients’ saliva prior to the apparent lung lesions, which may be
caused by SARS-CoV-2 infection in the salivary glands,
explaining the asymptomatic COVID-19 infection (40). These
reports show that oral diseases may be directly related to SARS-
CoV-2 infection. These findings suggest that certain oral
symptoms are strong indicators of SARS-CoV-2 infection.
SARS-CoV-2 enters the host cells via ACE2 receptors
abundant in the epithelial cells of the oral cavity, which might
explain the involvement of the oral cavity in SARS-CoV-
2 infection.
3 STRUCTURE OF SARS-COV-2

The SARS-CoV-2 is a single-stranded RNA virus. Its RNA
encodes four major structural proteins, which include spike
protein (S), envelope protein (E), membrane protein (M), and
nucleocapsid protein (N) (41) [Figure 1]. Besides, 16
nonstructural proteins (NSPs) and 9 accessory proteins are
included in the 29 proteins encoded (42).

The S protein mediates the virus’s entry into host cells and
plays a key role in coronavirus infection (43). The S protein
comprises the S1 receptor binding subunit and the S2 membrane
fusion subunit (44). SARS-CoV-2 binds to the ACE2 receptor via
the RBD region on the S1 subunit (45). The S2 subunit fuses with
the host and viral membranes, facilitating the delivery of the viral
genome into the host cells (43). The S protein is thus a vital
component of the SARS-CoV-2 virus pathogenicity and might be
used for COVID-19 diagnosis.

The E protein participates in the infection, replication,
assembly, release, and virulence effect of the SARS-CoV-2 life
cycle (46, 47). The E protein mediates the assembly and budding
of the virus by interacting with the M protein (48). Moreover, E
protein induces the host immune responses by promoting the
activation of the NLRP3 inflammasome (49–51). Inhibiting or
loss of expression of the E protein reduces titers of virions and
induces incomplete viral maturation (52, 53).
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Like the E protein, the M protein also inhibits the innate
immune response. For instance, the M protein suppresses the
signal transduction of RIG-I and MDA5 by targeting the
mitochondrial antiviral signaling (MAVS) protein and then
inhibits the virus-induced activation of the IFN-b promoter (54, 55).

The N protein has two main functions: it mediates the
assembly of the helical capsid around the viral RNA and
regulates the transcription of the viral genome (56). Also, the
N protein promotes the expression of cytokines by activating the
NLRP3 inflammasome signaling pathway (57). The nucleocapsid
(N) proteins have dual regulatory effects on the innate immune
response. At a low dose, the N protein inhibits the expression of
IFN-1; however, at a high concentration, the N protein promotes
the secretion of IFN-1 and cytokine release (58).

In addition to structural proteins, NSPs and accessory
proteins of SARS-CoV-2 have a role in pathogenicity by
influencing the host cell signaling (59). In general, the SARS-
CoV-2 proteins play different critical roles in the immune
invasion of the virus and modulation of the host immune
response. Therefore, understating the role of SARS-CoV-2
proteins can lead to the identification of important diagnostic
and therapeutic targets for vaccines against COVID-19.

For example, subunit vaccines, viral vector vaccines and
inactivated viral vector vaccines induce antibodies targeting the
S protein of SARS-CoV-2 (60–66).
Frontiers in Immunology | www.frontiersin.org 3
4 MULTI-OMICS ANALYSIS OF COVID-19

Multi-omics analysis reveals the pathogenic mechanism of
organisms, including how they evade the immune system.

Transcriptomics, proteomics, metabolomics, immunomics,
and single-cell transcriptomics are useful tools for analyzing
biomolecules such as mRNAs, proteins, metabolites, and single
cells (67) (Table 1). Therefore, they can clarify the pathogenesis
and progression of COVID-19. Bronchoalveolar lavage fluid
(BALF) and peripheral blood mononuclear cells (PBMC) of
COVID-19 patients are common samples used for analyses
(68, 74).

4.1 The Target Cells Infected by SARS-
CoV-2 in Oral Cavity
A study on Rhesus Macaques demonstrated that ACE2 (+)
epithelial cells in salivary glands duct were the early target cells
of SARS-CoV infection (78). SARS-CoV-2 is also recognized by
ACE2 receptors. These findings suggest that SARS-CoV-2 targets
ACE2 (+) salivary glands duct epithelial cells. Single-cell RNA
sequencing (scRNA-seq) was used to evaluate the specific
expression of ACE2 in oral cells. The data showed that
compared to buccal and gingiva tissues, the expression of
ACE2 was higher in tongue tissues (20). Interestingly, analysis
of 7 kinds of cell lines of oral cavity showed that the expression of
B

C

A

FIGURE 1 | Structure of the SARS-CoV-2.
TABLE 1 | Summary of the main multiple omics data about COVID-19.

Omics Application Biospecimen Types Reference

multi-omics (proteomics, metabolomics, single-cell RNA-seq, single-cell TCR-seq, single-cell
secretome)

plasma, PBMC (68)

multi-omics (transcriptomics, proteomics, metabolomics, lipidomics) blood (69)
multi-omics (metabolomics, proteomics, lipidomics) red blood cells (70)
multi-omics (metabolomics, lipidomics) serum (71)
multi-omics (metabolomics, proteomics) serum, urine (72)
transcriptomic whole blood cell, granulocyte preparations (73)
single-cell RNA-seq (scRNA-seq) nasal, bronchoalveolar lavage fluid (BALF),

PBMCs
(74)

selective spatial transcriptomic lung biopsies (75)
shotgun transcriptome, spatial omics clinical specimens, autopsy tissues (76)
comparative genomics SARS-CoV-2 viruses (77)
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ACE2 was enriched in epithelial cells (20). This finding indicates
that SARS-CoV-2 has ability to influence oral epithelial cells
which is a potential pathway of SARS-CoV-2 infection in oral
cavity. Evidence suggested that Furin could promote the virus-
cell fusion by acting on the cleavage site of S protein to
make the virus enter the target cell (79). ScRNA-seq and
immunohistochemical (IHC) analysis of oral cells showed that
ACE2 receptors, Furin and TMPRSS2 were enriched in oral
mucosal and salivary glands cells, especially in epithelial cells (80,
81). Therefore, these data indicate that ACE2 receptor, Furin and
TMPRSS2 play an essential role in SARS-CoV-2 infection in oral
epithelial cells. In addition, a report showed S protein of SARS-
CoV-2 had been detected in epithelial cells of dorsum of the
tongue (82). Moreover, a previous study showed that SARS-
CoV-2 could infect epithelial cells in situ and then shed into
saliva which confirmed by scRNA-seq, orthogonal RNA, and
protein expression analysis (83). Furthermore, it was
demonstrated the inhibited expression of ACE2 and Furin
through Maackia amurensis seed lectin (MASL) which has a
potential therapeutic effect on COVID-19 by decreasing the
expression of inflammatory mediators by oral epithelial cells
(84). Considering of host response in SARS-CoV-2 infection,
scRNA-seq and transcriptomic analysis were performed. The
data showed that upregulated pro-inflammatory signaling and
immune dysregulation were observed in epithelial cells of the
lung (85, 86). Moreover, the expression of proinflammatory
cytokine genes was demonstrated in gingival epithelial cells,
which also confirmed the antiviral defense mechanism in oral
cavity (87). Besides, nCounter analysis of oral mucosa in severe
patients showed signals of cell arresting which was correlated
with systemic immune response abnormalities (88).
Furthermore, the intense lymphocytic infiltration was detected
in minor salivary glands (89). These studies indicate that SARS-
CoV-2 could infect oral epithelial cells and be involved in
abnormal immune regulation.

4.2 Omics Analysis of the Immune
Response in COVID-19
Proteomic analysis of COVID-19 patients has shown that high
levels of viremia are associated with sustained elevated levels of
certain entry factors, such as ACE2 receptor, Furin and cathepsin
B/L (CTSB/CTSL) (90). Previous report demonstrated that
SARS-CoV-2 failed to enter cells which loss expressed ACE2
receptor (91). These results suggested that ACE2 receptor of host
cell has a role in the infection of SARS-CoV-2. In addition,
research shows that IFN-1 and IFN-III are under-expressed,
whereas inflammatory cytokines such as IL-6, IL1RA, CCL2,
CCL8, CXCL2, CXCL8, CXCL9, and CXCL16 are overexpressed
in the serum of COVID-19 patients (17, 92). Furthermore, CCL4,
CXCL10, IL-7, and IL-1a exacerbate the COVID-19 disease (93).

A positive correlation has been reported between the
proliferation of monocytes and DCs that express MKI67 and
TOP2A and the severity of COVID-19 disease (93). A decrease in
the proportion of CD21+ and CD27+ B cells has been reported in
the moderate and severe COVID-19 cases (94). Compared with
moderate and mild COVID-19, the expansion of plasmablasts
and plasma cells is lower than that in critical and severe cases
Frontiers in Immunology | www.frontiersin.org 4
(93). A similar trend is observed for B cell response to IFN-
a (93).

Compared with healthy or patients with mild COVID-19,
there is a decrease in the proportion of T lymphocytes,
monocytes, dendritic cells, and natural killer cells, but a
significant increase in neutrophils, hyperactivated T cells, and
cytotoxic CD8+ T cells in patients with severe COVID-19 (94,
95). The proportion of lymphocytes also changes in COVID-19
patients, which shows that the proportion of CD4-CTLs
increased, whereas the proportion of reactive Treg cells
decreased (96). T-cell signaling is present in mild patients,
but absent in severe patients (97). Moreover, both NLR
(neutrophil count-to-lymphocyte count ratio) and NTR
(neutrophil-to-T cell ratio) are elevated in severe COVID-19
patients (94). Neutrophilia and lymphocyte dysfunction may be
related to tissue damage caused by the massive release of
cytokines. High plasmablasts, circulating megakaryocytes, and
erythropoiesis have been reported in severe COVID-19 cases
(17, 69, 97–99).

In fact, the progression of the SARS-CoV-2 infection differs
among patients. Multi-omics can reveal the changes in the
increased secretion of cytokines, an increased proportion of
neutrophils, and a decreased proportion of lymphocytes, which
can open up new horizons in treating COVID-19 and the
pathogenic mechanism of SARS-CoV-2. In the present study,
the multi-omics analysis revealed increased secretion of
cytokines and the decreased expression of IFN, respectively, in
COVID-19 patients, further indicating that SARS-CoV-2 affects
the function of the immune system.
4.3 Omics Analysis of Biomarkers
of COVID-19
Notably, the potential therapeutic and diagnostic markers of
COVID-19 were screened by omics (Table 2). Considering the
invasion of SARS-CoV-2 in mammalian cells, omics analysis is a
powerful tool for studying the roles of ACE2 receptor, cathepsin
L1 (CTSL), and transmembrane serine proteinase 2 (TMPRSS2)
(74). Furthermore, proteomic analysis of COVID-19 patients
revealed a significant increase in cathepsin L1 in the lung (109).
Thus, ACE2 receptors, CTSL 1, and TMPRSS2 can be targets for
preventing and treating COVID-19. Moreover, studies have
shown that soluble ACE2 and TMPRSS2 inhibitors have
antiviral effects by blocking viral infection (19, 110). Proteomic
analysis of SARS-CoV-2-infected host cells revealed that SARS-
CoV-2 reshapes central cellular pathways of translation, splicing,
carbon metabolism, protein homeostasis, and nucleic acid
metabolism (100). In addition, the application of translation
inhibitors significantly inhibits the replication of SARS-COV-2
(100). Multi-omics analysis of SARS-COV-2-infected cells
showed that CIGB-300 interferes with RNA splicing by
targeting casein kinase II (CK2) at the early stage of viral
infection, suggesting that cigB-300 has antiviral effects (101).
Transcriptome analysis showed increased HSP90AA1 mRNA
levels in virus-infected cells, reducing viral replication and pro-
inflammatory cytokine expression by inhibiting HSP90
activity (102).
July 2022 | Volume 13 | Article 879792
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In addition, multi-omics can be used to reveal the progression
of COVID-19. For example, the mRNA level of S100s (107), pro-
inflammatory signaling molecules of IL-6 are upregulated, and
down-regulation of proteins in albumin (ALB), apolipoprotein
A1 (APOA1), apolipoprotein C1 (APOC1), gelatins (GSN) and
transferrin (TF) is seen in severe COVID-19 disease (108). These
biomarkers have potential applications in the diagnosis of
COVID-19.
5 PATHOGENIC MECHANISMS IN
COVID-19

SARS-CoV-2 infection induces several immune responses.
Firstly, upon entry into the body, the antigen-presenting cells
(APCs) recognize the pathogen-associated molecular patterns
(PAMPs) of SARS-CoV-2 through multiple pattern recognition
receptors (PRRs) (111). Activated immune cells then produce
numerous cytokines, such as IFNs, TNF-a, and interleukins, to
Frontiers in Immunology | www.frontiersin.org 5
destroy the virus- infected cells (112–114). The pathogenesis of
SARS-CoV-2 is related to the inhibition of IFN production and
the related cytokine storm (115).

5.1 SARS-CoV-2 Receptors
Studies have shown that the ACE2 receptor is the cellular
receptor of SARS-CoV-2 (116, 117). ACE2 is expressed on the
oral mucosa and salivary gland cells, suggesting that the oral
cavity participates in the SARS-CoV-2 infection (20, 21). Once in
the body, S protein is activated by TMPRSS2, which promotes
the release of the SARS-CoV-2 genome into host cells (118)
[Figure 2]. In general, ACE2 and TMPRSS2 are critical for
SARS-CoV-2 infection. Reports show that ACE2 and
TMPRSS2 are both expressed on the epithelial cells of the oral
mucosa and salivary glands (83, 119, 120). ACE2 and TMPRSS2
are both expressed in taste buds cells; moreover, ACE2 is highly
enriched in the epithelial cells of the tongue, which may be
related to gustatory dysfunction (121). Interestingly, the
expression of ACE2 on small salivary glands is higher than
that in lungs, and the positive rate of SARS-CoV-2 in the
TABLE 2 | Summary of the main multiple omics data about biomarkers of COVID-19.

Omics Biomarkers Application Reference

transcriptomics ACE2 receptor therapy (20)
scRNA-seq ACE2 receptor, TMPRSS therapy (83)
proteomics translation, splicing therapy (100)
multi-omics CK2 therapy (101)
transcriptomics HSP90 therapy (102)
multi-omics (interactome, phosphoproteome, ubiquitylome, transcriptome, and proteome) NSP3 therapy (103)
structural genomics ORF9b, Nsp1, Nsp7, Nsp8, Nsp12, S protein therapy (104)
proteomics Tenascin-C (TNC), Mucin-1(KL-6) therapy (105)
proteomics peptides from SARS-CoV-2 nucleoprotein diagnosis (106)
proteomics, transcriptomics S100s diagnosis (107)
Ultra-High-Throughput proteomics ALB, APOA1, APOC1, GSN, TF diagnosis (108)
July 2022 | V
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FIGURE 2 | The life cycle of SARS-CoV-2. It includes viral entry, replication and transcription, assembly and release. Binding of SARS-CoV-2 to the ACE2 receptor
and the subsequent activation of the virus by Furin and TMPRSS2. In the absence of TMPRSS2, the virus is activated by intracellular cathepsin. Upon entry into the
cell, ORF1ab of the virus is translated to polyproteins, which are then cleaved into nonstructural proteins before assembly into replication and transcription
complexes. Replication and transcription of the genome generate gRNA and subgenomic RNA (sgRNA). Shorter sgRNAs encode structural proteins and accessory
proteins. The ERGIC is then assembled into mature SARS-CoV-2 virions.
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saliva of asymptomatic infected patients is as high as 91.7% (40).
The above findings underscore the critical role of ACE2 receptors
in SARS-CoV-2.

5.2 Analysis of Pathological Process in
SARS-COV-2 Infected Oral Cells
After SARS-CoV-2 infects oral cells by recognizing of ACE2
receptors, it causes damage to tissues or cells, thus leading to oral
manifestations of COVID-19. ACE2 specific antibody test
proved that the gustatory dysfunction of COVID-19 patients
was related to the directly infected human taste cells in the
dorsum of the tongue (122). Moreover, SARS-CoV-2 was also
detected in submandibular gland of the COVID-19 patients (123,
124). Besides, IHC analysis of lip tissues with blister-like lesions
showed that SARS-CoV-2 spike protein was positive in minor
salivary acinus and duct cells (125). Interestingly, micronucleus
test demonstrated that the death of oral mucosal cells was
induced by SARS-CoV-2 (126). These indicate that SARS-
CoV-2 induces cell death when it infects the salivary glands.
Moreover, it was proposed that the infected salivary gland
epithelial cells lysis stimulated the excessive secretion of
inflammatory cytokines, causing salivary gland tissue damage
(127). More importantly, in situ hybridization (ISH) and
immunophenotyping showed that the most common
histological feature of infected salivary glands was chronic
sal ivary gland inflammation including lymphocytic
inflammation and epithelial injury (83). These indicate that
Frontiers in Immunology | www.frontiersin.org 6
SARS-CoV-2 infection results in salivary gland dysfunction
and xerostomia through excessive inflammatory response and
the direct damage to ducts and acinar cells.

5.3 The Innate Immune Response Induced
by SARS-CoV-2
IFN-1 is an important component of the innate immune
response against viral infections. Recognition of PAMPs via
the PRRs rapidly triggers the release of IFN-1 and many other
pro-inflammatory cytokines, including interleukin (IL)-1b, IL-2,
IL-6, IL-7, granulocyte colony-stimulating factor (GCSF), IFN-g,
and tumor necrosis factor-a (TNF-a) (128, 129). PRRs include
Toll-like receptors (TLR), retinoic acid-inducible gene I (RIG-I)-
like receptors (RLR), and C-type lectin receptors (CLR) (130,
131). IFN can regulate antiviral T cell responses and induce the
expression of interferon-stimulated genes (ISG) via the JAK/
STAT signaling pathway (132–134).

TLRs recruit specific adaptor molecules of downstream of the
signaling cascade to initiate innate immune responses via the
TLR/MyD88/NF-kB and TRIF/IFN-b pathway signaling
pathways (135) [Figure 3]. Apart from TLRs, immune cells
often recognize PAMPs via the RLRs, which induces the
production of IFN. The RIG-I and MDA5 are TLRs that
recognize and initiate an immune response against SARS-CoV-
2 (136). Activated RIG-I and MDA5 interact with the
downstream adapter MAVS to induce the expression of IFN-b
and early ISGs (134) [Figure 3].
B

A

FIGURE 3 | Immune response. (A) Immune response to SARS-CoV-2 in the oral cavity. (B) IFN induction and the positive feedback signaling pathway. The
production of IFN-b by TLR4-TBK1/IKKi, TLR7/8/9-MyD88/IRAK1/IRAK4, and RIG-I/MDA5/MAVS signals. IFN-1 induces the expression of ISG via the Tyk2/JAK1/
STAT signaling pathway by binding to IFNARs.
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5.4 Adaptive Immunity Against SARS-CoV-2
Innate immunity performs two main functions: it directly kills
pathogens and initiates adaptive immune responses (137).
Adaptive immunity comprises humoral immunity and
cellular immunity.

5.4.1 Cellular Immunity Against SARS-CoV-2
APCs present SARS-CoV-2 antigens to CD4+ T cells, which
differentiate into Th1 sub-types that secret interleukin-12 (IL-
12), which further stimulates Th1 cells. Th1 cells also stimulate
CD8+ T killer cells (Tk) that kill virus infected cells (138). In
addition, activated Th1 cells stimulate B cells to produce antigen-
specific antibodies (139) [Figure 4]. Coronaviruses induce the
production of proinflammatory cytokines, such as IL-17, by the
helper T cell (Th) 17, which recruits monocytes and neutrophils
to the sites of infection. Furthermore, IL-17 promotes the
production of inflammatory cytokines, such as TNF-a, IL-1,
IL-6, IL-8, and MCP-1 (140, 141).

5.4.2 Humoral Immunity Against SARS-CoV-2
Upon antigenic stimulation, B cells differentiate into plasma and
memory B cells. Plasma cells synthesize and secrete antigen-
specific antibodies (142) [Figure 4].

Neutralizing antibody titers to SARS-CoV-2 peak in the first
few weeks after the onset of COVID-19 symptoms and decrease
after that at a rate of up to 45% every month (143). In some
individuals, SARS-CoV-2 neutralizing antibodies are
undetectable within a few months of infection (143),
suggesting that serum antibodies do not act as a protective
factor for long-term immunity against SARS-CoV-2. A vaccine
Frontiers in Immunology | www.frontiersin.org 7
against the virus aims at increasing the antibody titers to higher
levels compared to those induced by natural infection. A vaccine
also induces the production of stable memory T and B cells that
provide long-term immunity.

Inactivated and live attenuated virus vaccines are whole
viruses that induce broader humoral and cellular immune
responses (144, 145). However, the mutation of the virus may
affect antibody production. The SARS-COV-2 Omicron variant
is associated with more efficient cell entry, immune evasion, and
increased infectivity (146). Research shows that the third dose of
the BNT162b2 vaccine increases the neutralization efficiency of
the Omicron variant compared to two doses, but even so, its
efficacy is still lower than that against the Delta variant (147).
BNT162b2 and mRNA-1273 are less effective in preventing Delta
SARS-COV-2 infection but are highly efficacious in severe and
critically ill patients (148).

5.5 Immune Evasion Induced by SARS-
CoV-2
The IFN response is the first line of defense against viruses.
However, SARS-CoV-2 strongly suppresses the production of
IFN-1 and promotes the production of cytokines (17). SARS-
CoV-2 inhibits the production of IFN mainly by (I) evading
recognition by the host receptors (149–154) (II), interfering
with IFN production (155) (III), blocking signal transmission
(54, 156–158), and (IV) inhibiting the function of ISG effectors
(58, 159).

Overall, the SARS-CoV-2 proteins mediate immune escape
by disrupting the secretion of IFN.

5.6 Cytokine Storm
Immune response analysis showed that COVID-19 strongly
inhibited the secretion of IFN-1, related to excessive
inflammation (160). Clinical studies have shown that the severity
of COVID-19 positively correlates with the serum levels of several
cytokines, including TNF-a, IL-6, IL-7, IL-17, IL-18, granulocyte
colony-stimulating factor (G-CSF), IP10, macrophage colony-
stimulating factor (M-CSF), and chemokines. The secretion of
cytokines is regulated through the (I) innate immune response
signaling pathway (II), angiotensin II/angiotensin type I receptor
signaling pathway, and (III) the ACE2 signaling pathway (115, 161).
6 DISCUSSION

Some research findings on the oral manifestations of COVID-19
have been reported. The oral manifestations of COVID-19
primarily include gustatory dysfunction and xerostomia, but
may also include ulceration, blisters, plaque-like lesions of the
oral cavity, herpes simplex, swelling and/or pain in the salivary
gland, halitosis, gingivitis, and periodontitis (162, 163). In some
patients, xerostomia and gustatory dysfunction are the only
manifestations or prodromal symptoms of COVID-19 (35).

The SARS-CoV-2 proteins, especially the S protein, play
critical roles in the pathogenicity of the virus. Moreover,
mutations might increase the pathogenicity of SARS-CoV-2.
SARS-CoV-2 variants are more transmissible, pathogenic, and
FIGURE 4 | The innate and adaptive immune responses.
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virulent (164). Indeed, a total of 93-mutations were detected in
the SARS-CoV-2 genome. Among them, eight missense
mutations occurred in the S surface glycoprotein. Three
missense mutations (D354, Y364, and F367) occurred in the RBD
of the S protein (165). Mutations may cause conformational
changes in the related protein, which changes their antigenic
properties (165). Mutations in the RBD domain of the S protein
cause the virus to evade neutralizing Abs generated by vaccines
(166). Other structural and nonstructural proteins that mediate
the pathogenicity of the virus are also targets for COVID-19
treatment and SARS-CoV-2 vaccines’ development.

It has been reported that the healing of oral manifestations of
COVID-19 and the regression of SARS-CoV-2 infection occurs
simultaneously (162), indicating that the oral lesions might be
associated with the infection of SARS-CoV-2. There is evidence
that taste changes are caused by SARS-CoV-2 direct infection,
which causes cell damage after virus infection, leading to taste
dysfunction (122). However, some reports show that oral
manifestations of COVID-19 are associated with inflammation,
which is associated with immune cell-mediated cell death and
tissue damage following SARS-CoV-2 infection (167). The
application of omics may help solve this problem. Multi-omics
can reveal how COVID-19 interacts with the immune response.
The proportion of lymphocytes and neutrophils in the peripheral
blood can be used to assess the severity of COVID-19 (168).
Decreased lymphocyte counts in patients may lead to insufficient
production of immune memory cells, making it difficult to deal
with virus re-infection.

The entry of SARS-CoV-2 into host cells is mediated by ACE2
receptors and TMPRSS2. It has been proved that high expression
of the ACE2 receptor was found in oral mucosa and salivary
glands, and TMPRSS2 was co-expressed with the ACE2 receptor
(83, 119, 120), indicating that the oral cavity is susceptible to
SARS-CoV-2 infection. These receptors and enzymes facilitate
the invasion and the subsequent oral manifestations of COVID-
19. Upon entry into the oral host cells, SARS-CoV-2 first initiates
a local immune response by inducing the production of IFN.
However, SARS-CoV-2 causes a cytokine storm and induces
excessive inflammatory responses through immune disorders,
which might trigger damage to oral tissues. During the systemic
Frontiers in Immunology | www.frontiersin.org 8
response phase in patients with severe COVID-19, the virus
dysregulates the immune response, increases the proportion of
neutrophils, and decreases the proportion of lymphocytes. In the
end, excessive inflammation damages the involved tissues. Multi-
omics studies have confirmed that SARS-CoV-2 affects the
immune system and causes immune disorders, suggesting that
the pathogenesis of SARS-CoV-2 is related to the innate and
adaptive immune responses (169).
7 CONCLUSION

SARS-CoV-2 infects cells of the oral cavity via the surface ACE2
receptors and TMPRSS2. The virus binds to its receptors via the S
protein ligand. Multi-omics analyses further revealed that SARS-
CoV-2 dysregulates the immune system mainly by decreasing the
expression of IFN-1 and increasing cytokines levels.
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