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1  | MOLECUL AR STRUC TURE OF 
PEROXISOME PROLIFER ATOR-AC TIVATED 
RECEPTOR GAMMA (PPARγ)

The PPARs belongs to the superfamily of nuclear hormone receptors 
and is named for its activation, which is regulated by the peroxisome 
proliferators. There are three subtypes of PPARs (PPARα, PPARβ and 
PPARγ). These three subtypes of PPARs are expressed differently in 
different tissues. PPARα is mainly manifested in cardiomyocytes, he-
patocytes, intestinal epithelial cells and renal tubule epithelial cells; 
PPARβ is found in many tissues, with the higher expression in the in-
testine, kidney and heart; and PPARγ is mainly expressed in adipose 
tissue.1

PPARs always consist of four domains (A/B, C, D and E/F, 
Figure 1)The A/B region, located at the N end of the receptor pro-
tein, is the active functional region and differs among the subtypes 
and is independent of ligands. Region C is the DNA binding domain 
containing two zinc finger structures. Area D is the hinge domain. 

Region E/F, located at the end of C, is the ligand binding domain and 
contains a ligand-dependent transcriptional activation functional 
region.2 The PPARγ gene can be transcribed into different PPARγ 
mRNAs and translated into two isoforms [PPAR γ1 and PPAR γ2].3

After binding to ligands, PPARγ is activated and combines with 
retinoids X receptor (RXR) to form a heterodimer. Then, a series of 
synergistic factors are recruited and combined with the heterodi-
mer to take part in regulating transduction. Typical endogenous li-
gands for PPARγ include prostaglandins, eicosanoids and fatty acids. 
At the same time, PPARγ can also directly activate specific genes 
or conduct gene transduction through DNA-independent patterns 
(Figure 2).

2  | FUNC TION AND CELLUL AR ROLES OF 
PPARγ

The biological functions of PPARγ are complex and diverse, includ-
ing regulation of lipid and carbohydrate metabolism, energy balance, 
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Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a vital subtype of the 
PPAR family. The biological functions are complex and diverse. PPARγ plays a signifi-
cant role in protecting the liver from inflammation, oxidation, fibrosis, fatty liver and 
tumours. Natural products are a promising pool for drug discovery, and enormous re-
search effort has been invested in exploring the PPARγ-activating potential of natural 
products. In this manuscript, we will review the research progress of PPARγ agonists 
from natural products in recent years and probe into the application potential and 
prospects of PPARγ natural agonists in the therapy of various liver diseases, including 
inflammation, hepatic fibrosis, non-alcoholic fatty liver and liver cancer.
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inhibiting inflammation, inducing tumour cell differentiation and ap-
optosis, inhibiting tumour angiogenesis, anti-fibrosis and anti-ather-
osclerosis, reducing blood fat and blood pressure, improving heart 
failure and participating in ventricular remodelling. Thus, PPARγ is a 
current focus of research present. And indeed, there are a number 
of researchers, who have written review articles to shed more light 
on the power of PPARγ.

Semple reviewed the function of PPARγ and its variants in meta-
bolic syndrome.1 In addition, Jia,4 Chigurupati5 and Vallée6 analysed 
therapeutic potential of PPARγ agonists in diabetes. PPARγ agonists 
improve insulin sensitivity and treat complications of diabetes. PPARγ 
can stimulate the differentiation of pre-adipocytes into mature adipo-
cytes and is closely related to adipogenesis in mature adipocytes.7 The 
beneficial role of PPARγ in regulation immunity was summarized by 
Samuel Philip Nobs,8 Chung,9 Abdelrahman,10 Giaginis11 and Staels.12 
PPARγ inhibits pro-inflammatory responses by macrophages, DCs, 
and T cells. Reka,13 Lecarpentier14 and Heudobler15 reviewed the 
implications for PPARγ in cancer therapy and prevention. Activation 
of PPARγ by agonists has the ability to inhibit cell proliferation and 
growth based on the ability to induce differentiation. A number of in 
vitro and in vivo experiments have shown that PPARγ is expressed in 
tumour cells and can inhibit the growth of cancer cells after activation, 
such as breast cancer,16,17 pancreatic cancer,18 colon cancer19,20 and 
gastric cancer.21 Additional results confirmed that decreased expres-
sion of PPARγ was found in activated hepatic stellate cells (HSCs), sug-
gesting that the increased expression and activity of PPARγ promoted 
the recovery of activated HSCs to a resting state.22-25 Among the mul-
tiple biological responses involved, PPARγ plays a corresponding role 
by regulating the expression of signalling pathways, including JAK-
STAT, NF-kB, nuclear factor of activated T cell, AP-1, PI3K, leptin and 
adiponectin. Therefore, PPARγ is of vital importance when making a 
diagnosis and selecting treatment for related diseases.

3  | PPARγ  AGONISTS FROM NATUR AL 
PRODUC TS

Because of the significant role of PPARγ in diseases, the identifi-
cation of PPARγ agonists is regarded as targets of numerous drug 
development works. Large amounts of fatty acids and fatty acid 
derivatives can activate PPARγ. Among the PPARγ activators, 

long-chain polyunsaturated fatty acids always show better effects, 
such as eicosanoids [8-S-hydroxyeicosatetraenoic acid and leukot-
riene B4]. Also, PPARγ can be activated by several prostanoids, such 
as 15-deoxy-Δ12, 14-prostaglandin J2 (15d-PGJ2) and 15-hydrox-
yeicosatetraenoic acid. The effect of 15d-PGJ2 has been widely 
recognized.11 Thiazolidinediones (TZDs) are synthetic ligands of 
PPARγ and are well-known for excellent potency in regulating blood 
glucose levels and insulin sensitivity.26 However, the undesirable 
side effects, such as fluid retention, weight gain, cardiac hypertro-
phy and hepatotoxicity, have limited the clinical use of TZDs.5 Thus, 
searching for drugs with a similar clinical function, but fewer side 
effects has become a new direction of effort. Natural products are 
rich sources of drug discovery; thus, natural products are a focus of 
research.27,28

Previous studies have successfully demonstrated various PPARγ 
agonists from natural resources by using reporter gene assays, 
pharmacophore models, silicon screening and virtual screening ap-
proaches. A cell-based luciferase reporter system may become a 
suitable method to detect bioavailability of nuclear receptors, in-
cluding PPARs.29 Rasmus30 demonstrated that the pharmacophore 
model can be used to select novel PPARs agonists. In addition, Jang 
and Peng31,32 identified promising PPARγ agonists on the basis of 
structure analyses. Since the first time that virtual screening (VS) 
was used to identify novel PPARγ agonists by Salam et al,33 more 
and more researchers have begun using in silico methods alone or 
combined with other approaches, such as in vivo or in vitro exper-
iments,34,35 structure analyses36,37 and some databases,36 to find 
novel agonists as potential candidates to treat diseases.38 The func-
tionality of some approaches has been verified.

To review PPARγ agonists from natural products we checked the 
database, DrugBank (www.drugb​ank.ca), which combines bio- and 
chem-informatics. Table 1 shows our results. Resveratrol, curcumin, 
isoflavone, cannabidiol, nabiximols and medical cannabis have been 
confirmed to have the agonist role.

Not surprisingly, an abundance of research efforts has been 
undertaken to explore the potential applications of full or partial 
PPARγ natural agonists. Table 2 exhibits the natural agonists and 
their functions, which have been discussed in recent years. After 
reviewing the reported agonists, we found that the majority are fla-
vonoids or isoflavonoids. Most of the other agonists are stilbenes, 
polyacetylenes, amorfrutins, sesquiterpene lactones and derivatives 

F I G U R E  1   PPARγ structure. The A/B region, located at the N end of the receptor protein, is the active functional region. Region C is the 
DNA binding domain. Area D is the hinge domain. Region E/F, located at the end of C, is the ligand binding domain and contains a ligand-
dependent transcriptional activation functional region

http://www.drugbank.ca
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of diterpenequinone. The diversity of agonists depends on the large 
size of the LBD binding pocket and its flexibility.

Meanwhile, there are new trends in the treatment of liver dis-
ease which are using dual PPARα/γ or PPAR δ/γ agonists and pan 
agonists to enhance treatment efficacy.39,40 Of note, synthetic dual 
or pan PPAR agonists were discontinued due to adverse events.41 It 
has been showed that resveratrol,42 carvacrol,43 osthole,44 dark tea 
extracts,45 isoprenols,46 pseudolaric acid B,47 mulberry leaf water 
extract, Korean red ginseng, banaba leaf water extract,48 and canna-
binoids49 activate two or three isotypes of PPARs, and can therefore 
be used for regulate metabolism. And the compound functions are 
discussed below.

The liver is the centre of bio-transformation and detoxification 
of numerous metabolites and toxicants. Exposure to high levels of 
exogenous or endogenous toxins may lead to liver damage, which 
ranges from a transient elevation of liver enzymes to hepatic in-
flammation, fibrosis, cirrhosis and cancer. Although the expression 
of PPARγ is always at a low level in liver, PPARγ agonists exhibit 
various PPARγ-dependent or PPARγ-independent effects in liver.50 
In addition, researches on our team have focused on the preven-
tion and therapy of liver diseases in recent years. We also have 
published some reports on the effects of PPARs in liver diseases. 
The protective effects of many Chinese herbal medicines, such as 
quercetin,51-53 oleanolic acid,54 proanthocyanidin B2,55 epigallocat-
echin-3-gallate,56 isorhamnetin57 and genistein,58 in liver diseases 
have been confirmed by our studies.

In fact, some of the Chinese herbal medicines or plants extracts 
have been reported to have a close relationship with PPARs, and a 
range of PPARγ activating natural products were recently recognized 

that possess a great potential to be further explored for the thera-
peutic effectiveness in liver diseases; but it has not thoroughly re-
viewed, and its natural agonists have been evaluated even less. Even, 
few reviews of the effects of PPARγ natural agonists in liver disease 
have been published. Understanding the role natural products play, 
as well as their therapeutic potential for fighting liver diseases, in-
cluding hepatitis, fibrosis, fatty liver and liver cancer, is critical for 
future progress. Therefore, our present review summarizes the lat-
est research progress of PPARγ agonists from natural products in 
recent years and explores the application prospect of PPARγ natural 
agonists in the treatment of liver diseases.

4  | PPARγ  NATUR AL AGONISTS AND 
LIVER DISE A SES

4.1 | PPARγ natural agonists in hepatitis-associated 
inflammation

Inflammation is provoked by pathogenic agents, physical or chemical 
harm, and ischaemic or autoimmune injury, and it is a vital response 
for protection. The role of PPARγ in the regulation of inflammatory 
responses has received particular attention. PPARγ appears to be 
expressed in many cell types of the immune system, such as mac-
rophages, dendritic cells, platelets, T cells and B cells.59 In addition, 
PPARγ has been shown in numerous studies to affect the expres-
sion of pro-inflammatory, anti-inflammatory and pro-resolving cy-
tokines.60-63 (Figure 3).

Feng reported that apigenin activates PPARγ and ameliorates 
inflammation via regulation of macrophage polarization.64 Apigenin 
(4,5,7-trihydroxyflavone) is a plant flavonoid abundant in fruits and 
vegetables that acts as a PPARγ modulator by binding and activating 
the PPARγ. Moreover, PPARγ is regarded as a modulator of macro-
phage polarization. Apigenin activates PPARγ and inhibits p65 trans-
location into the nucleus, favouring M2 macrophage polarization. 
The ability of apigenin in reversing M1 macrophages into M2 mac-
rophages was confirmed based on in vivo experiments in mice.65 
Apigenin decreased the secretion levels of interleukin(IL)-1β, IL-6, 
IL-12 and TNF-α both in vitro and in vivo. Hesperidin is a flavanone 
glycoside in citrus fruits. When detecting the effect of hesperidin in 
diethylnitrosamine-induced hepatocarcinogenesis, Mahmoud found 
that hesperidin ameliorates oxidative stress and inflammation, dra-
matically up-regulates the expression of PPARγ, and significantly 
prevents liver damage.66,67 The anti-inflammatory effect of cur-
cumin, a natural polyphenolic compound, was reported by El-Naggar 
et al.68 In streptozotocin-induced diabetic rats, the up-regulation of 
alanine aminotransferase, aspartate aminotransferase, cyclooxygen-
ase, transforming growth factor-β1 and nuclear factor kappa B were 
reversed by curcumin via its promotion of PPARγ expression. In an 
investigation of the jellyfish-derived fungus, Penicillium chrysoge-
num J08NF-4, researchers described a new meroterpene derivative, 
chrysogenester, which has been defined as a PPARγ agonist. In this 
study, Lius found that chrysogenester activates PPARγ in Ac2F liver 

F I G U R E  2   PPARγ activation. In normal cells, the PPARγ is 
located in the cytoplasm. After combining with its agonists and 
retinoid X receptor (RXR), the PPARγ complex translocates to the 
nucleus where it recognizes specific DNA sequence elements 
(peroxisome proliferator response element, PPRE) in promoters of 
target genes
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cells and increases nuclear PPARγ protein in RAW 264.7 macro-
phages. Chrysogenester inhibits phosphorylation of the NF-κB and 
suppressed the expression of pro-inflammatory cytokines, including 
NO, TNF-α, IL-1β and IL-6.69

These reports confirmed the function of PPARγ natural agonists 
in liver inflammation. The anti-inflammatory properties of betulin, 
biochanin A, epigallocatechin gallate, harpagoside, madecassic acid, 
monascin, resveratrol, rhizoma dioscoreae nipponicae polysaccha-
rides and ursolic acid, which can increase the expression of PPARγ, 
have been explored by many other scientists. These findings provide 
evidence for the application prospect of PPARγ natural agonists in 
inflammatory liver diseases.

4.2 | PPARγ natural agonists in liver fibrosis

Liver fibrosis is a chronic and dynamic pathophysiological process, and 
commonly, excessive secretion and deposition of matrix proteins by 
HSCs is a pivotal step. Liver fibrosis is closely connected with hepati-
tis virus infection, alcohol and lipids. The expression of PPARγ is high 
expression in quiescent HSCs; however, PPARγ is suppressed during fi-
brosis process. Studies have shown that PPARγ activation blocks HSCs 
activation and reduces collagen deposition during hepatic fibrogenesis. 
Thus, PPARγ is an effective target in anti-fibrosis therapy.70 Also, most 
PPARγ agonists from nature are partial agonists and always play a bio-
logical role by regulating the expression of a variety of genes, resulting 
in achieving better results. Thus, more and more authorities believe 
PPARγ agonists could become available therapeutic agents (Figure 4).

Curcumin, for acid polyphenols, is a yellow pigment in turmeric. 
Zheng and Chen have verified curcumin function inducing PPARγ 
expression in activated HSCs and suppressing extracellular matrix 
production (ECM). They found that curcumin could stimulate the 
trans-activation activity of PPARγ, and thus reduce HSC proliferation, 
induce apoptosis, down-regulate the expression of ECM gene expres-
sion and regulate pathways of TGF-β and connective tissue growth 
factor.71,72 Guo et al described the anti-fibrotic role of puerarin, an 
active ingredient from kudzu root. Puerarin effectively attenuated 
liver damage by up-regulating PPARγ expression in CCl4-induced 
hepatic fibrosis. Puerarin can reverse the changes in serum hepatic 
enzyme activity, reduce ECM deposition and regulate the expression 
of matrix metalloproteinases (MMPs) and tissue inhibitors of metallo-
proteinase (TIMPs).73 Monascin is derived from monascus-fermented 
secondary metabolites. It has been shown that monascin rescues 
the inhibited expression of PPARγ. In HSCs from carboxymethyl-
lysine-induced fibrosis, monascin attenuates α-smooth muscle actin 
and reactive oxygen species generation. Monascin may slow or even 
block the progression of liver fibrosis through activation of PPARγ.74 
Chois reported that capsaicininhibits liver fibrosis by restraining the 
TGF-β1 pathway expression via activation of PPARγ. This report de-
scribed the protective effect of capsaicin. The mechanism of action 
of capsaicin includes the reduction of oxidative stress and inflamma-
tory response, induction of HSCs apoptosis and repression of ECM 
production.75TA
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4.3 | PPARγ natural agonists in liver cancer

More than one decade ago, PPARγ was reported to be closely re-
lated to the formation of liver tumours in animals. Researchers found 
that oestrogen can activate PPARγ by inducing the formation of the 
metabolite of prostaglandin D2, then activated PPARγ can promote 
the proliferation of peroxidase bodies, finally causing oxidative DNA 
damage. This process is closely related to the formation of hepatic 
tumours.76 However, with the deepening of research, people have 
different definitions about the role of PPARγ in the development of 
liver cancer.77,78 Koga79 reported that the expression of PPARγ in 
liver cancer was very similar to that in surrounding non-tumorous 
cirrhotic liver; however, the number of cases was small. Schaefer80 
and Lin81 found that PPARγ is highly expressed in hepatic cancer 
tissues and in HCC cell lines, and the inhibition of PPARγ function 
could cause HCC cell death. At the same time, other papers ana-
lysed the expression of PPARγ in human HCC tissues and adjacent 

non-tumorous liver tissue, and found a significant decrease in HCC 
tissues, thus showing us that PPARγ ligands, including thiazolidinedi-
ones. TZDs and 15-deoxy-Δ12,14-prostaglandin J2 inhibit growth 
and induce apoptosis of liver cancer cells.82-87

When scientists shifted their perspective to natural agonists of 
PPARγ, the potential in HCC therapy was shown. Avicularin is a bio-
active flavonoid from various plants. Researchers use Huh7 cells to 
investigate the effect of avicularin in HCC. The results indicated that 
avicularin treatment decreased cell proliferation, inhibited cell mi-
gration and invasion in HCC and induced cell apoptosis via inhibiting 
the G0/G1-phase cells and decreasing the accumulation of S-phase 
cells. Moreover, the demonstrated anti-cancer efficacy of avicularin 
was at least partly dependent on its activation of PPARγ activities.88 
Another flavonoid, hispidulin, exhibits potent cytotoxicity towards 
a variety of human cancers. Hans confirmed the protective effect 
of hispidulin on HCC both in vitro and in vivo. Hispidulin triggered 
apoptosis, inhibited cell migration and invasion, and activated PPARγ 

TA B L E  2   Discussed natural agonists of PPARγ (from 2010 to 2019)

Functions Agonists Years References

Anti-cancer Chromolaena odorata, Luteolin, Stereoisomers ginsenosides 2012 136–140

Turbinaria ornata and Padina pavonica 2015 141

Resveratrol 2016, 2019 42,95,113,115

Anti-fibrosis Puerarin 2013, 2017 74

Piperine 2017 143

Berberine 2018 144

Anti-
inflammation

Monascin 2011, 2014 145–147

Astaxanthin, Ankaflavin, Biochanin A, Cullin-3, Danhong, Daidzein 2012 148–153

Ursolic acid, Epigallocatechin gallate, Monascin 2013 154–156

Rhizoma Dioscoreae Nipponicae polysaccharides, Harpagoside, Tectorigenin, 
Chrysin

2015 157–160

Huangkui, Tripchlorolide, Kochia scoparia and Rosa multiflora, Resveratrol, 
Chrysin, Daidzein

2016 115,121,161–164

Astragalus, Fraglide-1, Madecassic acid, Epigallocatechin Gallate, Hesperetin 2017 66

Isoprenylated flavonoid, chrysogenum J08NF-4, Portulaca oleracea L., Betulin, 
Terminalia arjuna, Naringin

2018 69,169–173

Beta-caryophyllene, Wogonin, Resveratrol, Hesperetin 2019 113,174–176

Metabolism 
regulation

Cerco-A, Mycophenolic acid, Fructus Schisandrae, Monascin 2011 156,177–179

Ankaflavin, Astaxanthin, Danhong 2012 149,150,152

Amorfrutin, Honokiol, Monascin 2013 156,180,181

Chebulagic acid, Monascin 2014 145,147,182

Kaempferol, Lonicera japonica Thunb, Quercetin, Tectorigenin 2015 160,183,184

Osthole, Isorhamnetin, Huangkui, Saponins and sapogenins, Resveratrol, 
quercetin

2016 95,162,185–188

ZINC13408172, 4292805, 44179 and 901461, Lycium, Astragalus, 
Tetrahydrocannabinolic acid, Astragaloside IV

2017 168,189–192

Betulin, Chlorogenic acid, Isoprenylated flavonoid, Gentiopicroside, 
Geranylgeraniol, Moringa concanensis Nimmo, Terminalia arjuna, Saponins and 
sapogenins

2018 169,170,172,193–196

Kaempferia parviflora, Moringa concanensis Nimmo, Resveratrol 2019 42,95,197,198
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signalling. The animal experiments showed that hispidulin adminis-
tration could suppress tumour growth and lung metastasis.89 Huangs 
studied the combined effects of chrysin and apigenin, both of which 
are found in Morinda citrifolia, in liver cancer. These two drugs were 
used in both in vivo and in vitro experiments, and authors found 
they could inhibit cancer cell growth, disorganize cell cycle distri-
butions and suppress cancer cell migration. The combined effects 
were better, compared with either alone.90 Vara team detected 
the anti-proliferative effects of cannabinoids in hepatocellular 
carcinoma on HepG2 and HUH-7 cell lines in vitro and in vivo. Δ9-
tetrahydrocannabinol and JWH-015 are two famous cannabinoids, 
and they could inhibit cancer cell proliferation and induce autophagy. 

The activity and intracellular level of PPARγ were increased by them, 
and the effects can be abolished by a PPARγ inhibitor.91

The studies on the favourable effects of PPARγ natural agonists 
for HCC were few, and researches for several other types of cancer 
are listed in Table 3.16,92-94 To some extent, they can also demonstrate 
the potential of PPARγ natural agonists as anti-liver cancer agents.

4.4 | PPARγ natural agonists in non-alcoholic fatty 
liver disease (NAFLD)

Fatty liver disease, due to input/output imbalance of hepatic free fatty 
acid(FFA) metabolism, is regarded as one of the most common chronic 
liver diseases worldwide. Insulin resistance and oxygen stress are re-
garded as the central to development. The multi-layer and multi-angle 
function of PPARγ have been confirmed by many researchers.95,96 As 
we mentioned above, PPARγ activation down-regulate inflammatory 
response,97 inhibit HSCs activation,98 increase energy expenditure99 
and increase insulin sensitivity.100 PPARγ activation could stimulate 
fatty acid oxidation in the liver.101,102 These are positive roles of PPARγ. 
At the same time, in vivo experiments for deletion or overexpression 
of PPARγ exhibited its prosteatotic role in the development of NAFLD 
or NASH.103-105 PPARγ also regulates lipid deposition in liver and other 
tissues.106 Utilizing the positive effects of PPARγ while limiting its 
negative effects by targeting other PPARs has paved the way for the 
development of a new batch of dual and pan agonists. Some research-
ers have set their sights to natural dual and pan PPAR agonists. There 
are some cell studies showing that soy isoflavones exhibit antidiabetic 
and hypolipidemic effects by activating both PPARα and PPARγ.107 
Guozhu42 reported that resveratrol suppresses oleate-induced total 
cholesterol accumulation in macrophages by activating PPARα/γ sig-
nalling pathway, and it was confirmed that resveratrol could prevent 

F I G U R E  4   PPARγ natural agonists and liver fibrosis. Activation 
of HSCs is closely connected with viral infections, injury alcohol, 
diet and drugs. PPARγ is highly expressed in quiescent HSCs; 
however, PPARγ is suppressed during the process of fibrosis. 
PPARγ natural agonists block HSC activation and reduce collagen 
deposition during hepatic fibrogenesis

F I G U R E  3   PPARγ natural agonists and 
inflammation. PPARγ natural agonists can 
regulate inflammatory responses. PPARγ 
natural agonists promote the activation of 
macrophages, the apoptosis of neutrophils 
and B cells, and the expression of some 
anti-inflammatory cytokines. In addition, 
PPARγ suppresses the function of T cells 
and decreases the expression of some 
pro-inflammatory cytokines
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hepatic steatosis in NAFLD.108 Polyphenolic compounds from differ-
ent sources showed apparent effects on PPAR expression and affect 
lipid accumulation in high-fat-fed mice.109 Bavachinin is a natural pan 
PPAR agonist that increase effectiveness of TZDs or fibrates when 
regulating carbohydrate and lipid metabolism in diet-induced obese 
mice.110

5  | CONCLUSION

Natural products have been and continue to be rich sources for drug 
discovery. Natural agonists of PPARγ have confirmed anti-inflamma-
tory, antioxidant properties, anti-fibrosis, anti-tumour and metabo-
lism regulation effects. These beneficial effects may be partly due 
to the role of PPARγ in pathophysiological processes. Both experi-
mental and clinical research results have indicated PPARγ agonists 
from natural products play vital roles in their protective effects in 
liver diseases. Besides, dual PPARα/γ or PPAR δ/γ agonists and pan 
agonists have draw researchers’ attention, and sometimes they have 
better curative effects.

However, the limitation of this review is that there are few stud-
ies on the treatment of liver diseases with PPARγ natural agonists. 
Because PPARγ and the target genes of natural products are diverse, 
it is likely that many other mechanisms contribute to their beneficial 
effects in these and other disease models. A lot of ongoing research 
efforts are trying to broaden our horizons to better understand the 
role of PPARγ systematically.
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