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Abstract
In many applied single-point Yes/No signal-detection studies, the main interest is to evaluate the observer’s sensitivity, based on
the observed rates of hits and false alarms. For example, Kostopoulou, Nurek, Cantarella et al. (2019,Medical Decision Making,
39, 21–31) presented general practitioners (GPs) with clinical vignettes of patients showing various cancer-related symptoms,
and asked them to decide if urgent referral was required; the standard discrimination index d′ was calculated for each GP. An
alternative conditional approach to statistical inference emphasizes explicitly the conditional nature of the inferences drawn, and
argues on the basis of the response marginal (the number of “yes” responses) that was actually observed. It is closely related to,
for example, Fisher’s exact test or the Rasch model in item response theory which have long been valuable and prominent in
psychology. The conditional framework applied to single-point Yes/No detection studies is based on the noncentral
hypergeometric sampling distribution and permits, for samples of any size, exact inference because it eliminates nuisance (i.e.,
bias) parameters by conditioning. We describe in detail how the conditional approach leads to conditional maximum likelihood
sample estimates of sensitivity, and to exact confidence intervals for the underlying (log) odds ratio. We relate the conditional
approach to classical (logistic) detection models also leading to analyses of the odds ratio, compare its statistical power to that of
the unconditional approach, and conclude by discussing some of its pros and cons.
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Introduction

Signal detection theory (SDT) is one of the most successful meth-
odological developments originating (Tanner & Swets, 1954)
frompsychology; it has pro foundly influenced theorizing and data
analysis in many fundamental and applied fields in the behavioral
sciences (for detailed background and review, see Green& Swets,
1966; Macmillan & Creelman, 2005; McNicol, 2005; Wickens,
2002; Wixted, 2020; for some more critical views, see Green,
2020; Mueller & Weidemann, 2008; Trimmer et al., 2017).

One of SDT’s most prominent applications is based on the
data format shown in Table 1, often called the Yes/No (YN)
design (Macmillan & Creelman, 2005, Ch. 1–2).

In the YN design generating the data format shown in Table 1,
an observer is presented in each trial with either a signal (s1) or a
noise (s0) stimulus, and indicates his/her decision about the nature
of the stimulus presented by responding “yes” or “no”; the
Table represents a standard summary of potential results.
Especially in applied settings the trial numbers n0, n1 per observer
and condition of interest are often quite small (typical sample sizes
in applied studies are n0 =n1 = 10 as, e.g., inKöteles et al., 2013, or
n0 = n1 = 20 as, e.g., in O’Connor et al., 2003), and the main
interest often centers on whether the observer’s ability to detect
or discriminate the signals under study is better than chance and if
so, by how much. Varying the bias of the observer towards one
decision or the other provides additional information, but in many
applied studies extracting detection indices, only a single pair of
observed hit (H) and false alarm (F) rates is obtained, and the
present note focuses on this widely used “single-point design”
(e.g., Rotello et al., 2008).

A traditional and prominent approach for analyzing data in
the format of Table 1 is to extract estimates of the
sensitivity and bias measures d′ and c (for detailed
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expositions, see, e.g., Macmillan & Creelman, 2005, Ch,
1–2; Stanislaw & Todorov, 1999) which are derived
from the classical SDT model assuming internal stimu-
lus representations which are normally distributed with
equal variance1. In thismodel, d′ is the separation of the means
of the distributions, and c is the location of the decision crite-
rion, relative to these means. Formally, this analysis may be
interpreted as a transformation of the two independent proba-
bilities πH = P("yes"|s1) and πF = P("yes"|s0) into the two
indices d′ and c, which carry information about conceptually
separate aspects characterizing the performance of the observ-
er, at least within the framework of the classical model. Even
though c and d describe conceptually separate performance
aspects their sample estimates are not independent2, whereas
those of πH and πF (that is, H and F) are.

The present article focuses on the “small sample” research
tradition (for detailed review, see Miller & Schwarz, 2018) in
which sensitivity and bias measures are typically estimated for
each observer separately, and then aggregated informally.
This tradition is especially prominent, for example, in psycho-
physical and perceptual studies using practiced observers, in
behavioristic research using few well-trained animals, or in
neuropsychological studies of specific syndromes. In other
research areas a d′ or c score is computed separately for each
participant in each of two conditions, and the mean scores are
compared using, for example, a dependent t test. In this “large
sample” research tradition, information about the standard er-
rors, for example, of each observer’s d′ estimate can improve
statistical power by partitioning the total error variance used
by t tests into a generic (systematic) between-subject compo-
nent vs. a component due to pure sampling error of the esti-
mates (Miller & Schwarz, 2018, Eq. 1).

The notion that an observer is unable to discriminate signal
and noise corresponds to the assertion that the observed rates
H and F differ only due to sampling error, that is, that the
underlying true probabilities πH and πF are identical. In the
context of the double-binomial YN sampling scheme gener-
ating Table 1, this assertion corresponds to the basic hypoth-
esis about the equality of two independent probabilities, the
statistical evaluation of which has generated a large literature.
As described below, two3 prominent broad frameworks can be
distinguished in the statistical literature: conditional and un-
conditional approaches. Given the correspondence between
the notion of no discriminability and the hypothesis πH = πF
mentioned above it is surprising that in evaluating detection
performance exclusively one of these approaches (viz., the

unconditional) has been used so far, especially since in many
other areas of psychology examples of the conditional infer-
ence framework such as Fisher’s exact test (e.g., Hays, 1963,
Ch. 17; McNemar, 1962, Ch. 13) or the Rasch (1966) model
in item response theory have been prominent for a long time.
The central aim of the present note is to present and to illus-
trate the alternative conditional approach to evaluating detec-
tion performance in the YN design. More specifically, we
describe the conceptual framework on which the conditional
approach rests, and illustrate some aspects of its technical
application in the context of exemplary data in the format of
Table 1; we relate this approach to classical detection models
(Luce, 1959) also leading to analyses of the log odds ratio,
compare its statistical power with that of the unconditional
approach, and conclude by discussing some pros and cons
of the conditional approach so as to indicate specific contexts
where this approach is especially valuable.

The conditional approach

Table 2 illustrates two potential outcomes of a detection task
involving n1 = 14 signal and n0 = 14 noise trials. In the first
scenario (Table 2, left) the hit and false alarm rates areH = 10/
14, and F = 4/14 respectively, leading to the estimatesbd0 ¼ 1:13 and bc ¼ 0 . The traditional analysis (Gourevitch
& Galanter, 1967, Eq. 6; Macmillan & Creelman, 2005, Eq.
13.4) produces a standard error SE (d′) = 0.50; assuming a

roughly normal sampling distribution of bd0, the approximate

95% confidence interval for d′ is equal to bd0 ± 1.96 SE (bd0 ) =
[+0.15, 2.20]. For example, based on this confidence interval
we would typically conclude that the detection performance in
Table 2 (left) is better than chance; the width of the interval is
2.05.

Confidence intervals like [+0.15, 2.20] for Table 2 (left) are
based on a first-order linearization (the so-called Delta meth-
od; e.g., Agresti, 2013, Ch. 16; Fleiss et al., 2003, Ch. 2.6;
Pawitan, 2013, Ch. 4.7; Schwarz, 2008, pp. 110ff), and on

assuming a normal sampling distribution of the estimate, bd0.

1 The variant of the model based on logistic distributions is discussed in more
detail below.
2 Estimates of d′ and c are independent only if the observer is unbiased (i.e.,
when c = 0).
3 We set aside Bayesian approaches (Agresti, 2013, Ch. 3.6) at this point,
which have so far not played a prominent role in applied studies evaluating
detection performance; for an instructive example, see Hyett et al. (2014).

Table 1 Notation used to summarize the single-point detection design

stimulus “yes” “no” sum

s1
s0

x
m−x

n1–x
n0–m+x

n1
n0

sum m n0+n1−m n0+n1

The signal stimulus s1 is presented in n1 trials, the noise stimulus s0 in n0
trials. In all n0 + n1 trials the observer has given a total of m “yes”
responses, and thus n0 + n1 −m “no” responses. Of allm “yes” responses,
x were given in signal trials, m − x in noise trials. The observed hit rate is
H = x/n1, the observed false alarm rate isF = (m − x)/n0. The column totals
m and n0 + n1 − m are called the response marginal, the row totals n1 and
n0 form the stimulus marginal
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Both assumptions are reasonable for large samples but for
small and medium samples these approximations can be poor,
especially when the probabilities involved are close to zero or
one. Based on the independent-binomial sampling scheme
that underlies Table 1, these inaccuracies have been docu-
mented by detailed numerical and simulation results (see
Hautus, 1995; Kadlec, 1999; Macmillan, Rotello, & Miller,
2004; Miller, 1996; Verde et al., 2006).

A critical aspect of the traditional analysis is that statements
about d′ are conditional (i.e., dependent) on the specific value of
the response bias (bc ) that was actually observed. However, even
though in the traditional approach the sampling distribution of bd0
depends on the value of bc this dependence is not reflected in the
analysis carried out. That is, the traditional analysis does not
formally condition on the observed response marginal, and thus
misleadingly suggests that its conclusions (e.g., the standard error
of d′ ) are independent of the response marginal actually ob-
served. It should thus be emphasized that the qualification “con-
ditional” refers to the critical fact that the analysis in the approach
so labeled is explicitly based on conditioning on the response
marginal that was actually observed. To illustrate these points,
we ask, more specifically: In exactly which sense are statements
about d′ conditional on the value of bc observed?

Suppose the same observer (i.e., unchanged sensitivity) had
used a laxer response criterion instead, leading to a higher hit rate
H = 13/14, but also to more false alarms, F = 9/14 (Table 2,
right). These values give essentially the same estimate of d′ (i.e.,bd0 = 1.10) but a clearly laxer estimated response criterion of bc =
−0.92. The same traditional analysis used before now yields the

considerably larger standard error of bd0 equal to 0.61, an increase
of 22% relative to an unbiased response criterion, so that the 95%
confidence interval for d′ widens to [−0.10, 2.30]. For example,
based on this confidence interval we would typically conclude
that the detection performance in Table 2 (right) is not signifi-
cantly better than chance. In this sense, our conclusion regarding
the sensitivity of an observer depends on which response criteri-
on s/he happened to choose.

This example demonstrates the more general fact that the
observed response marginal determines the precision with which
conclusions about d′ can be drawn. Specifically, the standard

error of bd0 and the width of the confidence interval depend on
the observed number m of positive responses, and thus on the
specific value of the “nuisance” parameter, c. Themain argument
advanced by the conditional framework is that it is thus appro-
priate to argue conditionally on the total number m of “yes”
responses (or, in the context of the equal-variance normal model,
on the value of bc ) actually observed. This is to ensure that we
attach to our conclusions regarding the comparison of hit and
false alarm rates the precision actually achieved, and not that to
be achieved hypothetically in distinct scenarios (i.e., with differ-
ent response criteria) that have in fact not occurred. The condi-
tional framework emphasizes explicitly the conditional nature of
the inferences drawn. In addition, this approach permits explicit
exact inference even in the case of arbitrarily small numbers of
signal and noise trials.

To motivate the conditional approach consider a scenario in-
volving an observer with no sensitivity (i.e., πH = πF ) for the
signal in question; evaluating the hypothesis of no sensitivity lies
at the heart of many detection studies. Suppose that before enter-
ing the lab this observer was determined to respond equally often
“yes” and “no” (e.g., Kantner & Lindsay, 2012). In the scenario
considered in Table 2, this completely insensitive observer would
then distribute at random 14 “yes” responses among the total of
28 trials, much as drawing at random and without replacement 14
balls from an urn containing 14 red (signal) and 14 black (noise)
balls. Any hypothetical replication of the design in Table 2 involv-
ing this unbiased observer would again produce 14 “yes” re-
sponses. In this scenario, the probability of scoring x hits (and thus
14 − x false alarms) is given by the central hypergeometric distri-
bution shown in Fig. 1 (left). For example, assuming the observer
is completely insensitive, the probability to get more than 9 or less
than 5 hits (cf. Table 2, left) is equal to 0.057.

The above argument is an example of a more general sta-
tistical framework known as conditional inference (e.g.,
Agresti, 2013, Ch. 3.5 and 16.5; Cox & Snell, 1989, Ch. 2;
Fleiss et al., 2003, Ch. 6; Pawitan, 2013, Ch. 10). As a simple
scenario (Cox, 1958) illustrating its logic consider a two-stage
chance experiment, in which, first, a fair coin is flipped. With
“heads,” four values from a (μ, 1) normal distribution are
drawn, and with “tails,” we draw 10,000 values from the same
distribution; our aim is to estimateμ and to state a standard error

Table 2 Two potential outcomes of a detection task involving 14 signal
and 14 noise trials. In the first scenario (left Table) the hit and false alarm
rates are H = 10/14, and F = 4/14, respectively, in the second scenario

(right Table) these rates areH = 13/14, and F = 9/14. Both scenarios lead
essentially to the same estimate of d′

1395Atten Percept Psychophys (2022) 84:1393–1402



for this estimate. Clearly, the observed sample mean x is in any
case our best estimate ofμ. Assumewe are told that the coin has
fallen tails—what, then, is the standard error of our estimate?

The standard unconditional approach ignores the specific
outcome of the coin toss, and considers x to be one realization
of a mixture of two equiprobable normal distributions of sam-
ple means, both having mean μ, but one with a large variance
of 1/4, and one with a small variance of 1/10,000. After all,
across many hypothetical independent replications of this ex-
periment, the sample mean would be highly variable,
reflecting mainly the large variance of x from those realiza-
tions in which the coin fell heads, when the sample size was
only four. In this view, the variance (the squared standard
error) of the estimate x across many hypothetical replications
is close to 1/8; in particular, it is much larger than 1/10,000.

In contrast, the conditional inference approach takes the
specific realization of the coin toss into account, and so the
squared standard error would be equal to 1/10,000. After all, if
we already know that the observed mean was based, specifi-
cally, on a sample of 10,000 values, then why should we
ignore this critical information in forming the standard error,
andweigh in hypothetical cases (i.e., had the coin fallen heads,
the sample size would have been only 4) of which we already
know that they had not occurred?

The situation with respect to the precision with which we
can estimate sensitivity in a detection task is in several ways
analogous to this more extreme example. Considering the two
scenarios in Table 2, the coin toss corresponds to the choice of
a neutral (left) vs. lax (right) response criterion, which in turn
determines the response marginals in Table 2. The outcome of
the coin toss (i.e., the choice of the response criterion) does not
bias4 our estimate of d′ , just as in the coin-toss example x
remains the best estimate of μ for both heads or tails.
However, as seen above from the associated confidence inter-
vals, the response marginal has considerable influence on the

precision of the estimate bd0, just as the outcome of the coin
toss influences the precision of the estimate x. Within the
conditional inference framework, this outcome is explicitly
taken into account by conditioning on the response marginal
that was actually observed.

The conditional approach: Statistical framework

We denote as λ ¼ πH
1−πH=

π F
1−π F

the odds ratio of the underlying hit

and false alarm probabilities. For the single–point YN–design a
standard result (Agresti, 2013, Eq. 7.9; Cox & Snell, 1989, Eq.
2.46; Fleiss et al., 2003, Eq. 6.35; Pawitan, 2013, Eq. 10.2) is that
conditional on the observed response marginal the number x of
hits has the non-central hypergeometric distribution

Ρ x; λ; n0; n1 mjð Þ ¼
n1
x

� �
n0
m−x

� �
λx

∑min n1;mð Þ
i¼max 0;m‐n0ð Þ

n1
i

� �
n0
m−i

� �
λi

ð1Þ

where n1 and n0 are the number of signal and noise trials,m is the
total number of “yes” responses, and x is the number of hits. Note
that in the layout of Table 1 the number of hits xmust be at least 0
orm − n0, whichever is larger, and is at most n1 orm, whichever
is smaller. Themost remarkable feature of Eq. 1 is that it depends
only on the odds ratio λ of the two independent probabilitiesπH ,
πF . For an observer with no sensitivity we have πH = πF , in
which case the odds ratio isλ= 1, and Eq. 1 represents the central
hypergeometric distribution.

In the following we denote as ψ = ln λ the log odds ratio.
The log likelihood of the data x in Table 1, conditional on the
response marginal m, is given as

Lm ψjxð Þ ¼ ln P x; eψ; n0; n1jm
� �

: ð2Þ

The conditional maximum likelihood estimate of ψ is the
value that, for given m and observed x, maximizes Lm(ψ| x)

4 We neglect the fact that the standard estimate of d′ is in fact slightly biased;
see, for example, Hautus (1995), Kadlec (1999), Miller (1996), and Verde
et al. (2006).

Fig. 1 The central hypergeometric distribution. Left panel: out of a total
of n1 = 14 signal and n0 = 14 noise presentations m = 14 trials are
selected at random for a “yes” response (cf. Table 2, left). The abscissa
shows the number of hits, the ordinate the associated hypergeometric

probability. With probability 94.3% would the number of hits fall into
the interval [5, 9]. Right panel: same scenario, but form = 22 trials with a
“yes” response (cf. Table 2, right), in which case the number of hits can
only range from 8 to 14
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(e.g., Agresti, 2013, Ch. 16.4.4). Note that Lm(ψ| x) is well-
defined for any potential outcome x; in particular, it is well
defined for x = n1 (when the observed hit rate is H = 1) and
for x = m (when the observed false alarm rate is F = 0).

Figure 2 shows Lm(ψ| x) for the data in Table 2 (right),
when the observer gave in n1 = 14 signal and n0 = 14 noise
trials a total of m = 22 “yes” responses, of which x = 13 were

hits, and thus 9 false alarms. The value of bψ ¼ 1:91 maxi-
mizes the conditional likelihood, and it corresponds to an odds

ratio of bλ ¼ 6:75.

Is the estimated value bψ ¼ 1:91 compatible with the
notion that the observer has no sensitivity to detect the
signal (πH = πF )? Note that an outcome as in Table 2
(right) is difficult to evaluate with the standard technique
because the assumptions underlying its application are
clearly violated (i.e., n1, n0 are both small, and H is close
to 1). In contrast, the conditional approach offers exact
explicit solutions based on Eq. 1. Specifically, exact con-
fidence intervals for ψ can be found analogously to the
classical Clopper–Pearson intervals for binomial parame-
ters (e.g., Agresti, 2013, Ch. 16.6; Miller, 1996, Eq. 12).
The lower limit of these confidence intervals is obtained
by finding the value of ψ for which a number of hits at
least as large as the one observed (i.e., x) still has a prob-
ability of α/2. Similarly, an upper limit is obtained by
finding the value of ψ for which a number of hits equal
to or smaller than the one observed still has a probability
of α/2.

More formally, define

bl ψð Þ ¼ ∑
min n1;mð Þ

i¼x
P i; eψ; n0; n1jm
� � ð3Þ

bu ψð Þ ¼ ∑
x

i¼max 0;m−n0ð Þ
P i; eψ; n0; n1jm
� � ð4Þ

For the data in Table 2 (right) the functions bl (ψ), bu(ψ) are
shown in Fig. 3; by its definition, bl (ψ) must be increasing,
and bu(ψ) be decreasing in ψ. Then the lower and upper
boundary of the (central) (1 − α) confidence interval [ψl,
ψu] are defined by the solutions of

bl ψð Þ ¼ α=2 and bu ψð Þ ¼ α=2 ð5Þ

Intervals constructed in the manner of Eq. 5 shown in Fig. 3
guarantee a coverage probability for the log odds ratio
(or equivalently for the odds ratio) of at least 1 − α.
For the data in Table 2 (right), we obtain a 95% con-
fidence interval for ψ equal to [−0.50, 5.91], which
corresponds to a 95% confidence interval for λ of
[0.61, 368.71]. The fact that this interval for ψ includes
the value of zero indicates that the hypothesis of no
sensitivity, πH = πF , cannot be ruled out (and thus
possibly λ = 1). The width of the interval reflects the
considerable uncertainty of inferences about λ when tri-
al numbers as small as n1 = n0 = 14 are used.

Rather than inverting two one-sided tests as by Eq. 5,
Agresti and Min (2001; Baptista & Pike, 1977) have shown

1 1 2 3 4 5 6

4

3

2

1
Ln L

Fig. 2 The log likelihood function Lm(ψ| x) for n0 = n1 = 14, m = 22 and x = 13, givingH = 13/14 and F = 9/14 (cf. Table 2, right). The maximum

occurs at bψ ¼ 1:91, corresponding to an odds ratio of bλ ¼ 6:75. The horizontal line lies 1
2χ

2
1ð Þ (0.95) = 1.92 units below the maximum of Lm(ψ| x)
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that shorter confidence intervals are obtained by inverting one
two-sided test (also see Agresti, 2013, Ch. 16). In effect, with
this method the confidence interval consists of all values ψ for
which the conditional probability P(x; eψ, n0, n1| m) in Eq. 1
of the observed number x of hits, plus that of all values x′with
smaller probability together is smaller than α. For example,
for the data in Table 2 (right) we obtain the shorter 95%
confidence interval [−0.45, 5.20] for ψ, corresponding to
[0.64, 181.27] for λ.

Finally, a graphical way to construct an approximate con-
fidence interval is based on the likelihood ratio test of the
observed vs. alternative values of ψ, see Morgan (2009, Ch.
4.4) or Pawitan (2013, Ch. 9). By this diagnostic, values of ψ
for which the log likelihood function Lm(ψ| x) shown in Fig. 2
falls more than 1

2χ
2
1ð Þ 1−αð Þ units below the maximum Lm(ψ|

x) would be considered incompatible with the observed data at
a level of α. The horizontal line in Fig. 2 indicates that level
for α = .05 (i.e., 12χ

2
1ð Þ (0.95) = 1.92), leading to an approxi-

mate 95% confidence interval for ψ of [−0.08, 4.93]. This
interval is only approximate because the likelihood ratio test
is only asymptotically exact; the advantage of the diagnostic
relative to the two exact methods described above is that it
allows a quick and easy evaluation directly from the graph of
the log likelihood function.

Finally, we emphasize that for all three methods described
confidence intervals forψ translate one-to-one into confidence
intervals for the odds ratio λ by transforming the lower and
upper interval boundaries via λ = exp(ψ). For example, inter-
vals containing the value ψ = 0 translate into intervals con-
taining the odds ratio λ = 1, corresponding to πH = πF.

The relation of the conditional approach to Luce’s
choice model

As indicated by Eq. 1 the conditional approach naturally leads
to the odds ratio λ ¼ πH

1−πH=
π F

1−π F
as a measure of sensitivity, or

to functions of λ, such as ψ. One specific interpretation that
also leads to the log odds ratio as a sensitivity index is the
detection model based on Luce’s (1959; Macmillan &
Creelman, 2005, ch. 4; McNicol, 2005, ch. 6) logistic choice
model. In this model the internal stimulus representation Xn

under noise has a logistic distribution with mean −d′/2, where-
as the stimulus representation Xs for signals has a logistic
distribution with mean +d′/2. The observer gives a positive
response if Xn or if Xs exceeds the response criterion c, lead-
ing to a false alarm or a hit, respectively. Under these assump-
tions, the log odds ratio ψ is equal to d′, that is, to the standard
logistic discrimination index, measuring the separation of the
two logistic densities (cf., McNicol, 2005, Eq. 6.9). In the
framework of Luce’s logistic model, varying the response
criterion c for a given, fixed separation d′ = ln λ traces out
an isosensitivity curve; it is given by the parametric family

x↦y xð Þ ¼ λ�
1−�ð Þþλ�

, and shown in Fig. 4. The ROC curve

y(x) has the property that the associated odds ratio y
1−y =

x
1−x

for all of its points (x, y) remains constant at λ. Figure 4 illus-
trates a geometric interpretation of the odds ratio: for any point
on the ROC curve λ equals the shaded area in the lower–right
corner measured as a multiple of the shaded area in the upper-
left corner.

Whereas the logistic choice model can be thought of as one
specific processing mechanism generating data conforming to
a given odds ratio, we note that the use of the odds ratio as
described in the previous Section encompasses a wider range

Fig. 3 The functions bl (ψ) (increasing) and bu(ψ) (decreasing) used to
construct a confidence interval for the log odds ratio. For the data given in
Table 2 (right), andα = 0.05, the limits are [−0.50, 5.91]. The confidence

interval comprises all values of ψ for which both bl (ψ) and bu(ψ) lie
above α/2, a level indicated by the horizontal line at the bottom
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of conceptual models capable of generating the observed re-
sults. Specifically, under the design shown in Table 1, the
distribution Eq. 1 applies in any case conditional on the ob-
served response marginal, no matter by which specific pro-
cessing mechanism the hit and false alarm rates were generat-
ed in the first place. For example, in order to apply the condi-
tional analysis based on Eq. 1 it would be irrelevant if the
observed rates were generated by an underlying continuous
strength model, for example, with normally or logistically
distributed internal representations, or by a discrete-state mod-
el (Macmillan & Creelman, 2005, Ch. 4), or by yet another
processing mechanism (e.g., Schwarz, 1992). As the log like-
lihoods obtained from independent tables add up, the condi-
tional analysis is easily extended beyond single-point designs
to series of 2 × 2 tables characterized by a common odds
ratio, as would be obtained by collecting from one observer
several independent points on an ROC of the form shown in
Fig. 4 (e.g., Agresti, 2013, Ch. 6; Fleiss et al., 2003, Ch. 10;
Gart, 1970; Pawitan, 2013, Ch. 10).

Statistical power: Comparison of conditional and
unconditional approaches

It has been observed in various statistical contexts that tech-
niques based on conditional inference tend to be slightly more
conservative, relative to unconditional approaches (Agresti,
2013, Ch. 3.5 and 16.6; Choi et al., 2015). To evaluate to
which degree this observation also holds for evaluating per-
formance in the signal detection design underlying Table 1,
we compared the statistical power of the two approaches. To

this end, we used the data generation model conforming to the
“home ground” of traditional SDT—that is, the equal variance
normal distribution model. Specifically, we used the double-
binomial YN design underlying Table 1 for an unbiased ob-
server (c = 0) and with n1 = n0 = 40 trials per stimulus. For
these numbers, the assumptions underlying the derivation of

the approximate standard error SE (bd0 ) would usually be con-
sidered to be satisfied (e.g., Kadlec, 1999). We first explicitly
computed for any of the 41 × 41 possible combinations of
observed numbers of hits x and false alarmsm − x if the value
of ψ = 0 is contained in the 95% confidence interval described
above, as obtained by inverting the two-sided test based on
Eq. 1 (e.g., Agresti & Min, 2001; Agresti, 2013, Ch. 16). In a
second step, these conditional outcomes, given x and m, were
then weighted according to the double-binomial sampling
model and summed to get the overall probability of rejecting
the hypothesis of d ′ = 0.

Similarly, we determined for any of the 41 × 41 combina-
tions of x and m − x in Table 1 if the value of d′ = 0 was
contained in the 95% confidence interval, as obtained by the

standard unconditional approach, bd0 ±1.96·SE (d′) (e.g.,
Macmillan & Creelman, 2005, Ch. 13). Note that the standard
estimate of d′ is undefined if either the observed hit rate H or
the observed false alarm rate F is equal to zero or one. We
followed the convention to replace rates of zero by 1/(2n) and
rates of one by 1 − 1/(2n); relative to other conventions (see
Hautus, 1995; Kadlec, 1999; Miller, 1996; Rotello et al.,
2008) this choice had very little effect because for an unbiased
observer with n1 = n0 = 40 trials the probability to observe
rates of zero or one is extremely small. Again, these condi-
tional outcomes, given x andm, were then weighted according
to the double-binomial sampling model. Thus, the results
shown in Fig. 5 are explicitly computed exact results, not
simulations.

The following main results shown in Fig. 5 stand out. First,
for any d′ > 0, the unconditional approach is in fact more
powerful. Second, the power advantage of the unconditional
approach is rather small, about 0.07 in terms of the d′ metric,
describing the horizontal shift of the two power curves. Third,
the conservativeness of the conditional approach means that
the actual α−error (3.3%) is below the nominal α−level of
5%, whereas for the unconditional approach the actual
α−error is 5.7%, that is, about 14% larger than the nominal
level (for systematic power simulations of the normal
distribution model, see Rotello et al., 2008). It is therefore
an open question if the power differences shown in Fig. 5
merely reflect a downstream consequence of the different ac-
tual α−errors. To address this point, we increased the factor
1.96 for the standard confidence interval in the unconditional
approach until the actualα−error was just equal to the value of
α = 3.3% for the conditional approach. This required a factor
of 2.20, and with the actual α−errors equated in this manner,

Fig. 4 The locus of pairs (πF, πH ) leading to a constant odds ratio, shown
for λ = 6, corresponding to ψ = 1.79. For any point on the ROC curve λ
equals the shaded area (12 subsquares) in the lower-right corner measured
as a multiple of the shaded area (2 subsquares) in the upper-left corner
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the two power curves were indistinguishable. It is thus fair to
conclude that the conditional approach is as powerful as the
unconditional approach, at least when the actual α−errors in-
volved are equated in the manner indicated.

General discussion

The conditional and the unconditional approach represent two
prominent alternative statistical frameworks to analyze data in
the format of Table 1 (Agresti, 2013; Cox & Snell, 1989;
Pawitan, 2013). For example, in order to compare two ob-
served relative frequencies generations of psychologists
(e.g., Hays, 1963, Ch. 17; McNemar, 1962, Ch. 13) have used
Fisher’s exact test, arguably the most prominent conditional
statistical test, corresponding to the null case of λ = 1 in Eq. 1.
Similarly, classical probabilistic models in item response the-
ory are explicitly based on a conditional inference framework
(Rasch, 1966). Against this background, it is surprising that in
evaluating detection performance the conditional approach
has played no role so far. The present note describes the con-
ceptual framework on which the conditional approach to eval-
uating detection performance rests, and illustrates some
technical aspects of its application in the context of the YN
design of SDT. In the following we aim at a balanced
discussion of some pros and cons of this approach.

A central feature of the conditional approach is that it
avoids the dependence on nuisance parameters, such as, for
example, the traditional response criterion measure c, by con-
ditioning on the actually observed response marginal. In many
contexts, this strategy seems reasonable from a perceptual or
cognitive point of view. For example, Kantner and Lindsay
(2012) presented strong evidence that the response bias shown

by an observer resembles a trait-like predisposition that is
largely independent of the specific manipulations that separate
signal from noise, and on which the interest of most re-
searchers typically focuses. Reasoning on the basis of the
actually observed responsemarginal, the conditional approach
relies on an exact and explicit probabilistic basis, Eq. 1, for
inference, thereby avoiding linearizing approximations, or ap-
peal to asymptotic large-sample convergence in distribution.
The basis of Eq. 1 means that all well-established analytical
tools of standard likelihood theory (e.g., Morgan, 2009;
Pawitan, 2013) apply, and that the approach remains valid
even for very small numbers of trials, which is especially
valuable in applied contexts where the number of trials per
condition and observer is typically small. Note that Eq. 1
remains valid also for extreme observations such as F = 0 or
H = 1; in these cases the likelihood function is strictly increas-
ing so that no finite conditional maximum likelihood estimate
of λ exists but confidence intervals will still give finite lower
limits for λ.

It is informative to compare these aspects to the uncondi-
tional approach. For the special case of an unbiased observer
(i.e., assuming that c = 0), Miller (1996) first showed, starting
from a given value of the true underlying d′ , how to derive

numerically the exact sampling distribution of bd0 from the
basic double-binomial sampling model. In contrast, in applied
studies, inference has to work backwards from the observed

value of bd0 to probabilistic conclusions about d′ . To derive
confidence intervals for d′ , Miller (1996, Eq. 12) inverted his

numerical results for the exact sampling distribution of bd0 as
computed under the equal variance normal distribution model.
His approach rests on the a priori assumption of c = 0

Fig. 5 The power function for the conditional (con; lower curve and
circles) and unconditional (unc; upper curve and squares) approach.
Abscissa: true underlying sensitivity d′ in the standard equal variance
normal distribution model. Ordinate: probability 1 − β to reject the

hypothesis of no sensitivity, d′ = 0. Based on independent double-
binomial sampling of n1 = 40 signal trials and n0 = 40 noise trials, and
assuming no bias (c = 0)
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regarding the nuisance parameter c; by comparison, the con-
ditional approach achieves this elimination by conditioning on
the actually observed response marginal. As shown in the
Introduction, in the general case the unconditional confidence
intervals depend on the value of c when (as would usually be
the case) no a priori knowledge about c is available. It is
clearly possible to generalize Miller’s (1996, Eq. 12) ap-
proach, for example, by deriving two-dimensional confidence
regions for (d, c) defined by equal-likelihood contours; how-
ever, such an approach would no longer be exact but
have to rely on asymptotic large-sample distribution the-
ory involving the usual approximation that −2 times the
log likelihood ratio is χ2−distributed (e.g., Pawitan,
2013, Ch. 4.3; Morgan, 2009, Ch. 4).

A further central feature of the conditional approach is that
it does not rely on particular assumptions regarding the under-
lying perceptual or cognitive processing mechanisms, such as
specific continuous strength or discrete state models (cf.
Macmillan & Creelman, 2005, Ch. 4; Rotello et al., 2008;
Schwarz, 1992). The only assumptions required are the inde-
pendence of trials, and the across-trials constancy of the true
underlying probabilities πH, πF. In this minimal framework,
the conceptual hypothesis of no sensitivity essentially reduces
to the simple hypergeometric urn model described in the

Introduction. Note that, in contrast, the standard error SE(bd0 )
in the traditional unconditional analysis (Gourevitch &
Galanter, 1967, Eq. 6; Macmillan & Creelman, 2005, Eq.
13.4) depends on the specific assumption of normally distrib-
uted internal representations.

These advantages have to be balanced against features of
the conditional framework which, at least in some contexts,
represent disadvantages relative to the unconditional ap-
proach. First, precisely because the conditional framework
eliminates the dependence on nuisance (i.e., bias) parameters
by conditioning on the observed response marginal, it cannot
provide an explicit measure of response bias. Therefore, in
contexts where it is important to derive explicit bias measures
the unconditional approach is the obvious choice. Second, the
unconditional approach has slightly more statistical power to
detect a given level of sensitivity. For scenarios typical of
applied research the difference in power is minuscule (see
Fig. 5); it is bought at the price of an α−error that is larger
than that for the more conservative conditional approach, and
is absent for typical scenarios as shown in Fig. 5 if the actual
α−levels involved are equated. Third, the minimalistic set of
conceptual and technical assumptions required for the condi-
tional framework may instead be seen as a limitation. Many
applied studies using single-point YN designs aim simply at
comparing rates of hits and false alarms, whereas others ex-
plicitly seek to test and compare specific information process-
ing models differing in, for example, their assumptions about
continuous vs. discrete stimulus representations (e.g.,

Macmillan & Creelman, 2005, Ch. 4). The conditional frame-
work essentially compares probabilities and evaluates their
relation in terms of their (log) odds ratio but it remains mute
with respect to how these probabilities are generated in terms
of more basic perceptual or cognitive processing mechanisms.

The present note focuses on analyses at the level of an
individual observer. This is in line with the fact that in many
contexts, SDT is applied to single, or to a few individual cases
of specific interest, for example, in medical and clinical stud-
ies involving rare diseases or specific conditions (e.g.,
Kostopoulou et al., 2019; O’Connor et al., 2003), in research
involving a few trained animals (Blough, 2001), in legal case
studies (Scurich & John, 2011), in research involving subjects
claiming to be exceptionally sensitive to, for example, elec-
tromagnetic fields (Köteles et al., 2013), in linguistic studies
of grammaticality judgments (Huang & Ferreira, 2020), or in
case studies of suspected malingering (Hiscock & Hiscock,
1989; Merten & Merckelbach, 2013). The conditional frame-
work of Eq. 1 is as well easily applicable to studies involving a
larger number of cases for each of whom an individual esti-
mate of ψ is derived, or to studies involving a single observer
doing relatively few trials. Beyond the level of individual
subjects the conditional framework suggests a basic metric
(i.e., the log odds ratio, ψ) that is statistically well-understood,
and clearly lends itself to higher-level meta-analytic aggrega-
tion of primary cases, or to the comparison and aggregation of
a series of tables such as Table 1 (for background, see Agresti,
2013, Ch. 6; Fleiss et al., 2003, Ch. 10; Gart, 1970; Pawitan,
2013, Ch. 10).

In conclusion, it seems fair to expect that the conditional
approach to evaluating detection performance will prove use-
ful in contexts in which closely related well-established tools
based on conditional inference such as Fisher’s exact test have
since long been valuable and prominent. These contexts in-
clude single-point detection studies in which the number of
signal and noise trials are small, the assumption of specific
strong processingmodels seems unwarranted, and the analysis
of response bias is not of main interest. For these scenarios, the
conditional framework may profitably not replace, but com-
plement the more traditional unconditional approach to eval-
uating detection performance.
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