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INTRODUCTION

Vertical root fractures (VRFs) are kind of fractures, which 
transverse the length of tooth from the crown to the apex, 
usually affect one side of the root, and appear on the facial 
and lingual surfaces of anterior and posterior teeth.[1] VRFs 
occur in all teeth due to a centrifugal force caused by factors 
such as occlusion, trauma, main restorations, the additional 
pressure during endodontic therapy, and weak positions.[2] 
Most often VRFs are encountered in endodontically treated 
teeth; however, it may occur in intact teeth. The prevalence 
of VRFs in endodontically treated teeth is much higher than 
in nonendodontically ones (vary from 2% to 5%).[3] Early 
diagnosis of root fracture can prevent from the spreading 
the damage to the surrounding tissues such as probing 
defect, apical bone loss, localized widening of periodontal 
ligament (PDL), pulpal lesion, and inflammation.[4]

In general, there are two important parameters in the 
identification of VRFs; clinical signs and radiographs. VRFs 
in periapical (PA) radiography are diagnosed by the presence 
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of isolated pockets at one side of the tooth, looseness in 
the fibers of the PDL, additional space in the vicinity of root 
canal filling, cement protrusion in the canal, and bone loss at 
one side of the tooth. However, in this type of radiographs, 
fracture can be observed only when X-rays pass the fracture 
line. Thus, we generally need two or three radiographs 
with different angles. According to a study conducted by 
Nair et al.,[4] the fracture can be detected when X-rays meet 
the fracture line at an angle of 4°.

Several studies have reported successful results on the 
detection of VRFs by utilizing high-resolution imaging 
systems such as tuned aperture computed tomography (CT), 
optical coherence tomography, and local CT.[5] In spite of their 
advantages, some of these systems were not commercially 
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available,[4] or they were designed only for medical purposes 
that were not suitable for dental use. Furthermore, 
unsatisfactory image quality with lower resolution was 
reported when compared with cone beam CT (CBCT).[6,7]

Image processing algorithms could be utilized as a powerful 
tool for the diagnosis of VRFs in PA and CBCT radiographs. 
Kositbowornchai et al.[8] proposed a probabilistic neural 
network model for diagnosis of VRFs in nonroot treated 
teeth. In this method, four horizontal lines crossing the 
root in the radiographs of healthy and fractured teeth were 
considered. One of the key challenges of this algorithm is 
that, not only it examines the fractures for untreated teeth, 
but also it has limitations on finding the location of them. 
Hence, this study was investigated only the premolar teeth 
with a single root and was not focused on endodontic filling 
materials or radiopaque post.

By highlighting the importance of the diagnosis of VRFs and 
the limitations of PA radiographs for detection of VRFs, this 
paper proposes an efficient algorithm based on continuous 
wavelet transform (CWT) and adaptive thresholding 
for detection of VRFs in untreated teeth of CBCT and 
PA radiographs. The rest of the paper is organized as follows; 
Section 2 elaborates on procedures of teeth preparation 
and the imaging protocol. The proposed algorithm and its 
various steps are described in details in Section 3. Results of 
the algorithm implementation in the designed user-friendly 
software environment and the discussion of the proposed 
algorithm based on evaluation criteria are presented in 
Section 4. Finally, the conclusion of the paper is provided 
in Section 5.

TEETH PREPARATION PROCEDURES 
AND IMAGING PROTOCOL

A total of 40 radiographs of noncarious nonroot treated 
premolar teeth, which were kept in formalin for consolidation 
after cleaning, were examined by a microscope with a ×20 
magnification to ensure the absence of fracture. Teeth 
crown was cut-off from 2 mm below the cementoenamel 
junction. Canal preparation was conducted using the rotary 
system named ProTaper up to number F5, and the filling was 
carried out using F5 ProTaper Gutta-percha points. The teeth 
were fixed in an acrylic resin box using 1 mm of wax. Then, 
teeth were attached to the universal testing machine with 
a 60° bevel and were exposed under pressure to achieve 
fracture. After achieving fracture, the teeth were taken out 
and re-examined by a microscope with a ×20 magnification, 
this time, to ensure the presence of fracture.

RVG sensors were used for PA radiography. Images were 
taken with the teeth being faciolingually in parallel to the 
sensor and were saved in JPG format – resolution: 1320 
(horizontal/vertical) × 1024 (depth) × 1536 (height). X-ray 
tube was emitted in the form of a round collimator with a 

maximum voltage of 65 Kv and a maximum current of 8 mA 
for 0.08 s. The distance between the teeth and the tube was 
24 cm and the distance between the object, and the film 
was 1 cm. In CBCT imaging, slices were made at axial levels 
with a distance of 1 mm to achieve threshold equalization. 
The CBCT system used a cone-shaped X-ray beam and was 
equipped with a flat-panel detector (pixel array 1536 × 
1920), 360° rotation, 18s scanner, and a maximum voltage 
of 110 Kv. The initial and final reconstruction was carried 
out by the NNT Viewer Software, version 2.17 (http://
www.newtom.it/en/products/newtom-nnt), and exposure 
conditions of the device were set automatically.

PA/CBCT radiographies were divided into three categories 
as small, medium, and large based on the fracture space 
between the two fragments. Table 1 shows the different 
situations of this division.

METHOD

Figure 1 shows a block diagram of the proposed algorithm. 
The main steps of the algorithm are discussed in detail as 
follows.

Image Denoising Using a Hybrid Block Matching 
3‑D Filtering ‑ Principle Component Analysis 
Model

The proposed algorithm uses the block matching and 3-D 
filtering and principle component analysis (PCA) hybrid 
model for denoising the image.[9] The model is summarized 
in Figure 2. Let assume that the input image is destructed 
by additive white Gaussian noise with zero average and σ2 
variance.[9] The input image is scanned as an array. Then, the 
following procedures are applied to each processed pixel:
•	 For	 each	 processed	 pixel,	 a	 shape	 adaptive	

neighborhood can be found with the original pixel as 
the center of the neighborhood using the 8-connected 
LPA-ICI model based on Lee et al.[9] The neighborhood is 
located within a square block of a fixed size. This block 
is called the reference block. The number of pixels in 
the neighborhood is represented by Nel

•	 Any	 block	 similar	 to	 the	 reference	 block	 can	 be	
found using block-matching. The shape adaptive 
neighborhood is extracted from among these matched 

Table 1: Classification of periapical/cone beam computed 
tomography graphies into three sub‑categories based on the 
fracture space between the two fragments
Graphies Fracture space between the two 

fragments
Fracture type

PA/CBCT Fracture space <1.5 pixels
1.5 pixels < fracture space <2.5 pixels
Fracture space >2.5 pixels

Small fracture
Medium fracture
Large fracture

CBCT – Cone beam computed tomography; PA – Periapical
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blocks using the method described in the previous step. 
The number of matched blocks is represented by Ngr

•	 Determining	 a	 transform	 and	 applying	 it	 to	 the	
neighborhoods of an adaptive shape. To this end, we 
consider a thresholding level (τ) and investigate two 
conditions:
1. First condition: If we have 

N

N
gr

el

≥τ, it means that 

an acceptable number of matched neighboring 
pixels are selected for estimating the PCA matrix. 
This matrix forms the basic vectors of the PCA 
model. So, only eigenvectors whose corresponding 
eigenvalues are greater than the defined threshold 
are selected at this stage

2. Second condition: If we have
N

N
gr

el

<τ , it means that 

an acceptable number of matched neighboring 
pixels are not selected for estimating the PCA 
model. So, a specific eigenvalue is selected for the 
eigenvector as proposed by Lee et al.[9]

•	 Forming	a	three‑dimensional	array	by	connecting	shape	
adaptive neighborhoods (min [Ngr, N2]) to a reference 
block which is most similar. N2 is a constant parameter 
that limits the number of filtered neighborhoods

•	 Applying	 transform	 in	 step	 3	 to	 each	 group	of	 shape	
adaptive neighborhoods. At this stage, a one-
dimensional orthogonal transform (i.e., wavelet 
transform) is applied to each three-dimensional group

•	 Applying	a	hard‑thresholding	to	the	three‑dimensional	
group for achieving image shrinkage

•	 Applying	three‑dimensional	inverse	transform	from	step	
5 to find the estimates in each group of shape adaptive 
neighborhoods, and

•	 Relocation	 of	 collected	 estimates	 back	 into	 their	
original positions using weighted averaging.

Image Segmentation for Determining the 
Fractures Using the Adaptive Thresholding 
Algorithm

VRFs are considered as the edges of the image. So in this 
paper, we propose an algorithm for segmentation based 
on adaptive thresholding for determining the fractures in 
CBCT and PA radiographs. The idea of segmentation is an 
extension of the Wellner method[10] in which any pixel is 
compared to its adjacent pixels. Thus, if the value of the 
denoised pixel is T percent below the Wellner method’s 
output value, it belongs to the black pixel. Otherwise, it 
belongs to the white pixel. The main problem of the Wellner 
method in PA and CBCT radiographs is its dependence on 
the sweeping up of pixels. In addition, in this type of image, 
this method alone cannot be an appropriate criterion for 
displaying the existing pixels in the image neighborhood, 
since all neighborhood samples are not dispersed in all 
directions with equal distribution.

To overcome the Wellner algorithm’s issue with PA and 
CBCT radiographs, we have conducted two important 
modifications. At first, a maximum filter is applied to the 
denoised image. The output of the maximum filter is the 
maximum value of a pixel in its neighborhood in a window. 
The dimension of the selected window is set by 10 × 10. The 
second modification is applied to eliminate the dependence 
of the thresholding method on the sweeping up of pixels, in 
which the whole image is integrated using Eq. 1:

f x y I x y I x y

I x y I x

y y

y y

x x
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Figure 1: Block diagram of the proposed algorithm

Figure 2: Block diagram of denoising in the proposed algorithm
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where, I (x, y) is the input image and f (x, y) is the result of 
input image integration. Therefore, instead of calculating 
the average of the last s pixel, the maximum value is first 
calculated in a window with each pixel as the center. Then 
a window with w × w dimensions is set out on each pixel 
obtained from the image for calculating its average value.

The maximum filter highlights the effects of the edge 
in the image. Edges include canal, fractures, and the 
complete configuration of the teeth. In PA radiographs, 
canal is produced by a lower level of intensity transition 
compared to fracture. This feature causes the fractures to 
be more clearly visible than internal teeth borders (i.e., 
canal) by changing the threshold level in segmentation. 
Figures 3-6 shows the results of segmentation using 
the proposed algorithm and its comparison with the 
conventional Wellner algorithm for two samples of PA 
radiographs (with medium and small fractures) at different 
thresholding values (sample 1: T = 0.89, T = 0.79 and 
T = 0.69; sample 2: T = 0.95, T = 0.80 and T = 0.71). By 
comparing Figures 3 and 4 as well as 5 and 6, we can see 
the effect of the maximum filter in the Wellner method. In 
the proposed algorithm, the fracture is visible in Figure 4c 
(for T = 0.69), but the conventional Wellner algorithm 
fails to identify the fracture under similar conditions. This 
becomes even more important in the diagnosis of small 
fractures.

The variance of intensity that forms edges in CBCT images is 
the same in both canal and fractures and the maximum filter 

highlights the edges as well. Results of segmentation for a 
CBCT image at different thresholding values are presented 
in Figures 7 and 8. As can be seen, the edge to surface 
intensity deviations is high in this type of imaging, and this 
leads to more highlight the edges.

Adaptive Thresholding Algorithm

To achieve the best segmentation, we need the best 
threshold image. The best threshold image is a coefficient 
of the maximum/average filter’s output in PA/CBCT 
radiographs. To determine an efficient coefficient to detect 
the threshold image, we propose an adaptive thresholding 
algorithm. This algorithm is based on a comparison 
between the reference image and the image obtained 
from different thresholding values. Steps of the proposed 
adaptive thresholding algorithm are summarized as follows.

Start
•	 Acquiring	threshold	and	segmented	images	for	a	fixed	T
•	 Applying	CWT	to	images	from	step	1	and	creating	image	

masks
•	 Comparing	the	output	image	with	the	reference	image	

and calculating the interclass variance of the two images 
based on the Eq. 2:[11]

 ( ) ( )( ) ( ) ( )( )2 22
B 1 1 2 2T Tw t t w t t    = − + −  (2)

   where, μT is the average of the entire image; μ1 (t) 
and μ2 (t) are the averages of the first and second 

Figure 3: Results of segmentation of periapical radiographs with medium 
fractures via the conventional Wellner algorithm at different thresholding 
values. (a) T = 0.89 (b) T = 0.79 and (c) T = 0.69

cba

Figure 6: Results of segmentation of periapical radiographs via the proposed 
algorithm at different thresholding values. (a) T = 0.95 (b) T = 0.80 and 
(c) T = 0.71

cba

Figure 5: Results of segmentation of periapical radiographs with small 
fractures via the conventional Wellner algorithm at different thresholding 
values. (a) T = 0.95 (b) T = 0.80 and (c) T= 0.71

cba

Figure 4: Results of segmentation of periapical radiographs via the proposed 
algorithm at different thresholding values. (a) T = 0.89 (b) T = 0.79 and 
(c) T = 0.69

ba c
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classes, respectively; and w1 (t) and w2 (t) are the 
weights of each class, respectively.

•	 Repeating	the	above	steps	for	different	T values, until 
the minimum interclass variance is obtained.

End
Output: Efficient T value and the number of sub-images.

Feature Extraction by Applying Continuous 
Wavelet Transform

Wavelet transform is used as a powerful tool in various 
signal and image processing functions. Two-dimensional 
wavelet transform breaks a signal down to a set of basic 
vectors all of which are scaled, shifted, and rotated versions 
of mother wavelet functions.[12,13] Assume g(



γ ) and, 


γ = (x,y) 
representing pixel intensity and image coordinates, 
respectively. CWT is defined as follows:[14]

( ) ( )( ) ( )
 

  

2

1 1 1 22, , .
R

W b a C a a r b g d     − − ∗ −
−= −∫  (3)

where 


b b bx= ( , )y  represents the transition parameter 
showing wavelet shift in the spatial domain; φ represents the 
rotation parameter.[13] With the rotation function defined as 
r−φ (x, y), wavelets rotate in the angular domain at a φ degree 
angle. So we have:

cos sin
( , ) 0 2

sin cos

T

r r

x
r x y

y

 
 

 −

    
= ≤ ≤   −   

 (4)

in Eq. 3 a is the scale parameter which corresponds with 
the spatial frequency of wavelet functions. * represents 
the complex conjugate of mother wavelet () functions. 
(CΨ) represents a normalized constant such that the Fourier 
transform of the  function meets the acceptability 
condition as Eq. 5:

( )
( ) 



2

2

2 2
22

R

FT k
C d k

k



≡ <+ ∞∫  (5)

Where FT ((·))represents the Fourier transform of the  
function and 

 

k k kx y= ( , )  represents the spatial frequency 
in a nondimensional R2 space. The proposed algorithm 
used the esmexh mother wavelet for calculating wavelet 
transform coefficients. The esmexh mother wavelet is 
defined in the frequency and spatial domain as follows:[14]

( ) ( ) ( ) ( )
( ) ( )22

2
222 2 2, sin

x y T

x y x yT e e

 


    

 +  − − = +    (6)

Where σ is the variance of the wavelet from its average 
value and T is expressed as follows:

( ) ( ),
, tan2 , 0x y

x yT T a
 

  
 

= = > 
 

 (7)

Where ε is a constant value and is set by 0.5. The reason for 
using the esmexh mother wavelet is that the features extracted 
from the image, which includes the edges of the image, are 
part of singular points. Therefore, the mother wavelet that has 
a greater number of zero moments is more conducive to the 
highlighting of the edges. In the mother wavelet function, four 
scales and 16 different phases were used for PA radiographs. 
Also for reconstruction, between 5 and 10 sub-images were 
gathered together and the efficient value of sub-images was 
determined based on the adaptive thresholding method. In 
CBCT, four scales are used. However, the sub-images were 
considered in eight phases and between four and eight sub-
images were gathered together. The reason of choosing the 
necessary angles to obtain the sub-images lies in the resolution 
of fractures in any radiograph. Hence, in PA images where it 
is more difficult to diagnose fractures and the internal edges 
(fractures) are thinner, we need smaller angles for highlighting. 
However, the exact opposite applies to CBCT radiographs. 
Figure 9 shows the results of CWT on CBCT and PA radiographs.

Locating the Vertical Root Fractures

After applying the CWT, the reconstructed image is masked 
and transformed into a binary structure for identifying 

Figure 7: Results of segmentation of cone beam computed tomography 
images via the Wellner algorithm at different thresholding values (a) 
T = 0.87 (b) T = 0.77 and (c) T = 0.57

cba

Figure 8: Results of segmentation of cone beam computed tomography 
images via the proposed algorithm at different thresholding values (a) 
T = 0.87 (b) T = 0.77 and (c) T = 0.57

cba
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the exact location of the fracture. The basis for the binary 
transformation of the image is thresholding, such that all 
pixels whose intensity exceeds the threshold value (i.e., 
0.21 in this the paper) will be equal to one and the rest will 
be equal to zero. To produce the mask, the resulting binary 
image is multiplied by the image of the wavelet. Figure 10a 
and b show the results of applying the mask and the final 
result in CBCT and PA radiographs, respectively.

RESULTS AND DISCUSSION

Figures 11 and 12 show the software package designed 
for detecting the location of fractures in CBCT and PA 
radiographs. This software package was designed and 
implemented in the MATLAB software (http://www.
mathworks.com/products/matlab/) environment by the 
Department of Oral and Maxillofacial Radiology, the 
Faculty of Dentistry, Tabriz University of Medical Sciences. 
Furthermore, reference images were produced by 
radiologists and were used for comparison with the results 
of the proposed algorithm.

According to the classification stated in Table 1, in PA 
radiographs, the fractures in teeth are classified into 
small, medium, and large. Besides, all cases of CBCT 
images in this paper have the fracture space higher than 
2.5 pixels; hence, these radiographs are classified as 
large fracture. Based on this explanation, in the graphies 
shown in Figure 13, PA1, PA2, PA3, and PA4 are small, 
the fractures in teeth PA5 and PA6 are medium, and the 
fractures in teeth PA7 and PA8 are large. The final results 
of our proposed algorithm are presented in Figure 14. 
As can be seen, the proposed algorithm can detect the 
exact location of small, medium, and large fractures in all 
radiographs. It should be noted that in radiograph PA1, 
the horizontal line relates to image artifacts and is not a 
fracture. Besides, radiograph PA8 shows a superimposed 
fracture in the buccal or lingual surface and the tooth is 
not filled with Gutta-percha.

In Figures 15 and 16, CBCT radiographs and the final results 
of the proposed algorithm are presented, respectively. 
These radiographs are labeled by CT1 to CT7.

To evaluate the performance of the proposed algorithm we 
have used the evaluation criteria as follows:

Sensitivity (Sn), specificity (Sp), precision (P), and 
approximation correlation (AC).

Figure 11: The software package designed for detecting the location of 
fractures in periapical radiographs

Figure 12: The software package designed for detecting the location of 
fractures in cone beam computed tomography radiographs

Figure 9: Results of continuous wavelet transform on periapical and cone 
beam computed tomography radiographs

Figure 10: The mask produced for identifying the exact location of the 
fracture and the final result in (a) periapical radiographs, and (b) cone beam 
computed tomography radiographs

ba
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These parameters are defined as follows:[15]

Sensitivity =
+
TP

TP FN
 (8)

Specificity =
+
TN

TN FP
 (9)

P
TP

TP FP
=

+
 (10)

AC
TP

TP FN
TP

TP FP
TN

TN FN
TN

TP FP
=

+
+

+
+

+
+

+






1
2

 (11)

where TP and TN represent the number of pixels correctly 
identified as fracture and nonfracture regions, respectively. 
Similarly, FP and FN represent the number of pixels 
mistakenly identified as fracture and nonfracture regions, 
respectively. We have utilized the above evaluation criteria 
to assess the correct detection rate.

According to Eqs. 8-11, the Sn parameter provides a measure 
of fracture pixels correctly identified as fracture regions. 
The Sp parameter also provides a measure of fracture 
pixels correctly detected by the proposed algorithm as 
fracture regions. Accordingly, both these parameter (Sn and 
Sp) can be considered in terms of conditional probability. 

Figure 13: Samples of periapical radiographs with vertical root fracture (PA1, PA2, PA3 and PA4 with small vertical root fracture; PA5 and PA6 with medium 
vertical root fracture, PA7 and PA8 with large vertical root fracture)

Figure 14: Final results of applying the proposed algorithm on periapical radiographs with vertical root fracture (PA1, PA2, PA3 and PA4 with small vertical 
root fracture; PA5 and PA6 with medium vertical root fracture, PA7 and PA8 with large vertical root fracture)

Figure 15: Samples of axial cone beam computed tomography radiographs with vertical root fracture

Figure 16: Final results of applying the proposed algorithm on axial cone beam computed tomography radiographs with vertical root fracture
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Finally, the precision parameter shows the accuracy of the 
segmentation algorithm.

Negative predictive value (NPV), F_measure and G_mean 
parameters are defined in Eqs. 12-14:[16]

NPV =
+
TN

TN FN
 (12)

F_measure = ×
×
+

2
p recall
P recall

 (13)

G_mean= ×S Sn p
 (14)

By considering P and NPV, F_measure examines the 
precision of the algorithm and assigns it a score– one 
indicates the highest and zero represents the lowest score. 
This parameter is used in many cases including border 
detection, segmentation, and clustering.

Peak signal to noise ratio (PSNR): Since many signals have a 
wide dynamic range, this measure is expressed logarithmically. 
This measure is often used for measuring the quality of 
images after reconstruction. A higher PSNR thus means a 
better-reconstructed image quality. If the noiseless image is 
represented by I and the noised image by K, we have:[17,18]

MSE=

PSNR=10log

1 2

0

1

0

1

10
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mn
I i j K i j

j
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i

m
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MSE
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
 



=20log10
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MSE
I

 (15)

where MAXI represents the maximum possible pixel value in the 
image. If there are eight bits per pixel, the maximum pixel value 
is 255. Otherwise, it is calculated in the following manner:

MAXI
B= −2 1 (16)

Receiver operating characteristic (ROC) Curve: ROC curve was 
developed in 1950 as a technique for organizing classifiers 
and visualizing their performance.[19] In determining 
fracture zones, the ROC curve evaluates the impact of TP 
and FP by considering an arbitrary thresholding level and is 
defined as an XY-diagram of the TP rate as a function of the 
FP rate at different thresholding level values. The area under 
the ROC curve is a measure of the performance of fracture/
nonfracture separation system. A greater area under the ROC 
curve in a certain algorithm represents a higher accuracy. It 
should be noted that trapezoidal integration was used for 
calculating the area under the ROC curve. This measure is 
equal to the fact that a classification is more likely to rate 
a positive random value than a negative random value.[20]

As can be seen in Table 2, a σ = 15 yields the best result for 
image denoising in PA radiographs such that in the case of the 
PA4 radiograph, which is considered as an short VRF, the PSNR 

value is improved for 9.2 and 8.36 at σ = 15 in comparison 
with σ = 5 and σ = 25, respectively. This superiority can 
also be seen in the case of other radiographs as shown in 
Table 2. It should be noted that in the PA5 radiograph, which 
is considered as medium VRF fracture, the PSNR value is 
obtained as greater at σ = 25 in comparison with σ = 15. 
However, the latter sigma value (σ = 15) is selected due to 
an equal Sp value at these two sigma values (Sp = 99.92). 
In CBCT radiographs, which are considered as large VRF, as 
presented in Table 3, the best sigma value is different for 
each image. However, with a good approximation, it can be 
concluded that σ = 15 is the best match. In this study, the 
aim of denoising is to sharpen the surfaces and consequently 
improve the accuracy of edge detection. However, if denoising 

Table 2: Quantitative values of peak signal to noise ratio, 
precision and specificity in periapical radiographs at various 
sigma values and the best image threshold coefficient
PA images σ=5 σ=15 σ=25

Short VRF (PA4)
PSNR 68.27 74.55 68.80
Precision 0.1045 0.2963 0.1184
Specificity 99.03 99.80 99.14
1‑T/100 0.73 0.748 0.74

Medium_VRF (PA5)
PSNR 69.48 78.14 78.25
Precision 0.1019 0.3446 0.4833
Specificity 99.27 99.92 99.92
1‑T/100 0.745 0.745 0.73

Large_VRF (PA8)
PSNR 69.35 69.97 69.23
Precision 0.3446 0.3780 0.3351
Specificity 99.35 99.47 99.34
1‑T/100 0.575 0.59 0.60

PSNR – Peak signal to noise ratio; PA – Periapical; VRF – Vertical root fractures

Table 3: Quantitative values of peak signal to noise 
ratio, precision and specificity in cone beam computed 
tomography radiographs at various sigma values and the 
best image threshold coefficient
CBCT images σ=5 σ=15 σ=25
CT1

PSNR 73.55 73.35 73.45
Precision 0.3548 0.3438 0.3443
Specificity 99.73 99.71 99.73
1‑T/100 0.835 0.72 0.855

CT5
PSNR 69.20 69.39 71.19
Precision 0.1714 0.1778 0.2308
Specificity 99.22 99.25 99.53
1‑T/100 0.855 0.60 0.645

CT6
PSNR 68.75 70.91 68.01
Precision 0.2500 0.3333 0.2194
Specificity 99.13 99.53 98.97
1‑T/100 0.81 0.815 0.84

PSNR – Peak signal to noise ratio; CBCT – Cone beam computed tomography; 
CT – Computed tomography
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is carried out with low sigma values, the surfaces will not 
become sharp. High-sigma values also destroy the edges and 
reduce diagnostic precision. By comparing Tables 2 and 3, 
we find that changes in the sigma vale have a greater impact 
on the PSNR value in PA radiographs due to the presence of 
medium and small fractures. In contrast, CBCT radiographs 
are characterized by a greater stability in the face of noise 
when compared with PA radiographs. It should be noted that 
the results presented in Tables 2 and 3 have been achieved 
based on the best thresholding level, which was obtained by 
changing the image threshold coefficient (T) (from 3.0 to 9.0).

The quantitative values of evaluation parameters for CBCT 
and PA radiographs are presented in Tables 4 and 5 for the 
best sigma value. In addition, ROC curves for PA and CBCT 
radiographs are presented in Figures 17 and 18, respectively. 
In PA radiographs, the area under the ROC curve for large 
fractures is improved for 1.02 and 1.1 in comparison with 
medium and small fractures, respectively. The superiority of 
the proposed algorithm is also visible in CBCT radiographs 
such that the area under the ROC curve is equal to 0.9755 in 
the CT5 radiograph and equal to 0.9607 and 0.9385 in CT1 
and CT6 radiographs, respectively. From Figures 17 and 18, it 
can be concluded that the proposed algorithm has a better 
performance in CBCT compared with PA radiographs. This is 
also visible in Tables 4 and 5 such that the Sn parameter in 
CBCT radiographs is higher compared with PA radiographs for 
the best image threshold coefficient. In PA radiographs, the 

Table 4: Quantitative values of evaluation parameters in 
periapical radiographs for the best thresholding level
PA 
images

Sensitivity Specificity AC G_mean F_measure PSNR

PA1 74.29 99.88 0.5538 0.8614 0.5360 76.73
PA2 61.90 99.75 0.4121 0.7858 0.3443 73.44
PA3 72.22 99.92 0.5970 0.8495 0.6419 78.14
PA4 74.22 99.80 0.5120 0.8589 0.4480 74.55
PA5 71.11 99.92 0.5026 0.8425 0.4571 78.14
PA6 77.39 99.56 0.5576 0.8778 0.5144 71.17
PA7 67.05 99.67 0.4865 0.8175 0.4691 72.10
PA8 73.86 99.47 0.5356 0.8567 0.5077 69.97
PSNR – Peak signal to noise ratio; PA – Periapical; AC – Approximation correlation

Table 5: Quantitative values of evaluation parameters in 
cone beam computed tomography radiographs for the best 
thresholding level
CBCT 
images

Sensitivity Specificity AC G_mean F_measure PSNR

CT1 88 99.71 0.6104 0.9367 0.5116 73.35
CT2 88.46 99.44 0.5479 0.9379 0.3566 70.54
CT3 100 99.81 0.7191 0.9991 0.6111 75.42
CT4 87.10 99.67 0.6090 0.9317 0.5192 72.57
CT5 96 99.25 0.5659 0.9761 0.3019 69.39
CT6 79.54 99.53 0.5618 0.88.97 0.4999 70.91
CT7 100 98.93 0.5527 0.9941 0.2079 67.85
AC – Approximation correlation; CBCT – Cone beam computed tomography; 
PSNR – Peak signal to noise ratio; CT – Computed tomography

Figure 17: Receiver operating characteristic curve for periapical radiographs

Sn parameter ranges from 61.90 (for PA2) to 77.39 (for PA6). 
However, the Sn range is between 79.54 (for CT6) and 100 (for 

Figure 18: Receiver operating characteristic curve for cone beam computed 
tomography radiographs

Figure 19: Sp curve as a function of thresholding level for periapical 
radiographs
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CT3 and CT7) in CBCT radiographs. Figures 19 and 20 present 
the Sp parameter as a function of the thresholding level in PA 
and CBCT radiographs. As can be seen, Sp values are almost 
constant for all thresholding levels in the proposed algorithm. 
The range of Sp is between 99.47 (for PA8) and 99.92 (for PA3 
and PA5) in PA radiographs and between 98.25 (for CT5) and 
99.81 (CT3). This shows that the proposed algorithm has a 
good stability for locating VRFs in clinical applications.

CONCLUSION

A novel thresholding based algorithm for segmentation 
of VRFs in PA and CBCT radiographs in nonendodontically 
treated premolar teeth has been proposed. Results show 
that the proposed algorithm has good stability in finding 
the location of VRFs and can accurately locate any types of 
fractures – either small, medium, or large – in CBCT and PA 
radiographs. As it can be found from the results, the range 
of Sp deviations for PA and CBCT radiographs are from 
99.47–99.92 to 98.25–99.8, respectively. This proves that 
our algorithm could be a useful tool for clinical applications 
and also could be utilized to accurately localize the VRFs. 
One of our limitations in this work is the use of premolar 
teeth, with a single root and no endodontic filling material 
or radiopaque post. Our goal in future researches is to study 
multi-rooted teeth for detection of VRFs.
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