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Abstract: The •OH and SO4
•− play a vital role on degrading pharmaceutical contaminants in water.

In this paper, theoretical calculations have been used to discuss the degradation mechanisms, kinetics
and ecotoxicity of acetaminophen (AAP) initiated by •OH and SO4

•−. Two significant reaction
mechanisms of radical adduct formation (RAF) and formal hydrogen atom transfer (FHAT) were
investigated deeply. The results showed that the RAF takes precedence over FHAT in both •OH and
SO4

•− with AAP reactions. The whole and branched rate constants were calculated in a suitable
temperature range of 198–338 K and 1 atm by using the KiSThelP program. At 298 K and 1 atm, the
total rate constants of •OH and SO4

•− with AAP were 3.23 × 109 M−1 s−1 and 4.60 × 1010 M−1 s−1,
respectively, considering the diffusion-limited effect. The chronic toxicity showed that the main
degradation intermediates were harmless to three aquatic organism, namely, fish, daphnia, and green
algae. From point of view of the acute toxicity, some degradation intermediates were still at harmful
or toxic level. These results provide theoretical guidance on the practical degradation of AAP in
the water.

Keywords: acetaminophen (AAP); density functional theory; degradation mechanisms; rate constants;
acute toxicity; chronic toxicity

1. Introduction

The problem of water pollution caused by the drug residues have been paid much
more attention. Even though the content of these drugs in the water environment is very
low, they brings potential dangers to human health and ecological environment due to
its strong persistence, bioaccumulation and slow biodegradation [1,2]. Acetaminophen
(AAP), as one kind of antipyretic analgesics, enters to water environment by the excretion
of humans and animals. The concentration of AAP rose to 6 µg/L in European STP
effluents [3]. Its concentration up to 10 µg/L was detected in natural waters in the United
States [4], and over 65 µg/L concentration was measured in the Tyne river in the United
Kingdom [5]. The removal of micropollution is challenging for water treatment technology.
Researches on this area were also relatively limited.

Advanced oxidation processes (AOPs) are highly efficient engineering technologies in
the elimination of water micropollutants. The active free radicals (i.e., •OH and SO4

•−)
generating in AOPs can decompose these contaminants. The ultraviolet/hydrogen perox-
ide (UV/H2O2), Fenton (H2O2/Fe2+) and Photo-Fenton (UV/H2O2/Fe2+) processes can
contribute to •OH, which is shown in the following equation:
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Fe2+ + H2O2 → Fe3+ + •OH + HO−

•OH could be generated from hydrogen peroxide activated by electrochemical pro-
cess with Fe2+/Fe3+, which can degrade pentachlorophenol (PCP) [6]. The removal of
carbamazepine (CBZ) was attributed to •OH formed by coupling H2O2 with UV and
Fe2+/Fe3+ [7]. The removal efficiency of three AOP systems has been compared and found
the order of O3/H2O2/Fe2+ > UV/H2O2/Fe2+ > H2O2/Fe2+ [8]. Certainly, other processes
such as photocatalysis and photoelectrocatalysis are able to produce •OH [9].

Meanwhile, the ultraviolet/persulfate (UV/S2O8
2−) can generate SO4

•−, which is
described by the following equation [10]:

S2O2−
8

hv→ SO•−4 + SO•−4
Surely, •OH can be produced when SO4

•− reacts with H2O, which is presented by the
following equation [11]:

SO•−4 + H2O → SO2−
4 + •OH + H+

Thus, •OH-mediated and SO4
•−-mediated degradation of contaminants were avail-

able. The redox potential and rate constants are summarized in Table 1. It was reported
that the •OH-initiated degradation rate constant was about 108–1010 M−1 s−1. The
SO4

•−-initiated rate constant was about 107–1010 M−1 s−1 [12]. The degradation rates
of two reactive radicals are nearly equivalent, which is consistent with their high redox
potential (2.5–3.1 V for SO4

•− versus 1.8–2.7 V for •OH) [13–15]. The degradation pro-
cesses of contaminants triggered by •OH and SO4

•− were investigated in recent years.
For example, Tong et al. determined the rate constants of syringic acid reactions with
•OH and SO4

•− in aqueous phase by laser flash photolysis. They found that •OH and
SO4

•− possessed similar reaction rate at the same pH [16]. Gao et al. measured the rate
constants of neutral sulfamethoxazole with •OH and SO4

•− were (7.27 ± 0.43) × 109

and (2.98 ± 0.32) × 109 M−1 s−1 in the systems of UV/H2O2 and UV/PS, respectively [17].
Similarly, Wang et al. detected the rate constants for AAP with •OH and SO4

•− reactions
were (3.26 ± 0.41) × 109 and (1.80 ± 0.17) × 109 M−1 s−1 in the Fe2+/persulfate system,
respectively [18]. The second-order rate constants of •OH and SO4

•− were conformed as
5.15 × 109 and 7.66 × 109 M−1 s−1, respectively, using the ultraviolet light emitting diode
(UV-LED)-based method by Li et al. [19]. However, the study of degradation mechanisms
of •OH and SO4

•− with the target contaminants still faced with great challenge. At atom
level, quantum chemistry calculation was a powerful tool to gain a in-depth understanding
for mechanisms and kinetics of •OH and SO4

•− reacting with some pollutants [20–23].

Table 1. Redox potential and kinetic data for the reactions of •OH and SO4
•−.

Radicals Redox Potential a (V)
The Range of

Rate Constants b

(M−1 s−1)

The Second-Order Rate
Constants of Neutral

Sulfamethoxazole c (M−1 s−1)

The Second-Order Rate Constants of
Acetaminophen (M−1 s−1)

Fe2+/PS d UV-LED/H2O2
e

•OH 1.8–2.7 108–1010 (7.27 ± 0.43) × 109 (3.26 ± 0.41) × 109 5.15 × 109

SO4
•− 2.5–3.1 107–1010 (2.98 ± 0.32) × 109 (1.80 ± 0.17) × 109 7.66 × 109

a (Xiao, et al., 2020; Devi, et al., 2016; Ghanbari, et al., 2017); b (Li, et al. 2020, [12]); c (Gao, et al., 2020); d (Wang, et al., 2019); e (Li, et al.,
2020, [19]).

Theoretical studies are essential for discussing the degradation processes of AAP with
•OH and SO4

•−. Therefore, the reaction mechanisms and kinetics of the AAP with •OH
and SO4

•− have been studied by using quantum chemistry calculations. Rate constants of
every possible pathways for AAP with •OH and SO4

•− reactions were calculated. Even
more importantly, the ecotoxicity of AAP and its degradation products has been evaluated
in order to know their risk.



Toxics 2021, 9, 234 3 of 14

2. Computational Methods
2.1. Mechanism Calculation

Usually, reaction mechanisms are investigated by Density functional theory (DFT).
M06-2X functional can solve noncovalent interactions for some complexes better than
other density functional such as B3LYP [24]. The functional ratio of exchange correction
of M06-2X is 54% which will obtain more accurate energies [25]. Furthermore, M06-2X
method [26] of DFT was selected in the reactions of AAP with •OH and SO4

•− without
hesitation, because satisfactory results were acquired on the degradation of some micropol-
lutants [27–30]. For example, the thermodynamic and kinetic data for ibuprofen reactions
with hydroxyl and sulfate radicals reported by Yang et al. were calculated with M06-2X
method [27]. All electronic structures and energy calculations were performed using Gaus-
sian 09 software [31]. The reactants (R), transition states (TS) and intermediates (IM) were
optimized at the M06-2X/6-31+G(d,p) level. IM (all positive frequencies) and TS (only one
imaginary frequency) are primarily identified by harmonic vibration frequency analysis.
Moreover, the method of intrinsic reaction coordinates (IRC) was applied to determine
every right transition state [32]. The water solvent effect was taken into account by a
universal solvation model (SMD) [33] when these structures were optimized in the aqueous
phase. Based on right structures, the single point energies were calculated accurately at
high level of M06-2X/6-311++G(3df, 2p).The Gibbs free energy barrier of activation (∆G 6=)
and free energy of reaction (∆G) are calculated as follows:

∆G 6= = GTS − GR

∆G = GIM − GR

2.2. Kinetic Calculation

The conventional Transition State Theory (TST) was used to calculate the rate constants
implemented by KiSThelP program [34] that has obtained accurate results for contaminants
with free radicals reactions [35–39]. The calculation formula is employed in KiSThelP:

k = κσ
kbT

h

(
RT
P0

)∆n
e
− ∆G0, 6=

kbT

Some parameters need to be explained. κ is tunneling correction factor of Wigner
approach [34]. σ, kb and h are the reaction path degeneracy, Boltzmann’s constant and
Planck’s constant, respectively. ∆G0, 6= is the standard Gibbs free energy of activation.
RT/P0 has the unit of the inverse of a concentration. For bimolecular reactions, ∆n is equal
to 1.

The diffusion-limited effect was considered to obtain the apparent rate constants (kapp)
of aqueous phase based on Collins-Kimball theory [40].

kapp =
kaqkD

kaq + kD

where, kaq is calculated by TST as aqueous rate constant. kD is calculated by the Smolu-
chowski equation as the diffusion-limited rate constants:

kD = 4πRABDABNA

RAB means the reaction distance, and NA is Avogadro’s number, DAB represents
the sum of diffusion coefficient of the reactants A (AAP) and B (•OH or SO4

•−). The
calculations of DA and DB are realized by using the Stokes–Einstein approach [41]:

D =
kbT

6παη

where kb, T, η, and α are the Boltzmann constant, temperature, viscosity of the solvent, and
radius of the solute, respectively. For water, η = 8.9 × 10−4 Pa s.

2.3. Ecotoxicity Calculation

The aquatic toxicity of AAP and its degradation products was evaluated by using the
Structure Activity Relationship (SAR) method with the ECOSAR program [42], which has
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been successfully used to evaluate the acute and chronic toxicity [43–46]. Three aquatic
organisms of green algae, daphnia and fish were considered to assess the acute and
chronic toxicities. Acute toxicity of the target compounds was estimated by median lethal
concentration (LC50) and median effect concentration (EC50). LC50 is defined 50% lethal
concentration for fish and daphnia in 96 and 48 h, respectively. EC50 is 50% effective
concentration for green algae in 96 h. The chronic toxicity was described by the chronic
toxicity value (ChV) for green algae, daphnia and fish.

3. Results and Discussion
3.1. Degradation Mechanisms

The degradation mechanisms of AAP initiated by •OH and SO4
•− mainly include

radical adduct formation (RAF) and formal hydrogen atom transfer (FHAT). Similarities
and differences of mechanisms about two reactions were adequately investigated. The
Gibbs free energy of reaction (∆G) and Gibbs free energy barrier of activation (∆G 6=) of the
initial reaction of AAP with •OH and SO4

•− were calculated and discussed. The binding
distances and angles of AAP, •OH and SO4

•− are shown in Figure 1. All structures of
transition states are plotted in Figure S1 (Supplementary Materials).
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3.1.1. Radical Adduct Formation

RAF pathways of AAP with •OH and SO4
•− reactions are displayed in Figure 2. •OH-

initiated and SO4
•−-initiated RAF channels consist of addition on the benzene ring and

the acetamide group. It is uniform for the RAF mechanisms of AAP with •OH and SO4
•−

reactions. The acetamide group addition has no advantage over that of the benzene ring
because the free energy barriers are 15.23 and 30.86 kcal/mol for acetamide group addition
of •OH and SO4

•−, respectively. However, the free energy barriers were 5.95–9.26 kcal/mol
and 2.66–8.74 kcal/mol for •OH and SO4

•− addition to six carbon atoms of benzene ring,
respectively. Generally, •OH-triggered reactions are higher exothermic than that of SO4

•−.
Based on the values of ∆G 6= and ∆G, C6 atom addition (path 6 for •OH-triggered reactions
versus path 13 for SO4

•−-triggered reactions) is the most favorable channels because their
barriers are only 5.95 and 2.66 kcal/mol, respectively. Recently, the similar addition results
were proved by Li et al. [47]. Figure 3 shows the comparison of potential energies for
RAF mechanisms of two radicals reactions. SO4

•−-initiated reactions have the lower free
energy barriers than that of •OH. In SO4

•−-initiated reactions, TS13, C6 addition transition
state, has stronger hydrogen bond intermolecular interaction, namely, hydrogen atom
of phenolic hydroxyl group of AAP with oxygen atom of SO4

•−. IRC intuitively shows
hydrogen atom of phenolic hydroxyl group of AAP tends to be close to oxygen atom of
SO4

•−. The interaction will greatly decrease reaction barrier. However, SO4
•−-initiated

reactions have less reaction heats compared with •OH-initiated reactions. For example, the
energy barrier of path 6 is higher 3.29 kcal/mol than path 13, but path 6 is more exothermic
than 6.95 kcal/mol.
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Figure 2. The radical adduct formation channels of AAP with •OH and SO4
•− reactions with the

Gibbs free energy of reaction (∆G) and Gibbs free energy barrier of activation (∆G 6=) (unit: kcal/mol).
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3.1.2. Formal Hydrogen Atom Transfer

Ten hydrogen abstraction pathways from benzene ring and methyl group are found
and shown in Figure 4. Hydrogen abstractions from C2, C3, and C5 of benzene ring
experience TS15, TS16, TS17 with free energy barriers of 19.13, 18.75 and 19.75 kcal/mol
for AAP with •OH reactions, respectively. For SO4

•−-initiated reactions, the free energy
barriers of hydrogen abstractions from C2, C3, C5, and C6 of benzene ring are 30.58, 19.60,
19.30 and 30.43 kcal/mol, respectively. The hydrogen atom can be abstracted from C6 of
benzene ring and the methyl group via 14.27 and 14.41 kcal/mol barriers for •OH-initiated
path 18 and path 19. Moreover, the corresponding products are exothermic 7.02 and
11.37 kcal/mol, respectively. The results indicate that hydrogen abstractions from C6 of
benzene ring and methyl group are two important channels for •OH with AAP reaction.
However, methyl group hydrogen abstraction is the most important channel for SO4

•−

with AAP reaction due to the lowest energy barrier of 10.91 kcal/mol. Figure 5 describes
the comparison of free energies for FHAT mechanisms. As shown in the Figure 5, the free
energy barriers for SO4

•− abstracting hydrogen atom from benzene ring are higher than
that of •OH, and the corresponding paths (path 20–path 23) initiated by SO4

•− are less
exothermic than path 15–path 18 initiated by •OH. However, the free energy barrier of
SO4

•−-initiated path 24 is lower 3.5 kcal/mol than •OH-initiated path 19, and path 24 is
more exothermic 1.76 kcal/mol than path 19.

The comparison of FHAT and RAF mechanisms is shown in Figure 6. It is implied that
RAF has an advantage over FHAT for both reactions. The free energy barrier for the most
important RAF channel is lower 8.32 and 8.25 kcal/mol than the most favorable FHAT
channel for •OH-initiated and SO4

•−-initiated reactions, respectively.

3.2. Kinetics

The rate constants involved free radicals reactions are of great value for predicting the
degradation rate. However, the measurement of such data is difficult due to these rapid
reactions. The theoretical calculations play an important role in attaining rate constants for
these radical-participating reactions.
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The rate constants for AAP with •OH reactions are given in Table 2. The apparent
rate constant of •OH reaction with AAP (kapp) is 3.23 × 109 M–1 s–1 at 298 K. The cal-
culated rate constant is consistent with experimental results of (3.26 ± 0.41) × 109 and
5.15 × 109 M–1 s–1 [18,19]. The C6 site addition (path 6) has the largest rate constant of
3.56 × 109 M–1 s–1 with the 84.8% branching ratio. The other RAF and FHAT pathways
contribute the total reactions weakly. The rate constants for AAP with SO4

•− reactions
are depicted in Table 3. The apparent rate constant of SO4

•− reaction with AAP (k’app)
is 4.60 × 1010 M–1 s–1 at 298 K, which is higher six times than experimental value of
7.66 × 109 M–1 s–1 [19]. The possible reason is that the lower barrier leads to higher reac-
tion rate, which agrees with discussion of mechanisms. Theoretical model and method will
lead to some deviations, but the accuracy of experiment is affected by some factors such
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as equipment, reagent, and operation. Theoretical calculations can predict and explain
some results. Consequently, the benefits of theoretical calculations cannot be underesti-
mated. The C6 site addition (path 13) is dominant channel with the largest rate constant
of 8.65 × 1013 M–1 s–1 that possesses the 92.8% branching ratio. The other RAF and FHAT
pathways have a little contribution for AAP with SO4

•− reaction. As shown in Table 4,
C6 of benzene ring and methyl group hydrogen abstractions are dominant channels for
•OH with AAP reaction with the branching ratio of 50.42% and 49.58%, respectively.
For AAP with SO4

•− reaction, methyl group hydrogen abstraction contributes 100% to
FHAT channels.

Table 2. The calculated rate constants(kaq), steady-state rate constant (kD), apparent rate constant (kapp) and branching ratio
(Raq) for the AAP with •OH reaction in the aqueous phase at 298 K.

Paths kaq (M−1 s−1) Raq (%) kD (M−1 s−1) kapp (M−1 s−1)

APP + •OH→ IM1 (k1) 8.04 × 107 1.9 9.80 × 109 7.97 × 107

APP + •OH→ IM2 (k2) 1.87 × 108 4.5 9.80 × 109 1.83 × 108

APP + •OH→ IM3 (k3) 1.51 × 107 0.4 9.80 × 109 1.51× 107

APP + •OH→ IM4 (k4) 3.22 × 108 7.6 9.80 × 109 3.12 × 108

APP + •OH→ IM5 (k5) 3.33 × 107 0.8 9.80 × 109 3.32 × 107

APP + •OH→ IM6 (k6) 3.56 × 109 84.8 9.80 × 109 2.61 × 109

APP + •OH→ IM7 (k7) 6.75 × 102 0 9.80 × 109 6.75 × 102

APP + •OH→ IM15 (k15) 4.75 0 9.80 × 109 4.75
APP + •OH→ IM16 (k16) 9.75 0 9.80 × 109 9.75
APP + •OH→ IM17 (k17) 1.91 0 9.80 × 109 1.91
APP + •OH→ IM18 (k18) 1.15 × 104 0 9.80 × 109 1.15 × 104

APP + •OH→ IM19 (k19) 1.13 × 104 0 9.80 × 109 1.13 × 104

APP + •OH→ Product (ktotal) 4.20 × 109 100 3.23 × 109

Table 3. The calculated rate constants(k’aq), steady-state rate constant (k’D), apparent rate constant (k’app) and branching
ratio (R’aq) for the AAP with SO4

•− reaction in the aqueous phase at 298 K.

Paths k’aq (M−1 s−1) R’aq (%) k’D (M−1 s−1) k’app (M−1 s−1)

APP + SO4
•−→IM8 (k’8) 6.00 × 1012 6.4 8.05 × 109 8.04 × 109

APP + SO4
•− → IM9 (k’9) 1.61 × 1011 0.2 8.05 × 109 7.67 × 109

APP + SO4
•− → IM10 (k’10) 2.60 × 1011 0.3 8.05 × 109 7.81 × 109

APP + SO4
•− → IM11 (k’11) 3.28 × 1010 0.01 8.05 × 109 6.46 × 109

APP + SO4
•− → IM12 (k’12) 2.52 × 1011 0.3 8.05 × 109 7.80 × 109

APP + SO4
•− → IM13 (k’13) 8.65 × 1013 92.8 8.05 × 109 8.05 × 109

APP + SO4
•− → IM14 (k’14) 1.77 × 10−6 0 8.05 × 109 1.77 × 10−6

APP + SO4
•− → IM20 (k’20) 14.3 0 8.05 × 109 14.3

APP + SO4
•− → IM21 (k’21) 1.11 × 102 0 8.05 × 109 1.11 × 102

APP + SO4
•− → IM22 (k’22) 1.88 × 102 0 8.05 × 109 1.88 × 102

APP + SO4
•− → IM23 (k’23) 5.55 0 8.05 × 109 5.55

APP + SO4
•− → IM24 (k’24) 1.33 × 108 0 8.05 × 109 1.33 × 108

APP + SO4
•− → Product (k’total) 9.32 × 1013 100 4.60 × 1010

Table 4. The calculated rate constants (kaq, k’aq) and branching ratio (Raq, R’aq) for the formal hydrogen atom transfer
channels in the aqueous phase at 298 K.

Paths kaq (M−1 s−1) Raq (%) Paths k’aq (M−1 s−1) R’aq (%)

APP + •OH (FHAT) 2.28 × 104 100 APP + SO4
•− (FHAT) 1.33 × 108 100

APP + •OH→ IM15 (k15) 4.75 0 APP + SO4
•− → IM20 (k’20) 14.3 0

APP + •OH→ IM16 (k16) 9.75 0 APP + SO4
•− → IM21 (k’21) 1.11 × 102 0

APP + •OH→ IM17 (k17) 1.91 0 APP + SO4
•− → IM22 (k’22) 1.88 × 102 0

APP + •OH→ IM18 (k18) 1.15 × 104 50.42 APP + SO4
•− → IM23 (k’23) 5.55 0

APP + •OH→ IM19 (k19) 1.13 × 104 49.58 APP + SO4
•− → IM24 (k’24) 1.33 × 108 100
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The temperature dependence of rate constants is shown in Figure 7 at the temperatures
from 198 to 338 K and 1 atm, and the corresponding data are listed in Tables S1 and S2
(Supplementary Materials). The total rate constants have weakly negative temperature
dependence for •OH-initiated reaction. However, SO4

•−-initiated reactions have distinctly
negative temperature dependence.
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3.3. The Aquatic Toxicities of AAP and Its Degradation Intermediates

The acute and chronic toxicities of AAP and the important degradation intermediates
are assessed in three different aquatic organisms, which is drawn in Figure 8. Four types are
classified and listed in Table S3 (Supplementary Materials). The toxic values of AAP and
the important degradation intermediates are shown in Table S4 (Supplementary Materials).

3.3.1. Toxicity of AAP

The acute toxicity value of AAP is calculated as 323 mg/L of LC50 for fish, 63.1 mg/L
of LC50 for daphnia and 26.3 mg/L of EC50 for green algae, respectively. These results
indicate that AAP is harmful to daphnia and green algae, but not harmful to fish. The
calculated ChV of AAP is 26.3 mg/L for fish, 5.13 mg/L for daphnia, and 37.2 mg/L for
green algae. AAP is not harmful to fish and green algae at chronic level. However, it is
harmful to daphnia chronically.

3.3.2. Toxicities of the Degradation Products

The most important intermediate (IM6) is harmful to three aquatic organisms in acute
toxicity, but is harmless to three aquatic organisms in chronic toxicity. For other degradation
intermediates, IM1 is acutely toxic for fish and green algae, and harmful to daphnia. The
chronic toxicity of IM1 is harmful for three aquatic organisms. IM13 and IM8 are not
harmful for three aquatic organisms chronically. Moreover, IM13 and IM8 are not acutely
harmful for fish and daphnia, but pose a severe threat for green algae. In brief, the most
important degradation intermediate (IM6) from •OH-initiated reaction is still harmful to
aquatic organisms. IM13 from SO4

•−-initiated reaction is harmless to fish and daphnia, but
is very toxic to green algae. Thus, the toxicity of these compounds should be concerned.
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4. Conclusions

In this work, the reaction mechanisms and rate of AAP with •OH and SO4
•− have

been explored theoretically in aqueous phase. The toxicity of AAP and its transformation
intermediates to three aquatic organisms have been assessed. The novelty are summarized
as below:

(1) M06-2X/6-311+G (3df, 2p)//M06-2X/6-31+G (d, p) has been used to study the •OH-
initiated and SO4

•−-initiated transformation mechanism of AAP. •OH and SO4
•−

with AAP reactions have the same reaction sites, even reaction mechanisms. The
results implied that the C6 addition is prominent pathway in RAF mechanisms and
hydrogen abstraction of methyl group is dominant pathway for both reactions in
FHAT mechanism. RAF takes precedence over FHAT.

(2) At 298 K, the total apparent rate constant of AAP with SO4
•− is larger than that

of •OH. The calculated rate constants basically matched with experimental values.
Theoretical calculations predicted the kinetic data at 198 K–338 K.

(3) Toxic assessment shows that some representative degradation intermediates present
an acute threat to the target organisms. Thus, subsequent degradation should be
implemented until they are degraded into non-toxic substances.

In brief, this work explains the degradation processes of AAP initiated by •OH and
SO4

•− from microscopic points, and solves the problem of structures of intermediates
and products which are associated with reactivity. The calculation of eco-toxicity plays an
important role on assessing toxicity of degradation process. Finally, these results can apply
to the practical degradation of AAP in AOPs.
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