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United States

The retina and the olfactory bulb are the gateways to the visual and olfactory systems,
respectively, similarly using neural networks to initiate sensory signal processing. Sensory
receptors receive signals that are transmitted to neural networks before projecting to
primary cortices. These networks filter sensory signals based on their unique features
and adjust their sensitivities by gain control systems. Interestingly, dopamine modulates
sensory signal transduction in both systems. In the retina, dopamine adjusts the retinal
network for daylight conditions (“light adaptation”). In the olfactory system, dopamine
mediates lateral inhibition between the glomeruli, resulting in odorant signal decorrelation
and discrimination. While dopamine is essential for signal discrimination in the olfactory
system, it is not understood whether dopamine has similar roles in visual signal
processing in the retina. To elucidate dopaminergic effects on visual processing, we
conducted patch-clamp recording from second-order retinal bipolar cells, which exhibit
multiple types that can convey different temporal features of light. We recorded excitatory
postsynaptic potentials (EPSPs) evoked by various frequencies of sinusoidal light in the
absence and presence of a dopamine receptor 1 (D1R) agonist or antagonist. Application
of a D1R agonist, SKF-38393, shifted the peak temporal responses toward higher
frequencies in a subset of bipolar cells. In contrast, a D1R antagonist, SCH-23390,
reversed the effects of SKF on these types of bipolar cells. To examine the mechanism
of dopaminergic modulation, we recorded voltage-gated currents, hyperpolarization-
activated cyclic nucleotide-gated (HCN) channels, and low-voltage activated (LVA) Ca2+

channels. SKF modulated HCN and LVA currents, suggesting that these channels are
the target of D1R signaling to modulate visual signaling in these bipolar cells. Taken
together, we found that dopamine modulates the temporal tuning of a subset of retinal
bipolar cells. Consequently, we determined that dopamine plays a role in visual signal
processing, which is similar to its role in signal decorrelation in the olfactory bulb.

Keywords: retina, dopamine, patch clamp, visual signal processing, temporal processing

INTRODUCTION

Continuous integration of our sensory perceptions gives rise to our daily experience of the world,
and this experience is made possible by specialized neuronal ‘‘antennae,’’ such as the retina and
the olfactory bulb. Interestingly, the retina and the olfactory bulb utilize similar neural network
architecture despite processing different signals. In both systems, sensory signals stimulate sensory
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receptor neurons, which facilitate information transfer through
specific networks formed by interneurons and then project to the
cerebral cortex by output neurons.

In the retina, rod and cone photoreceptors transduce light
inputs into electrochemical signals. Second-order neurons,
bipolar cells, converge photoreceptor input, and begin the
process of extracting abstract visual features such as luminance,
contrast, chromaticity, and spatiotemporal properties of light
signals. This information is modulated by horizontal and
amacrine cells and relayed to third-order retinal ganglion cells
(RGCs), the output neurons of the retina (Wässle, 2004; Dowling,
2012). Similarly, in the olfactory system, olfactory receptor
neurons (ORNs) in the nasal cavity convey odorant signals to
the glomeruli structures in the olfactory bulb, where signals are
modulated by juxtaglomerular cells before being sent out to the
olfactory cortex by the olfactory output neurons, mitral and
tufted cells (Astic et al., 1987; Stewart and Pedersen, 1987; Ressler
et al., 1994; Gire et al., 2012).

Besides similarities in circuitry, the visual and olfactory
processing systems also comparably use dopamine as a principal
neuromodulator. Five types of dopamine receptors have been
identified and are classified as D1-like (D1 and D5 receptors)
and D2-like (D2, D3, and D4 receptors) receptors. D1-like
receptor signaling stimulates a protein kinase A (PKA) pathway
in which cAMP is increased, while D2-like receptor signaling
decreases cAMP levels (Witkovsky, 2004; Iuphar, 2020). In the
olfactory bulb, dopamine facilitates a gain control system, which
presynaptically suppresses ORN transmission to the glomeruli,
and also decorrelates the signals between glomeruli (Wachowiak
and Cohen, 1999; Banerjee et al., 2015; Vaaga et al., 2017).
Consequently, dopamine neuromodulation mediates odor signal
discrimination, as shown by behavioral studies (Kruzich and
Grandy, 2004; Tillerson et al., 2006; Wei et al., 2006).

In the retina, dopamine is released by dopaminergic amacrine
cells (DACs) in response to light or circadian time (Kramer,
1971; Iuvone et al., 1978; Pourcho, 1982; Mariani and Hokoc,
1988; Kirsch and Wagner, 1989; Witkovsky et al., 1993; Weiler
et al., 1997; Megaw et al., 2006). Retinal dopamine enables the
retina to adapt from dark to daytime light conditions and has
accordingly been shown to lower the light sensitivity across
photoreceptor, horizontal cell, and RGC populations as light
levels increase (Jensen and Daw, 1986; Vaquero et al., 2001;
Hayashida and Ishida, 2004; Hayashida et al., 2009; Blasic et al.,
2012; Ogata et al., 2012; Liu et al., 2016b; Nikolaeva et al., 2019).
Furthermore, retinal dopamine uncouples horizontal cell and
amacrine cell gap junctions with light adaptation, narrowing
the receptive field size of downstream neurons (McMahon and
Mattson, 1996; He et al., 2000). However, whether dopamine
contributes to visual signal decorrelation—much like in the
olfactory system—remains unclear.

Previously, our lab has shown that subsets of retinal
bipolar cells express the dopamine receptor D1 (D1Rs) in a
type-dependent manner (Farshi et al., 2016). Bipolar cells are
known to perform parallel processing in the visual system
(Wässle, 2004), where each type conveys distinct aspects of image
features (Borghuis et al., 2013; Euler et al., 2014; Ichinose et al.,
2014; Ichinose and Hellmer, 2016). Therefore, we examined

whether dopamine signaling differentially modulated visual
signaling in each type of bipolar cell. As the retina and olfactory
bulb have extensive similarities in their signal processing,
including the general role of dopamine in neuromodulation and
sensory discrimination, a deeper understanding of dopamine’s
function in the retina may translate to more significant insights
into olfactory processing and vice versa.

MATERIALS AND METHODS

Ethical Approval
All animal procedures were approved by the Institutional Animal
Care and Use Committee at Wayne State University (protocol
no. A05-03-15). All the necessary steps were taken to minimize
animal suffering. The tissues were harvested immediately
after the animal was euthanized by CO2 inhalation and
cervical dislocation.

Retinal Preparation
The experimental techniques were similar to previously
described (Ichinose and Lukasiewicz, 2012; Ichinose et al.,
2014). Briefly, the mice (4–12 weeks old; male or female,
C57BL/6J strain; Jackson Laboratory, Bar Harbor, ME, USA or
Kcng4-cre strain; a gift from Dr. Sanes, Harvard University,
Cambridge, MA, USA; Duan et al., 2014) were dark-adapted
overnight, euthanized, and eyes were enucleated. Using a
stereo microscope, the retina was isolated and cut into slice
preparations (250 µm thick). Some ganglion cell recordings
were conducted using the wholemount retinal preparations.
Only the dorsal retina was used for recordings. All procedures
were performed in dark-adapted conditions under infrared
illumination using infrared viewers. The dissecting medium was
cooled and continuously oxygenated. Retinal preparations were
stored in an oxygenated dark box at room temperature.

Whole-Cell Recordings
Whole-cell patch-clamp recordings were made from the bipolar
cell or ganglion cell somas in the retinal preparations by
viewing them with an upright microscope (Slicescope Pro 2000,
Scientifica, UK) equipped with a CCD camera (Retiga-2000R, Q-
Imaging, Canada). The light-evoked postsynaptic potentials and
currents (L-EPSPs and L-EPSCs) were recorded at the resting
membrane potential and the equilibrium potential for chloride
ions (ECl; −60 mV), respectively. All recordings were performed
at 30–34◦C. The liquid junction potentials were corrected
after each recording. Whole-cell recordings from bipolar cells
usually lasted 20–30 min without significant rundown (Ichinose
et al., 2014). The electrodes were pulled from borosilicate
glass (1B150F-4; WPI, FL, USA) with a P1000 Puller (Sutter
Instruments, Novato, CA, USA) and had resistances of 8–12M�.
Clampex and MultiClamp 700B (Molecular Devices, San Jose,
CA, USA) were used to generate the waveforms, acquire the data,
and control light stimuli by a light-emitting diode (LED; Cool
LED, UK). The data were digitized and stored on a personal
computer using Axon Digidata 1440A (Molecular Devices). The
responses were filtered at 1 kHz with the four-pole Bessel filter
on the MultiClamp 700B and sampled at 2–5 kHz.
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Solutions and Drugs
The retinal dissections were performed in HEPES-
buffered extracellular solution containing the following (in
mM):115 NaCl, 2.5 KCl, 2.5 CaCl2, 1.0 MgCl2, 10 HEPES, and
28 glucose, adjusted to pH 7.4 with NaOH. Physiological
recordings were performed in Ames’ medium buffered
with NaHCO3 (Millipore–Sigma, St. Louis, MO, USA)
and bubbled with 95% O2 and 5% CO2; the pH was
7.4 at 30–33◦C. The intracellular solution contained the
following (in mM):111 potassium gluconate, 1.0 CaCl2,
10 HEPES, 1.1 EGTA, 10 NaCl, 1.0 MgCl2, 5 ATP-Mg, and
1.0 GTP-Na, adjusted to pH 7.2 with KOH. The potassium
gluconate was replaced with cesium gluconate for the
recording in voltage-clamp mode. A cocktail of inhibitory
receptor antagonists, including a glycine receptor antagonist,
strychnine (1 µM, Sigma), a GABAA receptor antagonist,
(−)-bicuculline methobromide (50 µM; Axxora, NY, USA), and
a GABAC receptor antagonist, (1,2,5,6-tetrahydropyridin-
4-yl) methylphosphinic acid hydrate (TPMPA; 50 µm;
Bio-Techne Company, Devens, MN, USA), were bath
applied throughout all recordings to suppress the network
effect. For pharmacological experiments either SKF-38393,
a D1R agonist (10 µM; Bio-Techne Company, Devens,
MA, USA), or SCH-23390, a D1R antagonist (10 µM;
Bio-Techne Company, Devens, MA, USA), were bath applied.
SKF-38393 was applied alone after control recordings, and then
SCH-23390 was subsequently applied alone during the washout
of SKF-38393.

Light Stimulation
Green light (500 nm) was projected through a 60× objective
lens onto the photoreceptors in the vicinity of the recorded
bipolar cells with a spot diameter of 100 µm, which is
slightly larger than the size of the receptive field center for
a bipolar cell (Berntson and Taylor, 2000). The preparations
were adapted to a background light at the rod-saturated
level, 4.35 × 104 photons/µm2/s for a minimum of 10 min
before recording. The same average luminance was used for
subsequent sinewave stimuli. A series of sinewave stimuli
discloses the temporal features of a neuron (Figures 1A,D).
However, this stimulus requires a long recording time, which
hampers stable pharmacological experiments. Therefore, two
other equivalent light stimuli were compared: chirp and sum-of-
sines (a series of stimulus takes 90 s for individual sines, 30 s
for chirp, and 20 s for sum-of-sines). The chirp and sum-of-
sines stimuli evoked generally similar light responses compared
to the original stimulus, but the sum-of-sines better replicated
the results, especially at low frequencies (Figures 1B–D). A
representative bipolar cell sum-of-sines recording and resulting
power spectrum are shown (Figures 1E,F).

Voltage-Gated Channel Recording
Hyperpolarization-activated cyclic nucleotide-gated (HCN)
channels and low-voltage activated (LVA) Ca2+ channels were
recorded by voltage-clamp mode. HCN currents were activated
by hyperpolarization (–60 to –130 mV) for 1 s followed by
holding the potential at –70 mV (Figure 5A; Cangiano et al.,

2007; Hellmer et al., 2016). Voltage-gated Ca2+ channels were
evoked by a ramp voltage change from –90 to +44 mV at a
speed of 134 mV/s (Hu et al., 2009). HCN currents were isolated
based on our previous pharmacological experiments (Hellmer
et al., 2016). LVA currents were also isolated by including
potassium channel blockers (Cs and TEA) in the pipette solution
(Hu et al., 2009).

Morphological Identification
A fluorescent dye, sulforhodamine B (0.005%, Sigma), and
Neurobiotin (0.5%, Vector Lab, Burlingame, CA, USA)
were included in the patch-clamp pipette. Immediately after
electrophysiological recordings, sulforhodamine B images were
captured using the CCD camera. For Neurobiotin visualization,
the slice preparation was fixed with 4% paraformaldehyde
for 30 min, incubated with streptavidin-conjugated Alexa 488
(1:200, Thermo Fisher Scientific, Waltham, MA, USA) and an
anti-choline acetyltransferase (ChAT) antibody (1:200, AB144P,
Millipore, Danvers, MA, USA) overnight, and then incubated
with the secondary antibody for 2 h at room temperature. The
preparation was viewed with a confocal microscope (TCS SP8,
Leica, Germany). We determined bipolar cell types according to
previous descriptions (Ghosh et al., 2004; Ichinose et al., 2014;
Ichinose and Hellmer, 2016).

Data Analysis and Statistics
For sinusoidal responses, MatLab (MathWorks, MA, USA)
and pClamp were used to measure amplitude (in mV) by
Fast Fourier Transformation (FFT) analysis. Fundamental and
multiple harmonics amplitudes were added to achieve accurate
amplitude measurements. After FFT analysis, the frequency-
responses were fitted with curves using the equation:

Y = a ∗ e(−0.5 ∗ (x− x0)/b)2

Where a = peak amplitude, b = tuning curve width,
x0 = frequency at the peak. Hereafter, we refer to x0 as the
peak frequency or the frequency where cells responded with the
largest response amplitude. Correspondingly, the peak amplitude
indicates the amplitude response at the peak frequency. Finally,
tuning curve width indicates the range of frequencies over
which the cell responds, and is equivalent to the full width at
half-maximum (FWHM) variable reported in other literature.

For HCN recordings, the tail current amplitude was
analyzed to decrease contamination from other currents
(Horwitz et al., 2011; He et al., 2014). The values are
presented as the mean ± SEM. Voltage-gated currents and
L-EPSCs were normalized to the control level because of large
variations of individual currents between cells. A repeated-
measures ANOVA was conducted to compare the response
in control, SKF, and SCH solutions (Prism v.8, GraphPad
Software, CA, USA). The ANOVA was run with a Geisser-
Greenhouse correction to account for possible violations of
the assumption of circularity/sphericity, followed by a Tukey’s
multiple comparisons test to obtain the adjusted p-values.
A paired t-test was conducted to compare the voltage-gated
currents in control and SKF solutions. The differences were
considered significant if p < 0.05.
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FIGURE 1 | Comparison of three stimulus functions. (A) Sinusoidal light stimuli from 0.3 to 20 Hz (lower) and a representative response (light-evoked postsynaptic
potentials; L-EPSP; upper). (B) Chirp light stimuli and L-EPSP with the same frequencies from the same cell. (C) Sum of sinusoidal light stimuli of similar frequencies
and L-EPSP. (D) Comparison of L-EPSPs evoked by three functions (n = 3 ganglion layer cells). (E) A representative L-EPSP from bipolar cells (upper) evoked by a
sum of sinusoidal light stimulation (lower). (F) An fast fourier transformation (FFT) analysis of the traces (E) revealed the different frequencies of light stimuli (lower) and
the amplitude of L-EPSP for each frequency.

RESULTS

D1R Signaling Modulates Temporal
Features in a Subset of Bipolar Cells
Whole-cell recordings were conducted from bipolar cells using
retinal slices prepared in the dark under infrared illumination.
After adapting the preparations at a mesopic light level for more
than 10 min, light-evoked excitatory postsynaptic potentials
(L-EPSPs) were recorded in response to the sum-of-sines stimuli
in the presence of inhibitory receptor blockers (see ‘‘Materials
and Methods’’ section; Figure 2A). L-EPSPs for individual cells
were analyzed by FFT (Figure 1), which revealed the frequencies
of sinewave stimuli and L-EPSP amplitudes for those frequencies.
The response amplitude was plotted as a function of frequency
and fitted by an exponential equation (see ‘‘Materials and
Methods’’ section) for each cell. The frequency-response curves
from 14 bipolar cells, including representative recordings from
types 3, 4, 5, XBC, and 6, are plotted in Figure 2C (black lines).
The peak amplitude, tuning curve width, and peak frequency
were diverse among cells because multiple types of bipolar cells
exhibit distinct temporal features (Ichinose et al., 2014; Ichinose
and Hellmer, 2016).

Previously, we found that the dopamine receptor 1 (D1R) is
expressed by bipolar cells in a type-dependent manner (Farshi
et al., 2016). D1Rs are expressed by types 1, 3b, 4, 5-2, XBC, 6,

and 7 bipolar cells, whereas types 2, 3a, 5-1, and 9 did not possess
the receptor. While morphological evidence has suggested that
dopaminergic signaling plays a distinct role in visual processing
in each type of bipolar cell, physiological investigations have
not been performed. We examined the dopaminergic effect on
the temporal features in bipolar cells by the application of a
D1R agonist, SKF38393 (10 µM; Figure 2B). In some bipolar
cells, SKF shifted the peak frequency to higher frequencies
(Figures 2C,D, compare average traces shown by thick black and
red lines, 14/20 cells), suggesting that D1R signaling modulated
the temporal tuning.

We have examined the dopaminergic effect on temporal
features in both ON and OFF bipolar cells. We recorded
L-EPSPs in the control solution, applied SKF38393 (10 µM),
for 4 min, washed-out approximately for 8 min, and then
applied an antagonist, SCH23390 (10 µM; Figure 3A). In
14 ON and OFF bipolar cells, the peak frequencies shifted
toward higher frequencies by SKF (Figures 3B–D,G), and the
subsequent application of SCH moved the peak frequency back
to the control level (Figures 3B–D,H). The time course of
SKF-SCH applications and the responses from 14 bipolar cells
(Figure 3A) shows that the peak frequencies changed during
the SKF application (at 2.1 ± 0.2 min) and changed back to
the control level after the SCH application (at 15.2 ± 0.8 min),
indicating that D1R signaling modulated the temporal responses.
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FIGURE 2 | Sinusoidal L-EPSPs were changed by dopamine receptor 1 (D1R) signaling in bipolar cells. (A) A representative L-EPSP recorded from an XBC cell in
response to a sum-of-sines light stimulus (bottom). (B) L-EPSPs in the presence of 10 µM SKF38393. (C) Bipolar cell temporal responses were fit to the exponential
curves. Each curve exhibits a frequency-response relation for each bipolar cell (black) and the average population response (thick black) in the control solution.
(D) The temporal responses for each bipolar cell (red) and the average response (thick red) in the presence of 10 µM SKF38393. The peak frequency response
shifted to the right in some bipolar cells, indicating that D1R signaling increased the sensitivity to higher frequencies.

Furthermore, we observed that SCH-only application shifted
the peak frequency to lower frequencies (n = 2), or no change
(n = 2), suggesting that some ambient dopamine may already
be present in our light-adapted condition. In the other six
bipolar cells, the peak frequency responses were not shifted
by SKF (Figures 3D,E,H,I); therefore, we categorized them as
SKF-insensitive cells. The former group included type 3 (n = 4),
type 4 (N = 1), type 5 (n = 7), and type 6 (n = 2), whereas the latter
contained type 2 (n = 1), type 3 (n = 1), type 5 (n = 3), and type
6 (n = 1). Although the number of recordings from individual
types was low and no further type-specific morphological
features (such as type 3a and 3b) were determined in this
study, the observed cell types were consistent with our previous
findings of D1R-expressing and non-expressing bipolar cells
(Farshi et al., 2016).

We compared the parameters of frequency-response curves
between SKF-sensitive and insensitive bipolar cells by repeated
measures ANOVA (see ‘‘Materials and Methods’’ section). The
peak amplitude, tuning curve width, and the peak frequency of
SKF-sensitive bipolar cells were plotted (n = 14; Figures 4A–C).
The former two factors were not affected by SKF, nor SCH.
However, the peak frequency was shifted to higher frequencies
by SKF (p < 0.01) and returned to the control level after
SCH (p < 0.01; Figure 4C). For the SKF-insensitive bipolar
cells, none of these parameters were modulated by SKF, nor
by SCH (p > 0.1 for all combinations; Figures 4D–F). We
also compared the peak frequency for SKF-sensitive ON and
OFF bipolar cells separately (n = 9 for ON, n = 5 for
OFF); SKF shifted the peak frequency to a higher frequency
(p < 0.01 both for ON and OFF) and SCH decreased it
(p = 0.05 for OFF, p < 0.01 for ON). Furthermore, in control
conditions, the peak frequency of SKF-sensitive cells was higher
than for the SKF insensitive cells (p < 0.01; Figures 4C,F).
One possible explanation for this is that due to slicing, these
cells may have been damaged in some way and therefore
respond slower as a result; however, we note that the mean
peak frequency of SKF-insensitive cells (2.8± 0.3 Hz; Figure 4F,

control) are similar to those found in previous slice studies
(Burkhardt et al., 2007; Ichinose and Hellmer, 2016). These
results indicated that D1R signaling enables a subset of bipolar
cells to respond to higher frequency stimuli during light-
adapted conditions.

Voltage-Gated Channels in Bipolar Cells
Are Targets for Dopaminergic Modulation
The temporal properties of bipolar cells are shaped by multiple
factors, including ligand or voltage-gated channel diversity,
the mGluR6 complex, and amacrine cells (DeVries, 2000; Ma
et al., 2003; Müller et al., 2003; Cao et al., 2012; Baden
et al., 2013; Puthussery et al., 2013; Lindstrom et al., 2014;
Ray et al., 2014; Franke et al., 2017). Among these factors,
voltage-gated channels, such as HCN and voltage-gated Ca2+

channels, are also known-targets of dopamine (Pfeiffer-Linn
and Lasater, 1993; Surmeier et al., 1995; Fan and Yazulla,
2001; Robinson and Siegelbaum, 2003; Hayashida and Ishida,
2004). Therefore, we investigated whether D1R signaling
modulated hyperpolarization-activated cyclic nucleotide-gated
(HCN) channels and low voltage-activated (LVA) Ca2+ channels
in D1R-expressing bipolar cells.

Whole-cell recordings were conducted from bipolar cells, and
HCN currents were evoked in response to a series of step pulses
(Figure 5A; Cangiano et al., 2007; Hellmer et al., 2016). Steady-
state and tail currents were recorded. After steady recordings
were obtained, we applied SKF, followed by SCH in the bath
solution. In four bipolar cells, including type 1 (n = 1), type 3
(n = 1), and type 5 (n = 2), SKF increased the tail current, and
SCH reduced the current (Figures 5B–D, P < 0.05). In contrast,
SKF and SCH did not affect the tail current in five other bipolar
cells, including type 2 (n = 1), type 4 (n = 1), type 5 (n = 1), type 8
(n = 1), and the rod bipolar cell (n = 1). The SKF-sensitive bipolar
cell types likely correspond with the types of bipolar cells that
exhibited D1Rs (Farshi et al., 2016). These results suggest that
D1R-signaling increased the peak temporal tuning in a subset of
bipolar cells by increasing HCN currents.
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FIGURE 3 | Dopamine receptor 1 (D1R) signaling increased the peak temporal tuning in some bipolar cells. (A) The time course of SKF-SCH applications and the
normalized peak frequency change. The peak frequency is indicated 0 at the control level, and 1 when shifted to a higher frequency. The plot shows the individual
response from the 14 bipolar cells. (B–D) The frequency-response curves for a transient OFF (B), sustained OFF (C), and transient ON (D) SKF sensitive bipolar cell
in control (black), SKF (red), and SCH (blue). SKF showed an increase in the peak temporal frequency for all three of the cells. Subsequent SCH application reduced
the peak temporal frequency. (E,F) The frequency response curves for an OFF (E) and ON SKF insensitive bipolar cell in control (black), SKF (red), and SCH (blue)
conditions respectively. SKF or SCH application did not change the temporal tuning for these two cells. (G) The average frequency-response curves from 14 bipolar
cells (including ON and OFF cells) in control (black, average ± SEM), and in the presence of SKF (red). The peak frequencies are indicated by dotted lines. SKF
shifted the peak to the right, indicating that D1R signaling increased the temporal tuning for these cells towards higher frequencies. (H) The frequency-response
curves from the same set of cells in the presence of SKF (red) and subsequent SCH (blue) application. SCH shifted the curve back to the control level. (I) The
average frequency-response curves from six bipolar cells in control (black) and SKF (red) solutions. SKF did not change the curve for these bipolar cells. (J) The
curves from the same set of bipolar cells in SKF (red) and SCH (blue) solutions.

Furthermore, we examined the effect of D1R signaling on
LVA Ca2+ channels in bipolar cells. The LVA current was
evoked by a ramp voltage stimulation (Figure 6). SKF reduced
the LVA currents (Figure 6A) in a subset of bipolar cells. The
SKF-sensitive cells were type 4 (n = 1), type 5 (n = 3), and type
6 (n = 2), whereas SKF insensitive cells were type 5 (n = 1),
and rod bipolar cells (n = 3; Figures 6B,C). These types were
consistent with the previous morphological analysis (Farshi et al.,
2016). These results suggest that D1R-signaling modulates LVA
currents, which may modulate temporal tuning in a subset of
bipolar cells.

DISCUSSION

Using retinal slice preparations from the mouse, we examined
the effect of a D1R agonist and antagonist on the temporal
features of bipolar cell signaling. In a subset of ON and OFF

bipolar cells, the D1R agonist SKF38393 increased sensitivity
to higher frequency responses, which was reversed by the
application of a D1R antagonist, SCH23390. SKF38393 also
increased HCN and decreased LVA Ca2+ currents in a subset
of bipolar cells, suggesting that voltage-gated channels may be
the underlying mechanism involved in D1R activation. The
types of SKF-sensitive and SKF insensitive bipolar cells were
consistent with those we previously identified as D1R-expressing
and D1R-lacking bipolar cells. As the retina and olfactory bulb
signal processing structures are similar, we incorporated our
findings to examine similarities between retinal and olfactory
dopamine neuromodulation.

Dopamine and Signal Decorrelation in the
Olfactory System
The mouse olfactory system is capable of discerning more
than 1012 odors, resulting from over 1,000 unique odorant
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FIGURE 4 | D1R signaling modulated the peak frequency, but not for the peak amplitude and the tuning curve width. (A) The peak amplitude of the
frequency-response curves for the SKF-sensitive bipolar cells. Each dot-line represents one cell, and the average is shown in thick blue. ON and OFF cells are
color-coded in brown and black, respectively. Both SKF and SCH did not change the peak amplitude. (B) The tuning curve width of the frequency response curves
for the SKF-sensitive bipolar cells. Individual cells (brown and black) and the average (green). Neither SKF nor SCH changed the average tuning curve widths. (C)
The peak frequency of the frequency-response curves for the SKF-sensitive bipolar cells. Individual cells are shown in brown and black, and the average is shown in
magenta. SKF significantly increased the peak frequency (p < 0.01), which was reversed by SCH application (p < 0.01). (D–F) The same set of parameters for
SKF-insensitive bipolar cells. The D1R agonist and antagonist changed none of the three parameters. (C,F) The peak frequencies in control solutions for the
SKF-sensitive and -non-responsive bipolar cells are significantly different (p < 0.01, *p < 0.05).

receptors expressed by ORNs in the olfactory epithelium (Zhang
and Firestein, 2002; Bushdid et al., 2014). ORN receptors are
sensitive to odorant size, shape, charge, and odorant molecule
functional groups; therefore, a single odorant will activate a
unique combination of odorant receptors that requires decoding
by higher-order neurons (Malnic et al., 1999). Each population of
unique ORNs project to distinct glomeruli in the mouse olfactory
bulb, where nearly 1,800 glomeruli operate in parallel (Ressler
et al., 1994; Mombaerts et al., 1996).

Within a single glomerulus, odorant information output is
controlled primarily by mitral cells which balance excitation
from glutamatergic ORNs and external tufted cells (Tatti et al.,
2014) as well as inhibition from GABAergic periglomerular
cells (PGs). To decode information from multiple odorants
that may have overlapping receptor activation, glomeruli
utilize lateral inhibition through another subset of GABAergic
juxtaglomerular cells, the superficial short axon (sSA) cells. sSAs
are excited by input within a strongly activated glomerulus
and inhibit the output of other, more weakly activated
glomeruli by using a combination of dopamine and GABAergic
mechanisms (Aungst et al., 2003; Parrish-Aungst et al., 2007).

The balance of excitation and inhibition both within and
between glomeruli gates which information is sent to higher
cortical areas.

Dopamine plays a critical role in odorant discrimination by
contributing to the lateral inhibition between glomeruli. First,
dopaminergic sSAs within a single glomerulus mediate lateral
inhibition to other less-activated glomeruli in part by activating
inhibitory D2Rs on the neighboring ORN axon terminals,
reducing afferent input (Hsia et al., 1999; Ennis et al., 2001;
Vaaga et al., 2017). Dopamine also indirectly inhibits mitral
cell output by activating excitatory D1Rs in external tufted
cells; external tufted cells release glutamate onto PG neurons
which then locally inhibit mitral cell output (Liu et al., 2013,
2016a). Besides sSAs, dopaminergic subsets of PGs are thought
to contribute to local inhibition of ORN afferent inputs, but this
effect has yet to be shown directly (Maher andWestbrook, 2008).
Ultimately, olfactory dopamine modulation serves to decorrelate
odorant information by enhancing odorant dissimilarities and
allowing the animal to discriminate multiple different odors in
its environment (Wei et al., 2006; Escanilla et al., 2009; Banerjee
et al., 2015).
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FIGURE 5 | A D1R agonist and an antagonist modulated hyperpolarization-activated cyclic nucleotide-gated (HCN) currents in a bipolar cell. (A) Voltage steps
(lower panel) evoked inward currents in a type 5-2 bipolar cell. Steady-state currents (∗) and tail currents (arrow). (B) HCN currents were evoked in a type 5-2 bipolar
cell. SKF increased the HCN steady-state current, whereas SCH decreased the current. (C) The tail current was also increased by SKF38393 (red).
SCH23390 decreased the tail current (blue) in the same cell. (D) A summary graph shows that SKF increased the HCN tail current in four bipolar cells (p < 0.05), and
SCH decreased the current (p < 0.01, *p < 0.05.). (E) In five bipolar cells, SKF and SCH did not change the HCN tail current (p > 0.1).

FIGURE 6 | A D1R agonist modulated low-voltage activated (LVA) Ca2+ currents. (A) A voltage ramp evoked LVA Ca2+ currents in an XBC. SKF reduced it, an effect
that recovered after SKF was washed from the solution clause; HP = holding potential. (B) Normalized amplitudes from six bipolar cells (3 type 5, 1 type 4, and
2 type 6) in response to SKF. SKF reduced the current (p < 0.01, *p < 0.05.). (C) Normalized amplitudes from four bipolar cells (1 type 5, and 3 rod-bipolar cells).
SKF did not change the currents.

Dopamine and Retinal Visual Processing
In the retina, dopamine release is evoked by light stimulation
from tyrosine hydroxylase (TH)-positive amacrine cells

(DACs), and is thought to facilitate the transition from
dim to bright ambient light conditions, such as in
dawn to early morning (Krizaj, 2000; Witkovsky, 2004;
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Zhang et al., 2007). Therefore, dopamine is thought to
contribute to light adaptation and circadian rhythm. Dopamine
receptors are expressed throughout the retina; D1 receptors
are expressed by a broad range of retinal network neurons,
whereas D2-like receptors are present in photoreceptors
and DACs (Cohen et al., 1992; Harsanyi and Mangel, 1992;
Veruki and Wässle, 1996; Derouiche and Asan, 1999; Mora-
Ferrer et al., 1999; Stella and Thoreson, 2000; Witkovsky,
2004). Dopamine release has a broad range of effects on
retinal neurons.

Rod and cone photoreceptors have high and low light
sensitivities, respectively, covering all ranges of light conditions
from night to daylight. Rods and cones are furthermore coupled
with homologous and heterologous gap junctions (DeVries et al.,
2002; Hornstein et al., 2005). The rod-rod coupling is critical
in low light conditions to integrate small inputs from multiple
rods, thereby averaging signals across rods to improve the
signal to noise ratio (Fain, 1975; Hornstein et al., 2005; Li
et al., 2012). As light levels increase, released dopamine acts on
D4Rs in photoreceptors to decouple them, transitioning retinal
signaling from rod to cone dominance (Derouiche and Asan,
1999; Ribelayga et al., 2008; Jin et al., 2015).

Dopamine similarly reduces coupling in the retinal network.
Horizontal cell homologous coupling is reduced by dopamine
and by light in a variety of species (Dong and McReynolds,
1991; Xin and Bloomfield, 1999; Packer and Dacey, 2005),
which reduces the receptive field size of horizontal cells. The
functional significance of this well-known fact has not been
clearly understood. One plausible example is that horizontal cells
contribute to the receptive field surround of a subset of primate
ganglion cells, and dopamine modulates the surround inhibition
to those ganglion cells (Mcmahon et al., 2004; Zhang et al.,
2011) [but see mouse ganglion cells (Dedek et al., 2008)]. The
homologous coupling of AII amacrine cells is also regulated by
dopamine. AII amacrine cells are a critical component of the
rod-signaling pathway, and accordingly, dopamine works as it
does in rod photoreceptors. Individual AIIs can pass small signals
within a wide network of AIIs through gap junction coupling
in low light conditions, whereas this coupling is closed by light.
In this way, dopamine in bright ambient conditions contributes
to the dominance of cone-mediated signaling (Pourcho, 1982;
McMahon and Mattson, 1996; He et al., 2000; Zhang et al., 2011;
Hirasawa et al., 2012).

In addition to its effects on gap junctions, dopamine also
reduces the response gain across cell populations, preventing
saturation as ambient light levels increase. The gain control by
retinal dopamine is primarily mediated by modulating voltage-
gated channels, similar to its effects seen elsewhere in the
CNS (Surmeier et al., 1995; Carr et al., 2003; Rosenkranz and
Johnston, 2006). At the level of photoreceptors, dopamine works
on D4Rs to decrease the responsivity of rod photoreceptors by
suppressing an Ih current required for rod repolarization (Kawai
et al., 2011). Dopamine furthermore modulates horizontal cells
and subsets of RGCs via D1R inhibition of voltage-gated
Ca2+ or Na+ currents to decrease visual signaling (Jensen
and Daw, 1986; Vaquero et al., 2001; Hayashida and Ishida,
2004; Hayashida et al., 2009; Blasic et al., 2012; Ogata et al.,

2012; Liu et al., 2016b). Lastly, previous studies have shown
that light-adaptation or activation of D1Rs in bipolar cells
leads to increased GABAergic feedback from horizontal cells,
increasing the strength of surround inhibition (Cook and
McReynolds, 1998; Chaffiol et al., 2017). Taken together,
dopamine mediates light adaptation in retinal cell populations
through gap junction regulation and by controlling neuronal
response gain control.

Finally, dopaminergic amacrine cells exhibit a specific
connection to the intrinsically photosensitive retinal ganglion
cells (ipRGCs) that are key neurons for the circadian rhythm via
their entrainment of the suprachiasmatic nucleus (Berson et al.,
2002; Qiu et al., 2005). Dopaminergic cells receive excitatory
retrograde visual signaling from M1 ipRGCs (Zhang et al.,
2012; Prigge et al., 2016). In turn, released dopamine regulates
melanopsin mRNA expression in ipRGCs and reduces their light
responses (Sakamoto et al., 2005; Van Hook et al., 2012). In this
way, dopamine also appears to modulate the maintenance of
circadian rhythms.

A Novel Role for Dopamine in Retinal
Signal Processing: Visual Signal
Decorrelation
As we described, the olfactory bulb and retina exhibit various
similarities. Both systems utilize comparable neural networks
to process incoming receptor signals before projecting to the
cortices. Moreover, both systems contain neuromodulators that
tune signal processing. One such modulator is dopamine,
which coordinates D1R and D2R signaling among neurons
residing in each system. However, several dissimilarities are also
present. In the olfactory bulb, dopamine plays a role in odor
signal decorrelation. In the retina, dopamine plays a role in
light adaptation and circadian rhythm; however, visual signal
decorrelation has not previously been attributed to dopamine
modulation. Our findings in the present study demonstrate
a novel role for dopamine in the retina, increasing the peak
temporal tuning of some bipolar cell types, and regulating
temporal overlap between bipolar cell types.

In the retina, different features of images such as color,
motion, and shape are encoded through distinct neural pathways,
which are sent out to the brain in parallel (Enroth-Cugell and
Robson, 1966; Boycott andWässle, 1974; Livingstone and Hubel,
1987, 1988; Awatramani and Slaughter, 2000; Wässle, 2004).
Parallel processing starts as early as the second-order neurons
in the retina, bipolar cells, which extract distinct features of
image signaling from photoreceptors and encode them across
approximately 15 types of bipolar cells (Wu et al., 2000; Ghosh
et al., 2004; Wässle et al., 2009; Helmstaedter et al., 2013;
Shekhar et al., 2016). Distinct functions for each type have
been gradually understood (Euler et al., 2014). Type 1 through
4 bipolar cells are classified as OFF bipolar cells, encoding light
offset, while types 5–9 and rod bipolar cells (ON-bipolar cells)
encode the onset of light. Rod and cone signaling is also encoded
through distinct types of bipolar cells. Additionally, chromatic
information is also uniquely separated, where bipolar cells types
1 and 9 carry mid- and short-wavelength light information,
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respectively (Breuninger et al., 2011). Furthermore, each bipolar
cell type exhibits distinct temporal tuning. Types 2, 3, 5, 7 bipolar
cells encode fast-changing light stimuli (e.g., object motion,
object edge detection), while the others likely encode more
stationary features of light (e.g., color, shape; Ichinose et al., 2014;
Ichinose and Hellmer, 2016). Previously, we found that D1Rs are
expressed by bipolar cells in a type-dependent manner (Farshi
et al., 2016). If dopamine modulates visual signal processing only
in a subset of bipolar cells, this will demonstrate temporal signal
decorrelation, a new role of dopamine in the retina.

We found that a D1R agonist, SKF38393, shifted peak
frequency responses towards higher frequencies in a subset
of bipolar cells (Figures 3, 4). In ON-bipolar cells, D1Rs are
expressed by type 5-2, XBC, 6, and 7 bipolar cells (Farshi et al.,
2016), which exhibit mid to high-frequency tuning (Ichinose
et al., 2014). We found that SKF increased the peak frequency
responses in type 5, 6, and XBC that were consistent with
the D1R-expressing bipolar cell types. There are no known
markers for subsets of type 5 bipolar cells, and thus, we were
not able to confirm that type 5 cells we recorded were D1R-
expressing types. However, we found that the frequency tuning
of SKF-sensitive cells was higher than that of the SKF insensitive
cells (Figure 4). Taken together, our data suggest that dopamine
enables high-temporal tuning ON-bipolar cells to respond to
higher frequencies through D1Rs.

For a subset of OFF bipolar cells, dopamine also shifted the
peak frequency response to higher frequencies (Figures 3, 4). In
the present study, we had only a limited number of OFF cells for
each type and could not correlate morphological types and SKF
sensitivity. However, only a subset of OFF bipolar cells was SKF-
sensitive, suggesting type-specific dopaminergic modulation. We
previously showed that D1Rs are expressed by type 1, 3b, and
4 OFF bipolar cells which are low-frequency tuning cells (Farshi
et al., 2016; Ichinose and Hellmer, 2016). Therefore, this suggests
that dopamine may boost the temporal response of previously
low-frequency tuning bipolar cells towards higher frequencies,
such that all OFF bipolar cells would become sensitive to higher
frequencies in contrast to the ON pathway bipolar cell types.

To explore the underlying mechanisms, we examined the
dopaminergic effect on voltage-gated Ca2+ currents and HCN
currents. HCN currents were increased by SKF in a subset of
bipolar cells (Figure 5). HCN currents are critical for rhythmic
activities in the heart pacemaker cells and neurons in the
central nervous system (Baker et al., 1997; Day et al., 2005;
Knop et al., 2008). In contrast, in the retina HCN channels
have been associated with transient signaling as well as higher-
frequency tuning (Cangiano et al., 2007; Della Santina et al.,
2012; Puthussery et al., 2013; Bemme et al., 2017). These results
suggest that HCN currents shape the high-frequency responses.
Voltage-gated Ca2+ currents were examined because it may
increase the membrane excitability. Contrary to our expectation,
LVA currents were reduced by SKF in a subset of bipolar cells
(Figure 6). LVA Ca2+ currents support the burst spiking activity
in neurons (Fan et al., 2000; Pellegrini et al., 2016); however, its
effect on graded synaptic responses has not been understood.
Future investigation will need to elucidate the mechanism of
temporal response modulation in bipolar cells by dopamine.

Alternatively, the observed effects of SKF could come from
other D1R containing neurons. While we could not directly rule
out possible contributions from D1Rs in other neurons such as
AII amacrine or horizontal cells, we minimized this possibility
through our experimental conditions. For example, we adapted
the preparations with a rod-saturating light background before
recordings; therefore, D1R-mediated AII amacrine or horizontal
cell uncoupling and amplitude reductions likely were already
present before recording. Moreover, the 100 µm diameter
spot size of the stimulus would likely be small enough to
mitigate horizontal cell feedback that was not already blocked by
bicuculline. Interestingly, AII-AII gap junction coupling within
the AII network can act as a low-pass filter (Veruki and Hartveit,
2002; Veruki et al., 2008) in a similar frequency range to signals
observed in this study. However, it has been shown that primarily
sustained currents pass between cone bipolar cells through the
AII network (Kuo et al., 2016), which would be unlikely to
affect the change in high-frequency tuning that we observed.
Furthermore, it does not explain why a subset of ON bipolar cells
was SKF-insensitive. Therefore, we concluded that our results of
dopaminergic temporal response modulation were attributable
to direct bipolar cell activation.

Inspired by a comparison between the olfactory bulb and
the retina, we found that a general function of dopamine is
to mediate signal decorrelation in both systems, despite using
unique mechanisms in each. Ultimately, this study adds to a
growing body of evidence that the intrinsic signaling properties
regulating bipolar cell output are subject to extrinsic tuning both
via inhibition as well as neuromodulation (Ayoub andMatthews,
1992; Tooker et al., 2013; Franke et al., 2017; Hall et al., 2019) to
shape parallel signal processing in the retina.
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