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Regulatory T (Treg) cells play crucial roles in health and disease through their

immunosuppressive properties against various immune cells. In this review we will focus

on the inhibitory role of Treg cells in anti-tumor immunity. We outline how Treg cells

restrict T cell function based on our understanding of T cell biology, and how we can

shift the equilibrium against regulatory T cells. To date, numerous strategies have been

proposed to limit the suppressive effects of Treg cells, including Treg cell neutralization,

destabilizing Treg cells and rendering T cells resistant to Treg cells. Here, we focus on key

mechanisms which render T cells resistant to the suppressive effects of Treg cells. Lastly,

we also examine current limitations and caveats of overcoming the inhibitory activity of

Treg cells, and briefly discuss the potential to target Treg cell resistance in the context of

anti-tumor immunity.
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INTRODUCTION—REGULATORY T CELL IN CANCER

Challenges in Immune-Oncology—Immunosuppressive Cells
The concept of utilizing the T cells, to recognize and eliminate cancer cells has contributed to the
advancement of immunotherapy against multiple malignancies. Recent advances in checkpoint
inhibitors (in particular CTLA-4 and PD-1 inhibitors) and cell-based therapy such as Chimeric
Antigen Receptor (CAR)—T cell therapy demonstrate promising clinical responses in various
cancer types in a subset of patients. However, despite the attempts to modulate anti-tumor T
cell responses, a proportion of patients still do not respond to these immune therapies (1–3). The
mechanisms of resistance against immune therapy is currently a key area of investigation. Some of
these mechanisms include the presence of immunoregulatory cells in the tumor microenvironment
such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs) and
regulatory T (Treg) cells which could play an important role in restricting T cell immunity (4–6).
Thus, overcoming the effects of these immunosuppressive cells remain a challenge for those seeking
to enhance anti-tumor immune response.

Evidence for a Role for Regulatory T Cells in Anti-tumor Immunity
Treg cells are one of the integral components of the adaptive immune system that contribute to
maintaining tolerance to self-antigens and preventing autoimmune diseases (7, 8). It is postulated
that these cells have an important role in regulating immune surveillance and promoting tumor
progression. However, their precise role in regulating anti-tumor immunity and the mechanism of
how Treg cells could suppress T cells in tumor is still unclear (9). Early studies used CD4+CD25+

markers to identify Treg cells with the caveat that activated helper T cells would also express these
markers (10). Woo et al. (11) provided evidence for the presence of regulatory T in patients with
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early-stage non-small cell lung cancer and late-stage ovarian
cancer. Numerous other manuscripts have also noted the
presence of potential CD4+CD25+ Treg cells in multiple types
of cancer including melanoma, pancreatic cancer and breast
cancer (12–14).

In 2003, studies reported that the transcription factor FoxP3
was critical for Treg development (15–17), Subsequently, Curiel
et al. (18) examined CD4+CD25+FoxP3+ cells and found
that increased infiltration of Treg cells correlated with disease
progression in ovarian carcinoma, and infiltration of these cells
in each stage of cancer served as a good metric for survival
prediction. Similarly, studies demonstrated that the presence
of Treg cells in breast cancer correlated with reduced overall
survival (19, 20). In contrast, several reports suggested that
infiltration of Treg cells can be a favorable prognostic factor
(21–24). Such discrepancies may result from the inability to
precisely identify regulatory T cells within the heterogenous
pool of FoxP3+ expressing CD4+ T cells (25). Alternatively,
considering high infiltration of Treg cells also correlate with high
infiltration of CD8+ T cells in a specific tumor subtypes (24),
regulatory T cells may be recruited in response to an inflamed
tumor microenvironment. Part of the controversy could also be
due to the finding that FoxP3 can be transiently upregulated in
activated human T cells, and is therefore not an exclusive marker
for Treg cells (25, 26). The expression level of other markers such
as CD45RA (27) and Treg-specific DNA demethylation status
within the FoxP3 locus can increase the accuracy of identifying
functionally active Treg cells (28, 29). However, it is not always
possible to perform these in depth analysis. Studies have also
utilized ex vivo Treg suppression assays to demonstrate the
presence of regulatory T cells within tumor tissue (18, 30, 31).

In mice, the role of Treg cells in regulating anti-tumor
immunity has been investigated through ablation of Treg cells
(using FoxP3DTR mice or antibodies targeting receptors highly
expressed on Treg cells, such as CD25, GITR, and folate receptor
4) in transplantable tumor models (32–35). In these models,
depletion of regulatory T cells in conjunction with modulation
of T cell immunity improves anti-tumor immunity. In contrast,
co-adoptive transfer of CD8+ T cells with Treg cells prevented
effective adoptive cell therapy against B16-F10melanoma (36). In
summary, although the presence of Treg cells in tumors cannot
be used as an accurate prognostic factor, the literature suggests
that Treg cells are a potent regulator of anti-tumor immunity.

Immune Therapy and Treg Cells
One potential mechanism that may reduce the efficacy of
cancer immunotherapy is suppression mediated by the Treg
cell population. In addition, the therapeutic modalities such
as anti-PD-1 may potentially alter Treg cell function and/or
frequency, either directly or indirectly by changing the immune
microenvironment (37–39). Thus, the potential effect of Treg
cells on tumor-specific T cells should not be neglected even in
therapeutic arena.

One of the most predominantly utilized checkpoint inhibitors
in clinical and translational studies involve therapeutic
blockade of PD-1 (nivolumab and pembrolizumab) or PDL-1
(atezolizumab and duravalumab) (40). There is a limited number

of clinical studies thoroughly documenting changes in the
quantity and quality of Treg cells in response to these PD-1/PD-
L1 inhibitors. To date, studies either report an increase or no
change in the frequency of Treg cells in response to nivolumab
or pembrolizumab (39, 41). It is also important to note that
PD-1 and PD-L1 can be expressed by Treg cells, thus direct
modulation of Treg cell function should not be excluded as a
possibility (31, 42–44). A few reports demonstrate that PD-1
blockade attenuates Treg cell suppression in vitro, based on the
effect of PD-1 inhibitor on T cell proliferation in the presence
of Treg cells (39, 45, 46). However, the effect of these inhibitors
on Treg cells have not been clearly discriminated against its
effect on T cells. A few reports including a study conducted
by Toor et al. (47, 48) suggest that PD-1 blockade does not
modulate Treg cell phenotype or function, but instead targets
activated T cells. A murine study conducted by Chen et al. (49)
demonstrates that PD-1 has no influence over the development
and suppressive effects of thymically-derived Treg cells, however
PD-1 appears to be crucial for differentiation of naïve CD4+

T cells into iTregs. Similarly, PD-L1 blockade can interfere
with the induction and maintenance of iTreg cells in mice (50).
Collectively, the precise effect of PD-1 blockade on Treg cells
is poorly understood. Nevertheless, PD-1 inhibition synergizes
with therapeutic strategies which reduce the quantity of Treg
cells in mice (35, 51, 52), suggesting that enhanced anti-tumor
immunity in response to PD-1 blockade may still be limited by
Treg cells. Extensive studies have been performed evaluating
the clinical potential of interfering with immune checkpoint
receptors beyond PD-1, including CTLA-4, LAG-3, and TIM-3.
However, the effect of each checkpoint inhibitors on Treg cells is
also poorly understood and are beyond the scope of this review.

Adoptive cell therapies using TCR transduced T cells, CAR-
T cells and Tumor-infiltrating Lymphocytes (TIL) are capable of
directly recognizing and targeting tumor cells (3, 53). However,
whether or not these T cell products are susceptible to regulation
by Treg cells in humans is yet to be elucidated. In a few cases,
the frequency of lymphocytes resembling Treg cells increases
with adoptive T cell therapy (37, 38, 54). In the context of TIL
therapy, Yao et al. (37) has demonstrated that the quantity of
Treg cells reconstituted after non-myeloablative chemotherapy,
which correlates with the number of administered doses of
IL-2, is associated with patient responsiveness to TIL therapy.
Supportive of this finding, administration of high-dose IL-2
(often utilized in conjunction with TIL therapy) can result in
expansion of immunosuppressive ICOS+ Treg cells, which may
be predictive of clinical outcomes in patients with metastatic
melanoma (55). Baba et al. (56) utilized a murine model
of fibrosarcoma to suggest that rapid reconstitution of Treg
cells post-lymphodepletion suppress anti-tumor immunity, and
targeting these regulatory T cells using neutralizing antibodies
significantly reduced tumor growth. In the context of CAR-
T cell therapy, the effect of the treatment on Treg cells may
vary. For instance, clinical infusion of EGFRvIII-directed CAR-
T cells for the treatment of glioblastoma resulted in influx of
CD4+CD25+FoxP3+ cells in the tumor (38), whereas CD19-
targeted CAR-T cells against B-cell lymphoma and leukemia did
not increase the frequency of Treg cells (57). Lymphodepletion,
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known to transiently reduce the frequency of Treg cells, improves
persistence of CAR-T cells as well as therapeutic outcome (58),
however the direct effect of Treg cells on CAR-T cells is unknown.
In summary, the role of regulatory T cells in the context of
adoptive T cell therapy is currently unknown, however the
literature suggests that Treg cells may limit the outcome of these
therapeutic modalities.

Mechanisms of Treg Suppression
The general mechanisms of T cell suppression by Treg cells,
mostly evaluated through in vitro experiments, suggest that
Treg cells may exploit diverse contact-dependent and cytokine-
mediated mechanisms to limit T cell function (59, 60). One of
the proposed mechanisms involve the ability of Treg cells to
downregulate CD80/86 expression on dendritic cells (61–63).
In a study conducted by Wing et al. (62, 64) and Onishi et al.
(63), Treg-specific deletion of CTLA-4, which binds to CD80/86,
results in reduced suppressive effects of Treg cells in vivo and
failed to downregulate CD80/CD86 expression on dendritic cells
(DCs) in vitro. Qureshi et al. (65) also demonstrate that CTLA-
4 can reduce CD80/CD86 expression on DCs through trans-
endocytosis and subsequent degradation of the co-stimulatory
molecules. Furthermore, in vitro engagement of CTLA-4 with
cognate receptors on DCs reduces the secretion of cytokines
by DCs such as IL-6 and TNF, while increasing the expression
of IDO, an immunosuppressive tryptophan catabolizing enzyme
(66, 67). However, evidence also suggests that Treg cells can
maintain suppressive functions without CTLA-4. For example,
Paterson et al. (68) demonstrated that conditional ablation of
CTLA-4 in adult mice do not result in systemic autoimmunity
as observed in germline CTLA-4 deficiency, and also suggested
that these Treg cells deficient in CTLA-4 are functional both
in vitro and in vivo. Several other potential mechanisms of T
cell suppression have been proposed, including (1) increased
interaction between Treg cells and dendritic cells through
high expression of LFA-1 on Treg cells resulting in reduced
T cell priming (63, 69), (2) perforin and granzyme-mediated
lysis of effector T cells (70–72), and (3) CD39 and CD73-
mediated metabolic disruption of T cells (73). Through in vitro
experiments, Deaglio et al. (73) suggested that CD39 and CD73
(ectonucleotidases used for hydrolysis of phosphate residues)
expression by Treg cells can induce hydrolysis of extracellular
ATP to adenosine, which triggers A2A receptor on T cells and
elevates intra-cellular cAMP for T cell inhibition. However, most
of these proposed mechanisms have not been explored in vivo.

Treg cells may also attenuate the T cell response via the
production of chemokines and inhibitory cytokines. Treg cells
can secrete TGF-β, IL-10, and IL-35 in a context-dependent
manner, and reduce effector T cell function (74–77). For example,
TGF-β can be a potent regulator of CTL function in vitro and
in vivo (76, 78, 79), and reduce anti-tumor immunity in a
transplantable tumor model (76, 79, 80). Although the secretion
of TGF-β by Treg cells appears to be an important mechanism of
suppression, an in vitro study conducted by Piccirillo et al. (81)
also suggests that blockade of TGF-β produced by regulatory T
cells do not reduce the suppressive effects of Treg cells. The role
of IL-10 on T cells is unclear due to evidence of IL-10 serving as

either stimulatory or inhibitory cytokine in a context-dependent
manner, however evidence suggests that IL-10 plays an important
role in Treg cell-mediated suppression of T cells (82, 83). For
instance, Chaudhry et al. (82) suggests that IL-10 signaling acts
on Treg cells to attenuate pathogenic Th17 response, however,
the molecular mechanism of T cell suppression is still unclear.
Similarly, the precise mechanism of T cell inhibition by IL-35
is also unclear, but studies suggest that IL-35 restricts T cell
proliferation and induces “infectious tolerance” by inducing Treg
cells from naïve CD4+ T cells (84, 85). Lastly, in conjunction with
previously described cytokine-driven suppressive mechanisms, it
has been recently demonstrated in EAE and islet allograft models
that secretion of the chemokines CCL3 and CCL4 by Treg cells
plays an important role in the recruitment of effector T cells to
close proximity of Treg cells where they become susceptible to
suppression (86).

Lastly, in vitro Treg suppression assays suggest that Treg cells
compete with other T cells for IL-2, and that the decreased
availability of IL-2 reduces T cell proliferation and function (87–
89). In this particular system, Treg cells constitutively express
a high level of high-affinity IL-2 receptors whereas stimulated
naïve T cells do not express high-affinity IL-2 receptors at an
earlier time point; this may further contribute to preferential
acquisition of IL-2 by Treg cells. Furthermore, IL-2 provides
STAT5 signaling in Treg cells that is necessary to further enhance
their immunosuppressive function (90, 91). This particular
mechanism of suppression can also be observed in vivo. A study
conducted by Chinen et al. (91) suggest that the ability of Treg
cells to capture and compete for IL-2 is critical for controlling
CD8+ T cell expansion and function. The general consensus
for those investigating Treg cell-mediated suppression of T cells
is that each suppressive mechanism likely acts in a context-
dependent manner and more than one mechanism could be
employed simultaneously to inhibit T cell function (7, 59). Thus,
the ability of Treg cells to compete for IL-2 likely works in tandem
with other suppressive mechanisms to regulate T cell immunity.

It remains unclear which of the previously described
mechanisms are relevant for regulatory T cells residing in the
tumor. Treg cells found in the tumor often display a distinct
phenotype in comparison to those circulating the periphery,
which is exemplified through their unique transcriptional
signatures and the expression of markers including PD-1 (31,
43, 44, 92, 93). In the context of head and neck squamous
cell carcinoma, tumor-infiltrating CD4+CD25hiFoxp3+ T cells
produce a higher level of TGF-β and reduced T cell proliferation
more effectively than Treg cells from the periphery in Treg
suppression assays (30, 94). These correlative studies suggest
that intra-tumoral Treg cells display highly immunosuppressive
phenotype in vitro, suggesting that they may regulate anti-
tumor immunity. However, it is still unclear precisely “when,”
“where” and “how” these distinct Treg cells exert their
suppressive effect in cancer biology. Most in vivo and in vitro
experiments performed to elucidate the cellular and molecular
mechanism of T cell suppression by Treg cells in mice were
performed using Treg cells from secondary lymphoid organs
such as spleen and lymph nodes, and therefore may not
fully recapitulate the interaction between intra-tumoral Treg

Frontiers in Oncology | www.frontiersin.org 3 April 2019 | Volume 9 | Article 279

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Han et al. Turning the Tide Against Tregs

cells and T cells. Nevertheless, evidence acquired from studies
using non-tumor derived Treg cells may provide insights in
understanding how intra-tumoral Treg cells could potentially
limit anti-tumor T cells.

Potential Strategies to Interfere With
Immune Suppression by Regulatory T Cells
Acknowledging the significance of Treg cells and their potential
role in inhibiting anti-tumor immunity, multiple strategies have
been proposed to deplete Treg cells in vivo. However, one
major challenge associated with Treg cell depletion is the lack
of a Treg cell-specific marker. Most surface molecules expressed
on Treg cells are also present on activated T cells, although
the level of expression may be different. Similarly, FoxP3 is
expressed by both activated T cells and Treg cells in humans
(25, 26). Despite such challenges, several potential strategies have
been proposed to reduce the suppressive effects of Treg cells
(Figure 1). First, several non-specific anti-cancer drugs have been
shown to reduce Treg cell activities. Low-dose cyclophosphamide
(CTX), a common chemotherapeutic agent known to target
rapidly dividing cells, significantly reduced Treg cells owing to
their higher rate of proliferation, leading to enhanced anti-tumor
immunity (95–98). In these studies, investigators have noted
that CTX reduced the levels of intra-tumoral Treg cells while
maintaining or elevating the level of CD8+ T cells in the tumor
(96, 97). In contrast, several studies have reported contradicting
data where CTX either increased the level of Treg cells or did
not enhance anti-tumor immunity (99, 100). Additional studies
showed that treatment with CTX was further improved in its
selectivity and efficacy through combination therapy with OX40
agonist or anti-PD-1, demonstrating increased intra-tumoral
Teff/Treg cell ratio and subsequent regression of B16 and TC-
1 tumors (101, 102). Several other FDA-approved anti-cancer
agents including tyrosine kinase inhibitors sunitinib, sorafenib,
and imatinib also reduced the levels of intra-tumoral Treg
cells (101, 103–105).

While specific targeting of tumor-infiltrating Treg cells can
be challenging, several agents including daclizumab (CD25
blocking antibody), denileukin diftitox (Ontak, IL-2-diphtheria
toxin conjugate protein), and several other antibodies have
been proposed to target Treg cells and enhance anti-tumor
immunity (106, 107) (Figure 1). First, the use of CD25 to target
and deplete Treg cells has resulted in improved anti-tumor
immunity in some cases (108, 109). However, this strategy has
raised a number of concerns based on inconsistent in vivo
responses and lack of specificity. Similar to the effects of anti-
CD25 in mice (clone PC-61), the use of denileukin diftitox
for depleting Treg cells and eliciting a stronger anti-tumor
immune response remains controversial, due to varying clinical
responses (110, 111). For instance, treatment of patients with
renal cell carcinoma using denileukin diftitox effectively relieved
inhibition by Treg cells to promote anti-tumor immunity, but
the opposite trend was observed in patients with metastatic
melanoma (110, 111). Tumor heterogeneity, the existence of
CD25− Treg cells and CD25 expression on other immune
cells, such as T cells, B cells, and NK cells (112, 113), may

explain seemingly opposite outcomes in this particular approach.
However, recent studies have further modified and improved
strategies targeting CD25 and suggest that it may still be
a viable option to restrict Treg cell activities. Arce Vargas
et al. (35) demonstrated that Fc-optimized antibodies against
CD25 could effectively reduce the frequency of intra-tumoral
Treg cells and improve tumor control. Furthermore, CD25-
targeted near-infrared photoimmunotherapy (NIR-PIT) has been
developed in a murine model. By conjugating anti-CD25 with
a photoactivatable silica-phthalocyanine dye sensitive to near-
infrared light, and localizing near-infrared irradiation specifically
on tumors, NIR-PIT achieved reduction of intra-tumoral Treg
cells (114).

Beyond CD25 as a target molecule, regulatory T cells
constitutively express receptors such as GITR, CTLA-4, and
folate receptor 4. In the tumor microenvironment, Treg cells
further upregulate a large number of receptors including ICOS,
OX40, GITR, TIGIT, PD-1, and CTLA-4 (31, 115). Antibodies
targeting some of these receptors expressed by Treg cells such
as GITR and folate receptor 4 reduce the amount of Treg
cells and enhance anti-tumor immunity in mice (32, 33, 116).
Similarly, checkpoint inhibitors designed to block inhibitory
signals on T cells may also play an important role in regulating
Treg cell activities. With Treg cells expressing a high level
of CTLA-4 (27), administration of an anti-CTLA-4 antibody
has resulted in a major reduction in the frequency of intra-
tumoral CTLA-4+FoxP3+ Treg cells which was dependent on
Fcγ receptor-expressing cells in the tumor microenvironment
(117–121). This is consistent with the correlation of decreased
frequency of tumor-infiltrating Treg cells with the usage of
ipilimumab in patients with bladder cancer and advanced
melanoma (122–124). Lastly, a study conducted by Sugiyama
et al. (125) demonstrated that a high proportion of Treg cells
express CCR4 in tumor-infiltrating lymphocytes (TILs) acquired
from melanoma patients. CCR4 expression was specific to
CD4+CD45RA−FoxP3hi Treg cells, a terminally differentiated
and highly suppressive subset of Treg cells that preferentially
accumulates within tumors, whereas CCR4 is not expressed
on CD4+CD45RA+FoxP3lo naïve T cells. In agreement with
these findings, administration of anti-CCR4 (Mogamulizumab)
in patients with Adult T-Cell Leukemia-Lymphoma (expressing
NY-ESO-1) resulted in reduction in CD4+CD45RA−FoxP3hi

Treg cells and enhanced NY-ESO-1-specific CD8+ T cell
response (125). Although anti-CCR4 antibodies target a specific
subset of Treg cells that are highly abundant within tumors, this
particular strategy does not selectively deplete intra-tumoral Treg
cells since a large proportion of Treg cells in peripheral blood are
CD4+CD45RA−CCR4+FoxP3+ Treg cells (8, 27, 125).

Interestingly, studies published within the last few years
suggest that promoting the conversion of Treg cells into
immune-stimulatory cells could be an alternative approach to
enhancing anti-tumor immunity (Figure 1). FoxP3+ regulatory
T cells are comprised of heterogenous sub-populations of cells
some of which display functional plasticity. Depending on
the environmental cues, these Treg cells remain uncommitted
and become susceptible to being re-programmed to FoxP3−

helper T cells or FoxP3+ cells which display properties of
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FIGURE 1 | Regulatory T cells can be targeted through chemotherapeutic agents, neutralizing antibodies and epigenetic modifiers. Chemotherapeutic agents reduce

the quantity of Treg cells and synergize with immune-modulatory drugs to enhance anti-tumor immunity. However, these approaches are not necessarily specific to

Treg cells. Surface markers expressed on Treg cells (such as CD25, GITR, folate receptor 4, CTLA-4, and CCR4) can be targeted to more reliably reduce the quantity

of Treg cells. Recent approaches involve conversion of Treg cells into “effector-like” CD4+ T cells through the use of neutralizing antibodies as well as

epigenetic modifiers.

a helper T cell (126–129). Similarly, there are heterogenous
populations of highly suppressive Treg cells in the tumor
microenvironment. Although the composition and function of
these tumor-infiltrating Treg cells is still a topic of debate,
evidence suggest that both thymically-derived natural Treg
cells, characterized by high expression of neuropilin-1, and
induced Treg cells play important role in regulating anti-
tumor immunity (130). Peripherally-derived regulatory T cells,
which display greater plasticity, can be targeted to enhance
anti-tumor immunity (130, 131). Furthermore, despite the
initial assumption that thymically derived Treg cells undergo
a strict lineage commitment, Overacre-Delgoffe et al. (132)
demonstrated that targeting neuropilin-1 on Treg cells induces
IFNγ production and “functional fragility” which can in turn
enhance anti-tumor immunity. A recent approach of converting
Treg cells into immune-stimulatory cells in the context of
tumor immunity involve epigenetic modification of intra-
tumoral Treg cells to disrupt their lineage and functional
stability. For example, Wang et al. (133) have demonstrated
that the histone H3K27 methyltransferase enhancer of zeste
homolog 2 (EZH2) activities are increased in tumor-infiltrating
Treg cells in both murine and human cancers, and molecular
targeting of EZH2 promoted conversion of Treg cells into IFNγ

producing cells that were capable of remodeling the tumor
microenvironment and enhancing anti-tumor immunity. Several
other epigenetic modifiers such as Bromodomain and Extra-
Terminal (BET) family proteins and histone acetyltransferase
Ep300 can also be targeted to disrupt Treg cell function and
improve anti-tumor immune response (134, 135). However,
these epigenetic modifiers possess other biological functions, and

molecular targeting of these proteins could potentially induce
off-target effects.

Despite these alternative approaches to Treg cell blocking
or depletion strategies, limitations still exist, including the lack
of a Treg cell-specific biomarker and potential induction of
autoimmunity as a consequence of systemic Treg cell depletion
(136, 137). Lastly, depletion of Treg cells can be followed by
their rapid reconstitution, often resulting in a higher frequency
in comparison to the level of Treg cells prior to depletion
(138, 139). Alternatively, another approach to enhance anti-
tumor immunity would be to modify tumor-specific T cells to
be resistant to the suppressive effects of Treg cells. This approach
may be relevant when adoptive T cell therapies are used including
TCR transduction with tumor specific TCR or CAR-T cells.

REPORTED CASES OF TREG RESISTANCE

Since the early 2000s, evidence suggests that there are a variety
of molecular pathways and cellular mechanisms which render T
cells resistant to the suppressive effects of Treg cells. Numerous
surface receptors, intracellular signaling molecules and cytokines
have been implicated in T cell resistance to Treg cells (Figure 2).

Intracellular and Receptor Targets
Controlling Treg Resistance
E3 Ubiquitin Ligase Cbl-b
The inhibition of E3 ubiquitin ligase Cbl-b has shown promising
results based on the ability of T cells to resist the suppressive
effects of Treg cells both in vitro and in vivo (140, 141). Through
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FIGURE 2 | Different strategies can be utilized to overcome the suppressive effects of Treg cells. (1) Antibodies targeting CD25, CCR4, or CTLA-4 expressed on Treg

cells can be used to reduce the frequency of regulatory T cells and enhance anti-tumor immunity. (2) Regulatory T cells can convert into T cell stimulatory cells in

response to inhibition of EZH2 epigenetic modifier or NRP-1-targeting antibody. Treg cells treated with these agents upregulate IFNγ and enhance anti-tumor immunity

(132, 133). (3) T cells can be rendered resistant to the suppressive effects of Treg cells. Intracellular molecules which govern T cell activation (such as Cbl-b and

TRAF-6), co-stimulatory receptors (such as TLRs and GITR) and various T cell stimulatory cytokines reduce the ability of Treg cells to suppress T cells.

ubiquitination (and in many cases, subsequent ubiquitin-
mediated degradation) or phosphorylation of proteins involved
in the TCR signaling pathway, Cbl-b serves as a negative
regulator of antigen-induced T cell activation (142). Several
molecular targets have been identified, including PKCθ, Nedd4,
PLC-γ1, Vav1, LAT, and p85, along with several other TCR
signaling molecules that play an important role in T cell
activation (143–147). Consequently, through the regulation of
these molecules, Cbl-b can control a diverse repertoire of
intracellular mechanisms associated with the early phase of T cell
activation, such as calcium influx, cytoskeletal rearrangement,
immune synapse formation, cytokine secretion as well as
proliferation (148, 149). Amongst several signaling pathways
downstream of TCR activation, reports highlight the role of
PI3K/Akt signaling pathway in T cell resistance to Treg cell-
mediated suppression (150, 151). Interestingly, it has become
evident that that PI3K and Cbl-b are indirectly regulated by
each other to control T proliferation (Figure 3). Fang et al.
(143) has suggested that Cbl-b regulates the PI3K signaling
pathway by binding and ubiquitinating a PI3K regulatory subunit
p85. However, a study conducted by Guo et al. (146) offers an
alternative explanation where Cbl-b does not directly inhibit
PI3K, but instead inhibits the Nedd4-mediated ubiquitination
of PTEN, a negative regulator of PI3K activity. Adding to the
complexity of the interaction between PI3K/Akt pathway and

Cbl-b, Akt also negatively regulates Cbl-b protein level through
inactivation of GSK-3, a protein kinase which enhances Cbl-
b activity by catalyzing the phosphorylation at Ser476 and
Ser480 (152).

In addition to the ability of Cbl-b to regulate molecular
pathways associated with TCR signaling, evidence suggests Cbl-b
is intertwined with multiple T cell inhibitory signaling pathways.
Early studies demonstrated that Cbl-b can be re-expressed in
response to CTLA-4 signaling, and CTLA-4 deficient T cells
display reduced Cbl-b expression (153). Recent studies suggest
that T cells deficient in Cbl-b are less susceptible to PD-
1 inhibitory signaling in vitro (154, 155). These findings are
consistent with a study suggesting that SHP-1, which plays
an important role in downstream PD-1 and CTLA-4 signaling
pathway, controls Cbl-b activity through direct phosphorylation
(156). Furthermore, a study conducted by Mercadante and
Lorenz (157) utilizes an in vitro Treg suppression assay and
homeostatic in vivo Treg suppression assay to demonstrate that
SHP-1 deficient T cells are less responsive to the suppressive
effects of Treg cells. These studies suggest that Cbl-b is linked
with key negative regulatory pathways in T cells. Lastly, Cbl-
b is also intertwined with TGF-β receptor signaling. Gruber
et al. (158) demonstrated that Cbl-b directly ubiquitinates and
subsequently downregulates SMAD7, an attenuator of TGF-β
receptor signaling. Consistent with this finding, CD4+ T cells
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FIGURE 3 | Potential mechanisms of T cell resistance to Treg cells. Regulatory T cells utilize multiple inhibitory mechanisms to limit T cell activation and proliferation,

such as downregulation of CD80/86 on DCs, secretion of TGF-β, and consumption of IL-2. Reports suggest amplified PI3K signaling, through TCR, co-stimulatory

and cytokine receptors, may render T cells resistant to these effects of Treg cells. In contrast, Cbl-b plays an important role in regulating diverse arms of the TCR

signaling pathways and promoting T cell inhibition. Cbl-b deficient T cells are refractory to Treg cell-mediated suppression, but the mechanism of Treg cell resistance

remains yet to be elucidated.

deficient in Cbl-b display reduced sensitivity to TGF-β mediated
inhibition (140, 141, 158, 159). The multi-faceted role of Cbl-
b in regulating TCR signaling pathways as well the inhibitory
signaling pathway enables Cbl-b deficient T cells to acquire TCR
sensitivity, CD28-independent stimulation, increased cytokine
production, and context-dependent TGF-β insensitivity (141,
160), all of which potentially contribute to T cell resistance to
Treg cell-mediated suppression (Figure 3).

Cbl-b deficient CD4+ and CD8+ T cells resist Treg cell-
mediated suppression in an in vitro Treg suppression assay,
where naïve Cbl-b−/− T cells stimulated with anti-CD3 and
irradiated APCs are capable of overcoming the suppressive effects
of splenic Treg cells (140, 161). However, (1) the ability of Cbl-
b−/− T cells to resist potentially “activated” Treg cells (such
as those found in tumors) has not been explored, and (2)
in vitro Treg suppression assay cannot recapitulate the complex
interaction between T cells and Treg cells in vivo (60), especially
since the Cbl-b−/− mice do not have the same phenotype as Treg
deficient mice (17, 162–164). Despite these limitations, many
of the in vitro observations have been consistent with in vivo

properties of Cbl-b−/− T cells. For example, T cells deficient in
Cbl-b also display a hyperactive T cell status in vivo. Gronski
et al. (165) has demonstrated the role of Cbl-b in regulating
T cell activation threshold, as mice deficient in Cbl-b were
more sensitive to antigen-induced T cell stimulation resulting
in autoimmunity. Lastly, Adams et al. (141) has demonstrated
the role of Cbl-b in CD4+ T cell resistance to Treg cells
in vivo through a graft-vs.-host disease model, where adoptively
transferred Treg cells fail to suppress Cbl-b−/− CD4+ T cells
in vivo. However, themechanism bywhich Cbl-b−/− T cells resist
Treg cell suppression has not been investigated in these studies.

T cells deficient in Cbl-b have also been studied in the
context of enhancing tumor immune surveillance and anti-
tumor immunity. Cbl-b deficiency augments anti-tumor T
cell responses in both genetically engineered and transplanted
tumor models (161, 166–168). Loeser et al. (161) and Chiang
et al. (166) provide evidence showing a greater infiltration
of CD8+ T cells using TC-1 and EL4/EG7 transplantable
tumors in Cbl-b deficient mice. In both circumstances, CD4+

effector T cell infiltration did not increase. Interestingly,

Frontiers in Oncology | www.frontiersin.org 7 April 2019 | Volume 9 | Article 279

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Han et al. Turning the Tide Against Tregs

despite the increased infiltration of Treg cells in the tumors
from Cbl-b deficient mice, T cells were able to either reject
or attenuate tumor growth. A similar observation has been
made when Cbl-b deficient mice were crossed with ataxia
telangiectasia mutated (ATM) deficient mice, which attenuated
the spontaneous development of lymphoid tumors and increased
overall survival, demonstrating a robust anti-tumor immunity
against genetically engineered tumor model (166). Although
further investigation is required to understand how Cbl-b
deficient T cells enhance anti-tumor immunity, one of the
proposed mechanisms include insensitivity to TGF-β receptor
signaling. Gruber et al. (158) suggested that Cbl-b deficiency
promotes spontaneous rejection of TC-1 tumors, whereas Cbl-
b−/− mice crossed with CD4Cre- SMAD7fl/fl mice abrogates
anti-tumor immunity, thus highlighting the importance of Cbl-
b deficient T cells in anti-tumor immunity and the ability of
these T cells to potentially overcome TGF-β receptor signaling.
Lastly, in all of the previously described studies, whether Cbl-
b deficient T cells resist the suppressive effects of Treg cells to
enhance anti-tumor immunity has not been shown in vivo.

TLR—MyD88—TRAF6 Axis
Evidence suggests that TLR signaling also play an important role
in T cell resistance to Treg cells. Pasare and Medzhitov (169)
suggested that TLR4 and TLR9-mediated stimulation of DCs and
the subsequent increase in IL-6 production by DCs render T cells
resistant to the effects of Treg cells. However, this particular study
presumed that TLR signaling was restricted to DCs. TLRs can be
expressed by effector T cells and Treg cells, and play an important
role in their cellular activation and survival (170, 171). Although
our understanding of TLR signaling pathways in T cells is rather
limited, TLRs expressed on T cells likely function similar to
co-stimulatory receptors which trigger the downstream MyD88
signaling pathway as well as the PI3K/Akt signaling pathway
(172). TLR signaling in T cells may also play an important role
in rendering T cells refractory to Treg cell-mediated suppression.
For example, TLR9 stimulation of murine T cells enhances
the PI3K/Akt signaling pathway and MyD88-dependent IL-2
production; TLR9 signaling also renders T cells resistant to
the suppressive effects of Treg cells (173, 174). Downstream of
TLRs, MyD88 interacts with IRAK1 and IRAK4, modulating the
activities of an E3 ubiquitin ligase TRAF6 which may contribute
to NFκB signaling (175). However, the role of TRAF6 in T cells
is far more complex and contradictory, which is exemplified
through a study suggesting that TRAF6 also serves as a negative
regulator of T cell function (176). In this study, T cells deficient
in TRAF6 display enhanced T cell activation, CD28-indpendent
stimulation and resistance to Treg cell-mediated suppression
(176). Although TLR signaling can promote T cell resistance
to Treg cells, the precise molecular mechanism remains yet
to be elucidated. It is worth noting that TLR stimulation of
T cells increases cytokine production (173, 177), thus future
studies should delineate the effect of TLR-MyD88 signaling vs.
subsequently induced cytokines in generating resistance to Treg
cells. Lastly, it is also crucial to evaluate the effect of TLR signaling
on regulatory T cells which also express TLRs (170). The role of
TLR signaling on Treg cell function requires further investigation

and clarification since it can both abrogate and enhance Treg
cell functions (170, 177–179). A recent study suggested that
TLR signaling on regulatory T cells induces PI3K/Akt/mTORC1
signaling which subsequently increases glycolysis and GLUT1
expression, which in turn interferes with FoxP3 expression and
the suppressive ability of Treg cells (180). However, increased
Treg cell function observed in several studies could also occur
indirectly as a result of enhanced T cell stimulation and IL-2
secretion, which can subsequently promote Treg cell function.

Although TLR agonists can improve anti-tumor immune
responses by enhancing T cell function and/or stimulating APC
maturation, they may also act on other immune cells and cancer
cells to impact anti-tumor immunity (181, 182). Therefore,
it would be difficult to specifically target TLRs to promote
resistance to Treg cells.

TNF Family Members
TNF family members such as GITR, OX40, and 4-1BB on T cells
can also be targeted to induce T cell resistance to Treg cells (183–
188). Evidence suggests that amplification of GITR signaling
through the use of agonistic antibody, DTA-1, enhances T cell
stimulation in the presence of Treg cells both in vitro and in vivo
(184, 189, 190). However, GITR is also highly expressed on Treg
cells and studies suggests that a GITR agonist attenuates Treg cell
stability (191, 192). In contrast, in vivo administration of non-
depleting Fc-GITR-L induces context-dependent modulation of
Treg cell activities (193). Further work is required to precisely
understand the effect of GITR signaling on Treg cells. Although
the role of GITR agonist in the interaction between T cell and
Treg cell is unclear in vivo, Stephens et al. (184) suggested that
GITR signaling directly acts on T cells to resist the suppressive
effects of Treg cells in vitro. Lastly, a GITR agonist antibody
(DTA-1) has demonstrated its potential in enhancing CD8+ T
cell response and reducing intra-tumoral Treg cell activities using
transplantable tumormodels including the B16melanomamodel
(190, 192, 194). In summary, administration of TNF-family
receptor agonists such as those targeting GITR promote T cell
response in the presence of Treg cells and contribute to enhanced
anti-tumor immunity. However, the mechanism behind how
TNF family receptor signaling renders T cells refractory to Treg
cell-mediated suppression is poorly understood.

Cytokine Networks
Most intracellular molecules and surface receptor targets which
render T cells resistant to inhibition by Treg cells often promote
the secretion of a high quantity of T cell stimulatory cytokines.
This is demonstrated by the early study conducted by Pasare
andMedzhitov (169), which showed that LPS stimulation of DCs
leads to increased IL-6 which plays an important role in T cell
resistance to regulatory T cells (169, 195). Similarly, inhibition of
Cbl-b or activation of GITR signaling increases IL-2 production
by T cells both in vitro and in vivo (167, 168, 183). Increased
cytokine production is often perceived as an indicator of Treg
resistance. However, evidence suggests that various cytokines
themselves can directly drive T cell resistance to Treg cells (195–
199). This raises a question—to what extent do cytokines play a
role in Treg resistance? Both T cells and Treg cells are susceptible
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to cytokine receptor-mediated signaling, and therefore the effect
of cytokines in both cell compartment must be considered.

Soluble mediators such as cytokines can modulate a
powerful receptor-mediated T cell signaling required for cellular
proliferation, survival, and resistance to Treg cell-mediated
suppression. Cytokines including interferons (IFNγ and IFNα),
those binding to receptors that include the common γ-chain
(IL-2, IL-4, IL-7, IL-15, IL-21, and TSLP), gp130 receptor
cytokines (IL-6) and IL-1 receptor cytokines (IL-1β and IL-18)
employ diverse combinations of intracellular signaling pathways
such as the JAK/STAT signaling pathways to promote T cell
differentiation and effector functions (200–202). Many studies
have also highlighted the role of T cell stimulatory cytokines,
in particular IL-1β, IL-2, IL-4, IL-6, IL-7, IL-15, and IL-21, as
central drivers of T cell stimulation in the presence of Treg
cells (87, 195–198, 203–205). Some of these T cell stimulatory
cytokines may induce T cell proliferation and survival in the
presence of Treg cells by common mechanisms, because their
receptors share overlapping downstream signaling pathways, but
the mechanism by which each of these cytokines support T cell
proliferation in the co-cultures has not been fully clarified.

One of the first cytokines reported to enhance T cell
proliferation in the presence of Treg cells in vitro is IL-2 (199).
Upon high-affinity quaternary IL-2-IL2R complex formation,
tyrosine kinases JAK1, and JAK3 also initiate a STAT1, STAT3,
and STAT5-dependent response, along with the induction of
the PI3K signaling pathway (201, 202). Although IL-2 serves
as a potent inducer of T cell proliferation in Treg suppression
assays, there is no strong evidence suggesting that the signaling
pathways downstream of IL-2 directly attenuates the inhibitory
signals induced by Treg cells. Instead, excess IL-2 could enable
T cells to overcome Treg cell-mediated cytokine deprivation
(87, 199), which, despite being somewhat controversial, may
be an important suppressive mechanism utilized by Treg cells
(89, 91). Lastly, many T cell stimulatory cytokines including IL-2,
IL-7, and IL-15 play an important role in enhancing anti-tumor
immunity (206–208), but whether or not these cytokines render T
cells resistant to the suppressive effects of Treg cells in the context
of anti-tumor immunity is unclear.

When evaluating the role of cytokines in rendering T cells
resistant to Treg cells, the effect of cytokine signaling must also
be evaluated on Treg cells. Under a circumstance where T cell
stimulatory cytokine destabilizes Treg cell function, it becomes
challenging to determine whether T cell resistance to Treg cells
play an important role in the observed T cell proliferation in
the presence of Treg cells. Although poorly understood, Treg
cells display phenotypic and functional plasticity in response
to certain cytokines; T cell stimulatory cytokines may mediate
the downregulation of FoxP3 or conversion of Treg cells into
conventional T cells (209, 210). This is exemplified through
a study which demonstrates the ability of IL-4 to convert
FoxP3+ cells into effector CD4+ T cells, thereby undermining
oral tolerance (211). PI3K signaling pathway is regulated by
PTEN expression in Treg cells to prevent loss of Treg cell
stability (212, 213), however, IL-4 may disrupt this process by
enhancing PI3K signaling. Several other cytokines including
IL-21 also antagonize Treg cell proliferation and reduce the

frequency of Treg cells (214). However, a study conducted
by Attridge et al. (215) suggest that IL-21 may act on T
cells to limit IL-2 production which subsequently impairs Treg
cell homeostasis. Furthermore, a recent study conducted by
Overacre-Delgoffe et al. (132) suggests that attenuating Nrp-1
signaling on intra-tumoral Treg cells induces increased secretion
of IFNγ by the Treg cells, and IFNγ subsequently acts on nearby
regulatory T cells to “destabilize” their suppressive phenotype. In
contrast to the previously discussed examples which destabilize
FoxP3 expression in Treg cells, a few cytokines binding to
receptors that include the common γ-chain can enhance Treg cell
proliferation and function. For instance, adding IL-2 enhances T
cell proliferation, despite also stimulating Treg cells (87, 199).

Another possibility to be considered in cytokine-induced T
cell resistance to Treg cells in vitro is proliferation and expansion
of T cell quantity as the mechanism of Treg cell resistance,
which should be distinguished from the ability to negate
immunosuppressive signals. Especially in a murine in vitro
system where Treg cell proliferation is limited, the capacity of T
cells to proliferate may be independent of their ability to negate
immunosuppressive signals by Treg cells. In other words, these
T cells stimulated with cytokines may be equally susceptible to
Treg cell-mediated suppression, but by increasing proliferation
and quantity of T cells, the suppressive effect of Treg cells may
become less apparent.

Observations From Current Clinical Studies
One of the primary objectives of cancer immune therapy is
to modulate anti-tumor T cell properties to reduce the tumor
burden. However, the presence of immunoregulatory cells such
as Treg cells are likely to interfere with the anti-tumor T cell
response (9, 60, 216). Thus, overcoming the suppressive effects
of Treg cells to potentially enhance anti-tumor T cell response
in patients is a strategy currently under investigation. Many of
the current clinical studies involve targeting surface receptors on
Treg cells such as CD25, CTLA-4, and CCR4 (110, 124, 217).

However, clinical studies have not focused on rendering
T cells resistant to the suppressive effects of Treg cells.
Interestingly, some of the existing treatment methods may
already foster T cells resistant to Treg cells. For instance,
high dose IL-2 is part of the protocol for adoptive TIL
therapy against metastatic melanoma, despite actively expanding
immunosuppressive ICOS+ Treg cells (55, 218–221), supporting
the possibility that high-dose IL-2 is successful because it
may render TIL resistant to Treg cell suppression. Therefore,
the dosage of systemic IL-2 administration in these studies
may play an important role in promoting the T cell response
against the tumor, since low dose IL-2 has been used to
preferentially expand Treg cells to attenuate the progression
of human autoimmune diseases (222, 223). To avoid IL-2-
mediated expansion of immunosuppressive Treg cells, a pre-
clinical study conducted by Charych et al. (224) suggested that
NKTR-214, a biologic drug containing an IL-2 core conjugated
to 6 releasable polyethylene glycol chains, can be utilized to
preferentially induce IL-2 signaling on T cells while reducing
the expansion of Treg cells. In this study, the ability of NKTR-
214 to preferentially bind to IL-2Rβ over IL-2Rα induces a
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greater CD8+ T cell to Treg cell ratio, greater exposure to IL-
2 in the tumor and a more robust anti-tumor immunity in
comparison to aldesleukin. This particular approach is currently
in clinical trials. Several other therapeutic strategies involving
modified IL-2 biologics also suggest similarly promising results
in their ability to preferentially enhance T cells over Treg
cells (225, 226).

CONCLUDING REMARKS

Regulatory T cells can be potent regulators of anti-tumor
immunity, and numerous strategies have been proposed to
reverse the suppressive effects of Treg cells. One promising
approach involves rendering T cells resistant to the suppressive
effects of Treg cells. Resistance to Treg cells can be achieved

through modulation of intracellular molecules, co-stimulatory
surface receptors or cytokines, all of which may act through

partially redundant or overlapping mechanisms. Concepts
discussed in this review primarily focus on strategies to
manipulate the balance between T cells and Treg cells.
However, future studies should validate these concepts
in the context of anti-tumor immunity and focus on
recapitulating many of these observations using primary
human T cells.
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