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Summary
Infection of astrocytes with Newcastle disease virus stimulated the production of 1,2-diacylglycerol,
and resulted in the kinase-dependent expression of mRNAs encoding tumor necrosis factor (TNF),
interferon u and (3, and interleukin 6 . The half-life of TNF mRNA was significantly decreased
in the presence of protein kinase inhibitors H-7 and staurosporine, but not in the presence of
HA1004 . In contrast to the decay of TNF mRNA, the half-lives of other cytokine mp NAs
were only minimally affected by the kinase inhibitors. These data indicated that the stability
of TNF mRNA was regulated through a novel, kinase-dependent pathway.

Immunologically competent cells have the capacity to regu-
late expression ofcytokine genes. Much attention has been

focused on cis-acting promoter sequences that serve as binding
targets for the diverse factors that influence transcription . Of
potentially equal importance is the regulated control of mRNA
stability. Although relatively little is known of the factors
that influence mRNA half-life in eukaryotic cells, signals gener-
ated at the plasma membrane may alter the stability of cer-
tain mRNAs, including those encoding cytokines (1-3) .
Stabilization of these transiently expressed mRNAs can re-
sult in higher levels of secreted protein (1, 3) . Cytokine and
proto-oncogene mRNAs, which are among the least stable
eukaryotic RNAs, contain an AU-rich element in their 3'
untranslated regions that is similar to a sequence from
granulocyte-macrophage (GM)-CSF mRNA that confers in-
stability upon /3-globin mRNA (4). In addition, multiple
decay mechanisms appear to concurrently regulate the sta-
bility of these short-lived mRNAs, although the signal mes-
sengers and recognition sequences comprising these pathways
are poorly defined .
Along with their well-defined roles as immunomodulators,

the cytokines encoded by these mRNAs may also influence
glial cells and neurons within the central nervous system
(CNS) . Interestingly, we have observed that recombinant
TNF/cachectin kills primary oligodendrocytes, cells that form
the myelin sheath (5) . Since an infectious agent such as a virus
may play a role in the development of primary demyelina-
tion, we previously examined whether TNF was produced
after virus infection of astrocytes . Astrocytes infected with
Newcastle disease virus (NDV) produced TNF as well as IFN-
ct, IFN-a, and I1r6 (6) . In this report, we examined the mech-
anism by which virus stimulated cytokine gene expression

in astrocytes, and observed that the accumulation of TNF
mRNA was mediated through a novel, kinase-dependent
mRNA stabilization pathway.

Materials and Methods
Cell Culture and Stimulation .

	

Primary cultures of rat astrocytes
were established as described (5). Approximately 95% of the cells
expressed the astrocytec marker glial fibrillary acidic protein and
<2% expressed MAC-1. For induction, cells were stimulated with
NDV, NewJersey LaSota strain, at a multiplicity of 30 .

Measurement of1,2-diacylglycerol.

	

Astrocytes (8 x 105/60-mm
dish) were incubated in serum-free DMEM/Ham's F12 for 30 min
at 37*C and then stimulated with NDV. Reactions were termi-
nated by the addition ofice-cold methanol . Measurement o£ cel-
lular mass levels of 1,2-diacylglycerol and lipid phosphorus were
performed as described (7) . Data are reported as nanomoles of 1,2-
diacylglycerol per 100 nmol of lipid phosphorus . There were -55
nmol of lipid phosphorus per 8 x 105 cells.

Northern Blot Analysis.

	

Total RNA was isolated and analyzed
as described (6) . LabeledRNAprobes for mouse cytokines and IFN
regulatory factor 1(IRF-1) were generated using SP-6 and T7 pro-
moter vectors . The TNF probe was constructed from a 1.1-kb
fragment of TNF cDNA, the IFN-0 probe from a 500-bp PwII
fragment of IFN-/3 cDNA, the IFN-a, probe from a 776-bp
EcoR1-Bg1II fragment of the IFN-a4 genomic clone, and the IRF-1
probe from a 1,024-bp Xbal-PvuII fragment of the IRF-1 cDNA .
DNA probe for IL6 was constructed using an oligolabeling reac-
tion kit (Pharmacia Fine Chemicals, Piscataway, NJ) and a 650-bp
EcoRI-BglII fragment of 11,6 cDNA .

Nuclear Run-On Assay.

	

Nuclei (3 x 10') were isolated and na-
scent transcripts elongated in vitro as described (8) . LabeledRNA
was hybridized to denatured plasmids containing inserts for TNF,
IRF-1, and #-actin that had been immobilized on nitrocellulose
filters. pSV2-neo served as a control for nonspecific hybridization .
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" Value is statistically different from unstimulated sample ; p < 0.005
by unpaired student's t test .

Results and Discussion
We began to explore the mechanism by which NDV in-

duces rytokine mRNA accumulation by examining the role
of signal messengers generated after cells were exposed to
virus. NDV stimulated a transient production of 1,2-diacyl-
glycerol in astrorytes that peaked within 1 min (Table 1) .
To determine whether activated protein kinases, particularly
protein kinase C (PKC), participated in rytokine mRNA ac-
cumulation, cells were infected with NDV in the presence

Figure 1 .

	

Effect of kinase inhibitors on rytokine mRNA accumula-
tion after NDV infection . Astrocytes were preincubated for 30 min at
37°C in the presence or absence of kinase inhibitors, and then in-
fected with NDV in the continuous presence of the kinase inhibitors .
Total RNA, collected (A) 8 h or (B) 6 h after infection, was ana-
lyzed by Northern blot (10 Wg/sample) . (A) Unstimulated, lane 1;
NDV stimulated, lane 2; NDV plus H-7 (60, 30, and 15 AM), lanes
3-S; NDV plus HA1004 (60 AM); lane 6. (B) Unstimulated, lane 1;
NDV stimulated, lane 2; NDV plus staurosporine (0 .25, 0.50, 0.75,
and 1.0 AM), lanes 3-6.
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Figure 2.

	

Effect of H-7 on NDVstimulated transcription. Run-on
assays were performed with nuclei isolated from unstimulated astro-
cytes, and from cells stimulated for 4 h with NDV in the presence or
absence of H-7 (60 AM). Cells infected in the presence of H-7 were
preincubated with the kinase inhibitor for 30 min at 37°C .

or absence of kinase inhibitors (Fig . 1) . Infection of astro-
cytes with NDV in the presence of H-7 or staurosporine,
two compounds that inhibit PKC (9, 10), prevented the ac-
cumulation of TNF, IFN-a, IFN-(3, and 11,6 mRNAs in
a dose-dependent fashion . In contrast, HA1004, a compound
structurally related to H-7 but a relatively poor PKC inhib-
itor (9), failed to block rytokine mRNA accumulation . These
results indicated that NDVinduced accumulation of rytokine
mRNAs required PKC activity. Interestingly, accumulation
of mRNA encoding IRF-1 was not affected by the kinase
inhibitors. IRF-1 is a virus-inducible DNA binding protein
that plays a positive role in the expression of IFN-/3 and pos-
sibly other cytokines (11) . This finding confirmed that treat-
ment of astrorytes with H-7 and staurosporine did not cause
a nonspecific block of mRNA induction, and demonstrated
that overexpression ofIRF-1 mRNA can be dissociated from
virus-induced expression of rytokine mRNAs.
To determine whether the kinase inhibitors affected NDV

stimulated transcription, run-on assays were performed with
nuclei isolated from unstimulated astrorytes, and from cells
stimulated with NDV or NDV in the presence of H-7 (Fig.
2) . Virus infection increased TNF and IRF-1 transcription
and concomitantly decreased actin transcription . A noncyto-
toxic dose of H-7 caused a partial inhibition ofNDVinduced
transcription ofTNF and IRF-1 . Although the transcription
of these two genes was inhibited to a similar degree, H-7
had strikingly different effects on TNF and IRF-1 mRNA
accumulation (Fig . 1) . These findings suggested to us that
a pathway involving protein kinases may regulate thestability
of TNF mRNA in NDVstimulated cells.
The role of kinases in regulating rytokine mRNA half-life

was examined by infecting astrorytes with NDV for 6-8 h,
and then adding a-amanitin at a concentration that blocked
transcription in the presence or absence of kinase inhibitors .
Assessment of mRNA decay by Northern analysis (Fig. 3)
revealed that all of the rytokine mRNAs induced by virus
decayed with a relatively long half-life of several hours. Both
H-7 and staurosporine inhibited the virus-induced stabiliza-

Table 1 . 1 .2-Diacylglycerol
Stimulated with NDV

Production by Astrocytes

Stimulant Time DAG

min mole
Unstimulated 0 0.460 ± 0.215
NDV 1 1.169` ± 0.450
NDV 5 0.757 ± 0.458
NDV 10 0.579 ± 0.160
NDV 20 0.613 ± 0.259



Figure 3 .

	

Influence of kinase inhibitors on the decay of cytokine
mRNAs . (A) Astrocytes were infected with NDV for 6 or 8 h, and
then treated with ci-amanitin (5 pg/ml) in the presence or absence of
the kinase inhibitors H-7 (60 AM), HA1004 (60 AM), or staurospo-
rine (1 AM) . Total RNA, collected at the time of ci-amanitin addi-
tion (t - 0) or after further incubation, was analyzed by Northern
blot (10 pg/sample) . (B) Summary of cytokine mRNA decay in the
presence or absence of kinase inhibitors . mRNA accumulation was
quantitated by laser densitometry and standardized to the intensity of
/3-actin mRNA. ci-amanitin alone (" ) ; ci-amanitin in the presence
of, H-7 (O) ; staurosporine (x) ; HA1004 (" ) ; and H-7 and CHX (15
leg/ml) (" ) .

tion of TNF mRNA, whereas HA1004 did not . Densito-
metric analysis ofblots reprobed and standardized for O-actin
mRNA demonstrated that TNF mRNA stability decreased
ti10-fold (from 180 ± 52 min to 17 ± 0.9 min) in the pres-
ence of H-7 or staurosporine. Simultaneous treatment of as-
trocytes with cycloheximide (CHX) plus H-7 also resulted
in rapid TNF mRNA decay, suggesting that neither tran-
scription nor ongoing translation was required for degrada-
tion . In contrast to the decay of TNF mRNA, the half-lives
of IFN-(3, IFN-a, and IIr6 mRNAs were minimally affected
by H-7 or staurosporine, consistently decreasing two- to three-
fold . The stability of IRF-1 mRNA was also minimally
affected by H-7 (data not shown) .
We have demonstrated that TNF mRNA was stabilized

through a novel, kinase-dependent pathway after virus infec-
tion . This pathway profoundly influenced TNF mRNA ac-
cumulation, and may therefore play an important role in the
regulation ofTNF protein synthesis . All ofthe cytokknns ex-
amined, as well as IRF-1, contain AU-rich element in the
mRNA 3' untranslated region (4, 11), suggesting that this
destabilizing sequence may not be a sufficient signal to pref-
erentially target TNF mRNA to the kinase-modulated regula-
tory pathway. Stabilization of other cytokine mRNAs in-
duced in astrocytes by NDV was predominantly mediated
through distinct, PKC-independent mechanisms .

Signal messengers have been previously implicated in the
stabilization of cytokine mRNAs. Stimulation of transcrip-
tionally activated T cells with anti-CD28 stabilizes cytokine
but not proto-oncogene mRNAs (3) . Both LPS and phago-
cytosis increase GM-CSF mRNA accumulation in macro-
phages by a post-transcriptional mechanism (1) . LPS also acts
as a post-transcriptional stimulator for TNF production by
macrophages, increasing both mRNA accumulation and trans-
lation (2, 12) . Although specific sequences involved in the
regulation of stability have been identified in transferrin
receptor, histone, and a-tubulin mRNAs (13-15), the ele-
ments involved in these cytokine regulatory pathways are cur-
rently unknown . Further work will help to clarify the se-
quences in TNF mRNA that may act as targets for the
kinase-modulated stabilization pathway.
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