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Most cell functions are carried out by interacting factors, thus underlying the functional
importance of genetic interactions between genes, termed epistasis. Epistasis could
be under strong selective pressures especially in conditions where the mutation rate of
one of the interacting partners notably differs from the other. Accordingly, the order of
magnitude higher mitochondrial DNA (mtDNA) mutation rate as compared to the nuclear
DNA (nDNA) of all tested animals, should influence systems involving mitochondrial-nuclear
(mito-nuclear) interactions. Such is the case of the energy producing oxidative phospho-
rylation (OXPHOS) and mitochondrial translational machineries which are comprised of
factors encoded by both the mtDNA and the nDNA. Additionally, the mitochondrial RNA
transcription and mtDNA replication systems are operated by nDNA-encoded proteins that
bind mtDNA regulatory elements. As these systems are central to cell life there is strong
selection toward mito-nuclear co-evolution to maintain their function. However, it is unclear
whether (A) mito-nuclear co-evolution befalls only to retain mitochondrial functions during
evolution or, also, (B) serves as an adaptive tool to adjust for the evolving energetic demands
as species’ complexity increases. As the first step to answer these questions we discuss
evidence of both negative and adaptive (positive) selection acting on the mtDNA and nDNA-
encoded genes and the effect of both types of selection on mito-nuclear interacting factors.
Emphasis is given to the crucial role of recurrent ancient (nodal) mutations in such selective
events.We apply this point-of-view to the three available types of mito-nuclear co-evolution:
protein–protein (within the OXPHOS system), protein-RNA (mainly within the mitochondrial
ribosome), and protein-DNA (at the mitochondrial replication and transcription machineries).
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INTRODUCTION
Disease-causing mutations are, in general, negatively selected. As
a result such mutations reoccur on different genetic backgrounds,
as they cannot become prevalent, unless they cause recessive dis-
orders and could survive in a heterozygous state. Hence, dominant
disorders, which lead to phenotypes in a heterozygous state, will be
subjected to stronger negative selection. Accordingly, evolutionary
survival of a dominant deleterious mutation in two related lin-
eages depends on the penetrance and severity of the phenotype.
That is, unless the functionality of such mutations is compensated
either by additional genetic changes within the same gene or by
genetically interacting (epistatic) factors (Azevedo et al., 2006).

Since their first discovery, disease-causing mutations in the
maternally inherited mitochondrial genome (mtDNA) indeed
cause severe phenotypes, but their phenotypic penetrance is
notably partial (Holt et al., 1988; Wallace et al., 1988a,b), suggest-
ing the involvement of epistatic modifiers. Because of uni-parental
inheritance, mtDNA mutations cannot be transmitted at a het-
erozygous state, and most have to re-occur in order to be identified
in unrelated families. However, during the past decade, several
human disease-causing mutations both in the mtDNA and in
the nuclear genome (nDNA) were identified as common poly-
morphisms, which define phylogenetic nodes, in other species
(Kern and Kondrashov, 2004; de Magalhaes, 2005; Azevedo et al.,

2006, 2009). It has been suggested that this phenomenon could be
explained by the pre-occurrence of compensatory mutations either
within the same gene or in epistatically interacting genes. Candi-
dates for such compensations have been identified in the species
harboring human disease-causing mutations as polymorphisms
(Azevedo et al., 2009). If this is the case, then one could envi-
sion that a similar mechanism could be applied to the survival of
common polymorphisms in humans having functional properties
comparable to disease-causing mutations. Indeed, we identified
such mutations in the human mtDNA (Levin et al., 2013). In order
to consider the mechanisms that enabled their long-time survival,
one should be better acquainted with the mitochondrial genetic
system.

MITOCHONDRIAL GENETICS – OVERVIEW
The mitochondrion is the major source of cellular energy (Wallace,
2007). The vast majority of eukaryotic cells cannot survive without
the mitochondria and the mitochondrion cannot survive indepen-
dently of its host cell. The mitochondrion is the only organelle in
animal cells with its own genome and is believed to have originated
from alpha-proteobacteria (Lane and Martin, 2010; Gray, 2012).
However, mtDNA of higher eukaryotes harbors only a subset of
the genes essential for mitochondrial activity. Hence, vertebrate
mtDNA harbors just 37 genes (see below), while the remaining
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genes (N = ∼1500) required for mitochondrial function (such
as apoptosis, nucleotide biosynthesis, fatty acids metabolism, the
metabolism of iron etc.) are encoded by the nDNA (Calvo and
Mootha, 2010). These nDNA genes are translated in the cyto-
plasm and, in turn, imported into the mitochondrion via import
machineries.

What is the origin of these mitochondrial nDNA-encoded
genes? It is possible that during the course of evolution many previ-
ously existing nDNA genes acquired their mitochondrial functions
subsequent to the incorporation of the mitochondrion. A non-
opposing alternative is that genes with mitochondrial functions
were once encoded by the bacterial ancestor, and were gradually
relocated to the host nucleus during the course of time. Approx-
imately 2 billion years have passed since the occurrence of the
symbiotic event that gave rise to all Eukaryotes (Gray, 2012)
lending plenty of time for both processes to have occurred in
parallel.

MITOCHONDRIAL GENETICS AND GENOMICS
Although most of the functions required for the various activ-
ities of the mitochondria are encoded solely by nDNA genes,
two mitochondrial machineries are comprised of both mtDNA
and nDNA-encoded genes: the oxidative phosphorylation ATP
production system (OXPHOS) and the mitochondrial-specific
protein translational machinery (Figure 1). The small, circular
mtDNA encodes for 37 genes in vertebrates: (A) 13 genes cod-
ing for polypeptide members of four out of the five multi-subunit
OXPHOS protein complexes. These include seven protein subunits
(ND1-6, ND4L) of NADH ubiquinone oxidoreductase (OXPHOS
complex I), one subunit (CytB) of cytochrome bc1 (OXPHOS
complex III), three subunits (COI-III) of cytochrome c oxidase

FIGURE 1 | Human mitochondrial systems require cooperation of

nDNA and mtDNA-encoded factors – an illustration of a single

mitochondrion. Shown are the five OXPHOS complexes, the
mitochondrial ribosome and the mtDNA with its adjacent proteins and RNA
products, representing the replication and transcription systems. Blue
objects – nDNA-encoded proteins that are imported into the mitochondria.
Yellow objects – mtDNA-encoded elements including the mtDNA itself,
mitochondrial RNAs and the mtDNA-encoded OXPHOS complexes’
subunits. I–V: OXPHOS protein complexes. The physical location of the
mtDNA and ‘cloud’ of synthesized mRNA is based on our interpretation of
recent high resolution microscopy investigation of the mitochondrial
nucleoid, i.e., the mtDNA-protein structure that encompasses the
replication and transcription machineries (Brown et al., 2011).

(OXPHOS complex IV) and two subunits (ATP6,8) of F1-F0 ATP
synthase (OXPHOS complex V); (B) Two rRNA genes (12SrRNA
and 16SrRNA), which are constituents of the mitochondrial ribo-
some; and (C) 22 tRNA genes. These 37 factors encompass nearly
∼93% of the vertebrates’ mtDNA, although species may vary in
gene order (Wallace, 2007). The rest of the mtDNA (∼7%) com-
prises non-coding sequences which harbor regulatory elements.
The D-Loop (∼1000 bp in length), which is the larger non-coding
region, includes the heavy and light mtDNA strands promoters
(HSP and LSP, respectively) as well as the origin of replication
for the heavy strand (Ori-H). Another shorter non-coding region
encompasses the light strand origin of replication (Ori-L), which
is located ∼5000 base pairs apart from the D-loop. Although
the HSP and LSP are separated in most vertebrates, the mtD-
NAs of most birds and the African clawed frog (Xenopus laevis)
have a bidirectional promoter that controls the transcription of
both mtDNA strands. Such organization raises the likelihood that
mutations in such sequences may affect transcription of both
strands (Bogenhagen and Romanelli, 1988; L’Abbe et al., 1991;
Randi and Lucchini, 1998).

The bi-genomic mito-nuclear genetic system presents four
challenges: (A) whereas mtDNA-encoded proteins are already
within the mitochondria, nDNA-encoded factors should be
actively imported from the cytoplasm; (B) each cell harbors multi-
ple mitochondria (∼1000 per human somatic cell), each requiring
precise molecular numbers of nDNA-encoded factors; (C) each
mitochondria harbors between 2 and 10 mtDNA molecules, which
may differ in sequence thus creating a mixed population of
mtDNAs per cell, tissues and organism, termed heteroplasmy
(Larsson, 2010). In many cases heteroplasmic mutations have
functional potential (Rebolledo-Jaramillo et al., 2014; Ye et al.,
2014), which may in turn affect mito-nuclear interactions (see
further discussion below). Finally, (D) in animals, the mtDNA
evolves an order of magnitude faster than the nDNA (Brown
et al., 1979; Castellana et al., 2011; Bar-Yaacov et al., 2012b). In
this essay we will focus mostly on the fourth challenge, which
mainly affects direct and epistatic interactions between mtDNA
and nDNA-encoded factors. The solution to this challenge is
facilitated by natural selection in a process termed co-evolution:
functional mutations in the mtDNA could be compensated by
additional functional changes, as has been claimed in the case
of disease-causing mutations, either within the mtDNA or by
co-evolution between genes encoded by the mtDNA and the
nDNA. Since selection acts on phenotypes, the need for func-
tional compensation is relevant only to mutations with phenotypic
impact.

mtDNA COMMON VARIANTS HAVE FUNCTIONAL IMPLICATIONS
The mtDNA was traditionally used by population geneticists as
a neutral marker to track ancient population migration and to
study the evolution of species. However, several lines of evidence
show that mtDNA mutations have functional consequences. One
of the first pieces of evidence came from a mutational screen for
cell survival in the presence of chloramphenicol, an antibiotics
agent that directly affects the mitochondrial protein translation
machinery (Giles et al., 1980). This study, performed in cyto-
plasmic hybrids (cybrids) in mouse and human cells, revealed
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mutations in the mtDNA-encoded 16S ribosomal RNA that con-
ferred resistance to chloramphenicol (Blanc et al., 1981). During
the late 80s, the first disease-causing mutations were identi-
fied in the human mtDNA (Holt et al., 1988; Wallace et al.,
1988a,b), which led to the subsequent discovery of many more
mtDNA disease-causing mutations, thus fortifying the functional
importance of mtDNA sequences. However, most disease-causing
mutations cause devastating phenotypes, and hence are negatively
selected and re-occur multiple times in unrelated families (Russell
and Turnbull, 2014). Unlike disease-causing mutations, common
genetic variants, of which most define nodes in the mtDNA phy-
logenetic tree, have survived selective pressures during the course
of evolution, thus enabling their prevalence in the population.
Although many such ancient (nodal) mtDNA genetic variants are
neutral, some of them carry functional properties (Levin et al.,
2013).

Many pieces of evidence support the functional implications
of mtDNA common variants (Mishmar and Zhidkov, 2010).
mtDNA common variants altered the penetrance of disease-
causing mutations, such as that of Leber’s hereditary optic
neuropathy (LHON; Brown et al., 2002; Howell et al., 2003; Hud-
son et al., 2007; Zhang et al., 2010). Association was discovered
between mtDNA common variants and altered susceptibility to
various types of complex diseases in humans such as type 2
diabetes (Mohlke et al., 2005; Fuku et al., 2007; Cormio et al.,
2009; Feder et al., 2009), several heart diseases (Castro et al.,
2006; Nishigaki et al., 2007; Kofler et al., 2009; Palacin et al.,
2011; Strauss et al., 2013), a variety of neurological pheno-
types (Chinnery et al., 2000; Carrieri et al., 2001; Pyle et al.,
2005; Amar et al., 2007; Jones et al., 2007), age related mac-
ular degeneration (Heher and Johns, 1993; Jones et al., 2007;
Canter et al., 2008; SanGiovanni et al., 2009; Udar et al., 2009;
Mueller et al., 2012b; Kenney et al., 2013; Tilleul et al., 2013), but
also of phenotypes such as longevity (Rose et al., 2001; Dato
et al., 2004; Shlush et al., 2008; Cai et al., 2009; Dominguez-
Garrido et al., 2009; Takasaki, 2009; Courtenay et al., 2012), and
sperm motility (Ruiz-Pesini et al., 2000; Montiel-Sosa et al., 2006).
Mammalian cell lines in which the mtDNA was depleted (Rho0
cells) and repopulated with different mitochondria carrying a
diverged mtDNA genetic background showed differences in pro-
duction of reactive oxygen species (Moreno-Loshuertos et al.,
2006; Mueller et al., 2012a; Tiao et al., 2013), calcium uptake
(Kazuno et al., 2006), OXPHOS function (Ji et al., 2012), and
mtDNA copy number (Suissa et al., 2009). Hence, certain ancient
common mtDNA variants have functional implications. Only
in some cases it has been shown that functional mtDNA vari-
ants conferred adaptive advantage, as suggested in the case of
human adaptation to different climates worldwide or high alti-
tude in Tibetians ( Mishmar et al., 2003; Ruiz-Pesini et al., 2004;
Ji et al., 2012). One could argue that in different from disease-
causing mutations, functional common variants could either
be mildly deleterious or confer adaptive properties, or other-
wise they would have been removed due to negative selection
(Figure 2). However alternatively, functional common mtDNA
genetic variants could have survived a long evolutionary time
because of functional compensation, or in its more common
term – co-evolution.

FIGURE 2 | A schematic phylogenetic tree illustrating tip, nodal, and

recurrent nodal variants. Tip variants, black filled circle; Nodal variant,
black empty circle; RNM, red circle.

MITOCHONDRIAL AND nDNA-ENCODED FACTORS CO-EVOLVE AS A
RESPONSE TO MUTATION RATE DIFFERENCES
The mutation rate difference between the mtDNA and nDNA
could clearly lead to the occurrence of functional mtDNA
mutations that interfere with mitochondrial activities relying
on mito-nuclear epistasis and physical interactions (Gershoni
et al., 2014). Such interactions include: (A) protein–protein
interactions within OXPHOS protein complexes I, III-V (but
not within OXPHOS complex II – succinate dehydrogenase –
which comprises only nDNA-encoded proteins); (B) interac-
tions between nDNA-encoded proteins and mtDNA-encoded
RNA genes, i.e., rRNA and nDNA-encoded proteins within the
mitochondrial ribosome and tRNAs with nDNA-encoded tRNA
synthases; (C) interactions between nDNA-encoded proteins with
mtDNA encoded mRNAs as part of post-transcriptional regula-
tory processes (Wolf and Mootha, 2014); and (D) interactions
between nDNA-encoded transcription and replication factors
(proteins and non-coding RNAs) with their mtDNA binding sites
(Blumberg et al., 2014).

During the past decade it has been shown that natural selection
has affected the mito-nuclear rate differences by tight co-evolution
between interacting proteins encoded by the two genomes in
the OXPHOS system (Yadava et al., 2002; Grossman et al., 2004;
Rand et al., 2004; Schmidt et al., 2005; Meiklejohn et al., 2007;
Rand, 2008). High-resolution 3D structures of OXPHOS com-
plex IV have enabled investigation of co-evolution between nDNA
and mtDNA-encoded subunits (Schmidt et al., 2001). Correlated
mutations among mtDNA- and nDNA-encoded factors allowed us
to predict and experimentally verify interactions between subunits
of human OXPHOS complex I (Mishmar et al., 2006; Gershoni
et al., 2010, 2014).
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MITO-NUCLEAR CO-EVOLUTION IN THE MITOCHONDRIAL PROTEIN
TRANSLATION SYSTEM
The OXPHOS and the mitochondrial translation machineries
are the only two mitochondrial machineries consisting of genes
encoded both by the mtDNA and the nDNA. Similar to the
OXPHOS system (which is discussed above), mtDNA-encoded
rRNAs and their interacting nDNA-encoded ribosomal proteins
(Smits et al., 2007; Desmond et al., 2011) have likely co-evolved
to maintain structure and function of the ribosome (Barreto and
Burton, 2013). Additionally, it has been reported that the RNA
component of the mitochondrial ribosome is reduced in size com-
pared to its bacterial homolog, with a compensatory increase in
protein content to maintain the 3D structure (Mears et al., 2006;
Brown et al., 2014; Greber et al., 2014a,b), further supporting
mito-nuclear co-evolution. Co-evolution between the mtDNA-
encoded rRNAs and their interacting proteins has yet to be studied,
though accelerated mutation rate has been observed for the
nDNA-encoded mitochondrial ribosomal proteins as compared
to cytosolic ribosomal proteins (Barreto and Burton, 2013).

Investigating patterns of co-evolution among interacting fac-
tors within the mitochondrial ribosome requires high resolution
structural information. Only recently, the structure of the mam-
malian mitochondrial large ribosomal subunit was resolved in a
relatively high 3.4A resolution (Brown et al., 2014; Greber et al.,
2014a,b; Kaushal et al., 2014). Such resolution enables decipher-
ing the physical interaction between nDNA-encoded proteins and
the mtDNA-encoded 16S rRNA; nevertheless, the interactions
between proteins and the 12S rRNA within the small ribosomal
subunit are yet to be defined. Since the closest structural rela-
tive of the mitochondrial ribosome is the bacterial one, and since
the ribosomal tRNA entry point is highly conserved from bac-
teria to human (Ben-Shem et al., 2011), patterns of co-evolution
within the bacterial ribosome may shed light on forms of evo-
lutionary dynamics and interactions within the mitochondrial
ribosome. Indeed, correlated changes have been observed between
the 23S rRNA (the ortholog of mtDNA-encoded 16S rRNA) and
a directly interacting protein – alpha helix 3 of ribosomal pro-
tein L11 in bacteria (Guha Thakurta and Draper, 1999). Such
results emphasize the importance of understanding patterns of
co-evolution within the mitochondrial ribosome as a proxy for
physical interactions.

Another aspect of mito-nuclear RNA-protein co-evolution is
reflected in the need for compatibility between the mtDNA-
encoded tRNA Tyr and the nDNA-encoded tRNA Tyr-synthase
to maintain normal development and mitochondrial function
among Drosophila taxa (Hoekstra et al., 2013; Meiklejohn et al.,
2013). The recent identification of mitochondrial mRNA-binding
by proteins and miRNAs (Mercer et al., 2011; Liu et al., 2013;
Wolf and Mootha, 2014; Zhang et al., 2014) may assist in isolating
such binding factors and investigating their co-evolution with the
bound mtDNA-encoded mRNAs. Such approaches may, in turn,
assist in the identification of proteins involved in modes of mtDNA
transcript modification, such as the recently discovered human
mitochondrial RNA editing (Bar-Yaacov et al., 2013). In summary,
mito-nuclear RNA-protein co-evolution is not restricted to the
mitochondrial ribosome and could shed light on novel regulatory
aspects of the organelle.

MITOCHONDRIAL-NUCLEAR CO-EVOLUTION AND REGULATION
The genome of the mitochondrial ancestor is believed to have
encompassed ALL the genes and information required for its
actions. Similar to its free living relatives, contemporary mtDNA
genes are jointly transcribed in a polycistrone, thus keeping their
ancient prokaryotic mode of regulation. Accordingly, it is likely
that genes within the genome of the mitochondrial free living bac-
terial ancestor were co-regulated as a polycistrone. However, the
genes currently encoding mitochondrial activities, including the
subunits of the OXPHOS protein complexes and the mitochon-
drial ribosome, are dispersed throughout the human genome and
are mapped to different chromosomes apart from the mtDNA;
hence, the problem of their co-regulation is a major issue as these
factors have to collaborate within multi-subunit protein com-
plexes in many different tissues. Indeed, co-expression has been
identified among genes that encode protein subunits that par-
ticipate in the same OXPHOS complexes (Duborjal et al., 2002;
van Waveren and Moraes, 2008; Garbian et al., 2010). Accord-
ingly, the expression pattern (mRNA) of genes belonging to the
OXPHOS pathway was jointly altered in type 2 diabetes patients
(Antonetti et al., 1995; Mootha et al., 2003). Micro-RNA based
co-regulation of genes encoding protein subunits of the mito-
chondrial ribosome has been suggested (Ponsuksili et al., 2013).
Furthermore, changes in the expression pattern of nDNA-encoded
proteins have been described in cells grown from patients with
mtDNA-encoded tRNA disease-causing mutations, suggesting sig-
nals delivered from the mitochondria to the nucleus (retrograde
signaling) and coordinated regulation (Rabilloud et al., 2002; Chae
et al., 2013; Picard et al., 2014). These pieces of evidence point
to the possible existence of a mechanism (or mechanisms) that
direct the co-regulation of mtDNA and nDNA-encoded factors
of the OXPHOS, and possibly the mitochondrial translation,
systems.

If such mechanism indeed exists, there should be factors that
are involved in the joint regulation of mtDNA and nDNA genes.
Indeed, some transcription factors (TFs), including NRF1, NRF2,
PGC1a and YY1, have been identified as candidate regulators
of proteins related to the OXPHOS system (van Waveren and
Moraes, 2008; Leigh-Brown et al., 2010). NRF1 and NRF2 also
modulate the transcription of mtDNA transcription regulators
such as mitochondrial transcription factor A (TFAM; Scarpulla,
2008). Interestingly, two known regulators of mtDNA transcrip-
tion, i.e., TFAM (Pastukh et al., 2007), and the mtDNA RNA
Polymerase (POLRMT; Kravchenko et al., 2005), were localized
and involved in transcription both in the mitochondria and in the
nucleus, although nuclear functions of POLRMT have recently
been questioned (Kuhl et al., 2014). Furthermore, tissue-specific
methylation alterations of CpG dinucleotide have been observed
in promoters of nDNA-encoded genes with mitochondrial func-
tion, implying tissue specificity in mitochondrial transcriptional
regulation (Takasugi et al., 2010). Consistent with this finding, we
have shown mitochondrial localization and direct human mtDNA
binding of c-Jun and Jun-D in a cell-type specific manner (Blum-
berg et al., 2014). Similar to c-Jun and Jun-D, other TFs such as the
thyroid hormone receptor, MEF2D and the glucocorticoid recep-
tor, which are known regulators of the transcription of nDNA
genes, are also imported into the mitochondria, where they bind
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the mtDNA and regulate its transcription ( Enriquez et al., 1999;
Leigh-Brown et al., 2010; Psarra and Sekeris, 2011; She et al., 2011;
Szczepanek et al., 2012; Blumberg et al., 2014). Finally, comparable
to the components of mitochondrial transcription, some mtDNA
replication components, such as hDNA2, APE1, Pif1, and DNA
ligase III perform their activities both in the nucleus and in the
mitochondria (Lakshmipathy and Campbell, 1999; Chattopad-
hyay et al., 2006; Futami et al., 2007; Duxin et al., 2009). Taken
together, these discoveries indicate that nDNA and mtDNA tran-
scription and replication could be co-regulated by a set of shared
factors (Bar-Yaacov et al., 2012b).

The above findings imply co-evolution between factors that
directly regulate mtDNA transcription and/or replication along
with their mtDNA binding sites. This suggestion gained support
by the finding that human POLRMT cannot bind and initiate
transcription at the mouse light strand mtDNA promoter and
vice versa (Gaspari et al., 2004). Additionally, human mtDNA
genetic variants altered in vitro transcription and affected the bind-
ing capacity of TFAM (Suissa et al., 2009). Certain polymorphic
variants in TFAM alter the susceptibility to develop Parkinson’s
disease in Polish patients, in close correlation to the mtDNA
genetic background haplogroup HV, suggesting that interfering
with mito-nuclear interaction at the transcription level is involved
in the etiology of the disease (Gaweda-Walerych et al., 2010). How-
ever, no such association was identified in the Spanish population
(Alvarez et al., 2008), thus implying that other TFAM modulating
factors are involved. Thorough investigation of the co-evolution
between nDNA-encoded TFs and their mtDNA binding sites both
within and between species should be performed in the near
future. Such a study will be of special interest in light of the identi-
fied effect of male-specific mtDNA mutations in Drosophila on the
expression of nDNA-encoded genes of the male reproductive sys-
tem (Innocenti et al., 2011). As selective constraints are different
in non-coding versus gene-coding sequences one should take into
account the rapid change rate of non-coding regulatory elements
within the mtDNA (Montooth et al., 2009). With this in mind,
it is also plausible that there are regulatory elements that reside
within the mtDNA-coding sequences, as was recently shown in
the nDNA (Birnbaum et al., 2012). This suggests dual roles for
such putative sites – they may code for genes but also promote
binding of regulatory factors (Stergachis et al., 2013). Consistent
with this suggestion we found that ChIP-seq binding sites of c-Jun,
Jun-D and CEBPb in human mtDNA occur within protein coding
genes and are negatively selected (Blumberg et al., 2014). A thor-
ough screen for such mtDNA sites could pave the way toward new
models of mito-nuclear co-evolution that take into account more
than one type of selective constraints.

THE INTRA-CELLULAR POPULATION GENETICS OF THE mtDNA AND ITS
IMPLICATIONS ON MITOCHONDRIAL-NUCLEAR CO-EVOLUTION
Unlike the nDNA, the mtDNA resides in multiple cellular copies
that may differ in sequence, thus creating an intra-cellular
mixed population of heteroplasmic mtDNA molecules. This
phenomenon adds another aspect to mito-nuclear interactions:
intracellular diversity within a single cell and individual. Het-
eroplasmic mutations could have pre-existed at the mtDNA
population within the ovum, but may also accumulate during

the lifetime of the individual ( Goto et al., 2011; Avital et al., 2012).
Notably, both inherited and accumulated heteroplasmy may vary
in levels among cell-types due to unequal mitochondrial sort-
ing after cell division. Additionally, levels of mtDNA inherited
heteroplasmy could be modified due to mitochondrial bottleneck
occurring at the pre-migratory germ cells during the development
of the female embryo (Cree et al., 2008; Wai et al., 2008). Such
bottleneck in combination with the varying energy demand of the
different tissues might also play a role in explaining the variable
penetrance of mtDNA mutations (Wolff et al., 2014): Deleterious
mtDNA mutations and deletions will lead to a disease phenotype
only when crossing a threshold of 80% (point mutations) or 60%
(deletions) of the mtDNA population within tissues (Zeviani and
Di Donato, 2004; Schapira, 2012). However, heteroplasmy patterns
in identical (MZ) twins revealed that even low-prevalence hetero-
plasmic mutations are under strong negative selective constraints
(Avital et al., 2012). Additionally, mtDNA disease-causing muta-
tions were found in many normal individuals, though at very low
levels of heteroplasmy (Rebolledo-Jaramillo et al., 2014; Ye et al.,
2014). This suggests that heteroplasmic mutations at low levels of
prevalence could have functional implications, thus implying for
the active removal of dysfunctional mitochondria at the subcel-
lular level by selective mechanisms such as mitophagy (Twig and
Shirihai, 2011).

It is plausible that deleterious mutations, which are present
at a heteroplasmic state, likely affect mito-nuclear interactions
thus partially explaining the molecular basis underlying their phe-
notypic impact (Carelli et al., 2003). This is supported by the
finding that mtDNA pathological mutations have partial pene-
trance which is modulated by nDNA modifiers (Carelli et al., 2003;
Hudson et al., 2005; Shankar et al., 2008; Luo et al., 2013). Addi-
tionally, while artificially creating heteroplasmic cells with mixed
mtDNA haplotypes, a skew toward over-representation of the
mtDNA molecules from the same strain of the nDNA has been
observed (Lee et al., 2008). These pieces of evidence suggest that
mito-nuclear co-evolution is under strong selective constraints
aimed to protect mito-nuclear interactions from mutations not
only in the population, but also at the subcellular level.

DISRUPTING MITO-NUCLEAR INTERACTIONS DRIVE EVOLUTION
FORWARD
Interrupting with mito-nuclear co-evolution cause mitochon-
drial dysfunction, but not necessarily lead to disease phenotypes.
Human cells in which the mitochondria were replaced either by
chimpanzee or gorilla mitochondria (xenomitochondrial cybrid
cells; Barrientos et al., 1998) exhibited a 40% reduction in the
activity of OXPHOS complex I. Similar reduction in complex I
activity was described in human children with inherited muta-
tions in complex I subunits, which led to generalized hypotonia,
developmental arrest and death before their second year of life
(Rubio-Gozalbo et al., 2000). Hence, functional mito-nuclear
incompatibilities of humans and our closest phylogenetic rela-
tives affect mitochondrial function to a degree similar to known
mitochondrial diseases. Likewise, reduced activity of OXPHOS
complexes I and IV have been found in interspecific rodent cybrid
cells (Dey et al., 2000; McKenzie and Trounce, 2000; Yamaoka et al.,
2000). Moreover, backcross experiments have demonstrated that
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incompatibilities between the mitochondrial and nuclear genomes
can affect mitochondrial function in Drosophila flies (Sackton
et al., 2003) and mice (Roubertoux et al., 2003), sperm viability
and morphology in the seed beetle (Dowling et al., 2007b), sex-
specific fitness in Drosophila (Rand et al., 2001) and yeast (Lee
et al., 2008), and mortality rate in the parasitoid wasps Nasonia
giraulti and Nasonia vitripennis (Ellison et al., 2008; Niehuis et al.,
2008). This implies that maintaining mito-nuclear genetic com-
patibility within species, but not between species, is a hallmark of
evolutionary divergence.

Since maintenance of mito-nuclear co-evolution is importance
for life, it is possible that its interruption in inter-population
hybrids within the same species will associate with reduced
fitness, thus marking insipient speciation events. A series of
inter-population breeding experiments in the copepod Tigrio-
pus californicus revealed reduction in hybrid fitness and activity
of OXPHOS complexes (mainly complex IV; Burton et al., 2006;
Ellison and Burton, 2010). Similarly, reduced fitness in inter-
population breeding in Drosophila was attributed to mito-nuclear
interactions (Rand et al., 2001; Dowling et al., 2007a). Cybrids
carrying a single common human nDNA genetic background
matched with a repertoire of mtDNAs from diverse lineages in
human and mouse unveiled alterations in mitochondrial func-
tion (Kazuno et al., 2006; Moreno-Loshuertos et al., 2006; Kenney
et al., 2014) and variation in nDNA gene expression (reviewed in
Horan and Cooper, 2014). This likely occurred via signals car-
ried by small molecules from the mitochondria to the nucleus,
termed retrograde signaling (Kenney et al., 2014; also reviewed
in Horan and Cooper, 2014). Finally, mito-nuclear incompatibil-
ity may have played a role in the divergence of natural sparrow
populations (Trier et al., 2014) and possibly in other vertebrates
(Bar-Yaacov et al., 2012a). Such observations have led to the sug-
gestion that mito-nuclear incompatibility could play a role in the
generation of reproductive barriers, an essential step toward the
emergence of new species (Gershoni et al., 2009).

INTERFERENCE WITH MITO-NUCLEAR INTERACTIONS
LEADS TO ILLNESSES
Given that co-evolution between interacting factors is important
to maintain function, it is reasonable that interfering with such
co-evolution may alter phenotypes (Dowling, 2014). This thought
led Theodosius Dobzhansky and Hermann Joseph Muller to inde-
pendently suggest during the first half of the 20th century that
alterations in one genetic element without compensatory response
from its epistatic interacting partner could give rise to repro-
ductive barriers and, eventually, speciation events (Dobzhansky,
1936; Muller, 1942; Gavrilets, 2003). Since interactions among
mtDNA and nDNA-encoded factors are important for cellular
function and since some modes of co-regulation exist, at least
at the transcriptional level (Leigh-Brown et al., 2010), it is logical
that disruption of the mito-nuclear association may cause diseases.
Indeed, the penetrance of mtDNA mutations that cause LHON
was shown to be modulated by X-linked nDNA encoded elements
(Hudson et al., 2005; Shankar et al., 2008). nDNA-encoded mod-
ifying factors of mtDNA mutations that underlie hearing loss
were also suggested (Johnson et al., 2001; Guan, 2011; Koko-
tas et al., 2011; Luo et al., 2013). A combination of mtDNA and

nDNA modifying factors for Huntington disease was recently pro-
posed (Taherzadeh-Fard et al., 2011). Interaction between nDNA
and mtDNA genotypes was shown to affect male fertility in
Drosophila (Yee et al., 2013). A recent repeated backcross exper-
iment study which led to mitochondrial nuclear exchange mice
showed, that mito-nuclear genetic interactions alter the suscep-
tibility to non-alcoholic fatty liver disease (NAFLD; Betancourt
et al., 2014). Similarly, conplastic strains of rats, i.e., strains shar-
ing their nDNA yet diverge in their mtDNA sequences including
amino acid mutations in OXPHOS subunits, show altered risk
to develop type 2 diabetes (Pravenec et al., 2007) and differen-
tial cardiac functions (Kumarasamy et al., 2013). Accordingly,
the association of certain mtDNA genetic backgrounds with a
tendency to develop type 2 diabetes mellitus is modified by
nDNA-encoded genes in Jews (Feder et al., 2009; Gershoni et al.,
2014), Italian (Cormio et al., 2009), and in Indian patients (Rai
et al., 2007). The disease-causing phenotype of a mutation in
NDUFA1, an nDNA-encoded subunit of OXPHOS complex I,
is partially modulated by mtDNA-encoded factors (Potluri et al.,
2009). Strauss et al. (2013) found differences in the severity of
cardiomyopathy among homozygous patients to the frame-shift
mutation (p.Q175RfsX38) in the nDNA-encoded SCL25A4 gene
depending whether they also carried the mtDNA haplogroup U
in comparison to patients with mtDNA haplogroup H. Taken
together, all these findings suggest that disruption of the connec-
tion between certain mtDNA-nDNA-encoded factors can lead to
diseases.

BEYOND MITO-NUCLEAR CO-EVOLUTION: THE SURVIVAL OF
mtDNA FUNCTIONAL NODAL MUTATIONS THROUGH
ADAPTATION, COMPENSATION, AND FUNCTIONAL
CONVERGENCE
Until now we underlined the co-evolution between mtDNA and
nDNA-encoded elements as a mechanism that responds to the
order of magnitude difference in mtDNA and nDNA muta-
tion rates, thus enabling maintenance of mitochondrial function.
However, the long term evolutionary survival of mtDNA func-
tional mutations could be enabled by mechanisms other than
compensatory nDNA mutations (Figure 3). It is also possible
that functional mtDNA mutations will be compensated by other
mtDNA changes either within the same gene or elsewhere in
the same genome (Kern and Kondrashov, 2004; de Magalhaes,
2005; Azevedo et al., 2006, 2009). Notably, compensations via
newly arising mutations are more apparent while considering
deep phylogeny which allows sufficient time for the accumula-
tion of mutations, but in the frame of population divergence one
could envision compensation that stem from pre-existing muta-
tions, either within mtDNA genetic backgrounds or in the nDNA.
Alternatively, functional mtDNA mutations could carry adaptive
values which will support their long term survival because of pos-
itive selection, as was already shown for some ancient mtDNA
functional variants (Mishmar et al., 2003; Ruiz-Pesini et al., 2004;
Gu et al., 2012; Figure 3). Therefore, all three mechanisms, namely
compensation via mito-nuclear co-evolution, compensation via
mito-mito co-evolution and positive selection are plausible and
should be considered as explanations for the survival of functional
ancient variants in the mtDNA.
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FIGURE 3 | A model summarizing mechanisms underlying the long

term evolutionary survival of functional nodal mutations (fNMs).

(A) fNMs, functional nodal mutations. *The compensatory mutation and
the fNM occurred within the same mtDNA encoded component. **The
compensatory mutation and the fNM occurred on different mtDNA
encoded components. (B) Possible mechanisms underlying the long term
evolutionary survival of functional recurrent nodal mutations (fRNMs).

The need for mechanisms allowing the survival of functional
ancient mutations is not restricted to mutations that appeared
and survived only once during evolution, thus defining certain
phylogenetic branches [i.e., single nodal mutations (SNMs)]. It
is further emphasized, yet more complicated, in the case of func-
tional nodal mutations (fNMs) that re-occurred during mtDNA
phylogeny, i.e., recurrent nodal mutations (RNMs; Figure 2).
Whereas the functional solutions for SNMs could be different
for each of the various SNMs that define the various mtDNA
phylogenetic branches, one could envision the emergence of sim-
ilar and even identical mechanisms that recurrently allowed the
survival of functional RNMs (Levin et al., 2013). This raises the
intriguing possibility that functional RNMs may teach us about
possible convergence in the mechanisms underlying functional
compensation. Specifically, functional convergence implies that
either similar compensatory solution, or similar adaptive value,
underlies the survival advantage of functional RNMs defining dis-
tant branches in the human mtDNA phylogeny. It will therefore be
of interest to assess whether functional RNMs played an adaptive
role to similar traits in the phylogenetic branches in which they
occurred. This option is currently investigated in our laboratory.
Although the high mtDNA mutation rate makes the mtDNA the
perfect model to study functional convergence, this phenomenon
could explain the survival of functional SNMs and RNMs in other,
non-mitochondrial, systems, thus offering general implications
for functional convergence of ancient mutations.
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