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THE BIGGER PICTURE A recent confluence of technologies has enabled scientists to effectively transfer
runnable analyses, addressing a long-standing challenge of reproducible research. The implementation of
reproducible research for in silico analyses requires extensive metadata to describe both scientific concepts
and the underlying computing environment. This review covers the wide range of metadata standards rele-
vant to reproducible computational research across an ‘‘analytic stack’’ consisting of input data, tools, re-
ports, pipelines, and publications. Legacy and cutting-edge metadata support a wide range of data annota-
tions, analytic approaches, and interpretation across virtually all scientific disciplines. This review is
designed to bridge the metadata and reproducible research communities. We identify competing ap-
proaches of embedded and connected metadata, discuss gaps, and make recommendations with implica-
tions for the future of journals and peer review.
SUMMARY

Reproducible computational research (RCR) is the keystone of the scientific method for in silico analyses,
packaging the transformation of raw data to published results. In addition to its role in research integrity,
improving the reproducibility of scientific studies can accelerate evaluation and reuse. This potential and
wide support for the FAIR principles have motivated interest in metadata standards supporting reproduc-
ibility. Metadata provide context and provenance to raw data and methods and are essential to both discov-
ery and validation. Despite this shared connection with scientific data, few studies have explicitly described
how metadata enable reproducible computational research. This review employs a functional content anal-
ysis to identify metadata standards that support reproducibility across an analytic stack consisting of input
data, tools, notebooks, pipelines, and publications. Our review provides background context, explores gaps,
and discovers component trends of embeddedness and methodology weight from which we derive recom-
mendations for future work.
INTRODUCTION

Digital technology and computing have transformed the scienti-

fic enterprise. As evidence, many scientific workflows and

methods have become fully digital, from the problem scoping

stage and data collection tasks to analyses, reporting, storage,

and preservation. Another key factor includes federal1 and insti-

tutional2,3 recommendations and mandates to build a sustain-

able research infrastructure, to support FAIR principles,4 and

reproducible computational research (RCR). Metadata have

emerged as a crucial component, supporting these advances,

with standards supporting the research life cycle. Reflective of

change, there have been many case studies on reproducibility,5

although few studies have systematically examined the role of
This is an open access article und
metadata in supporting computational reproducibility. Our aim

in this work was to review metadata developments that are

directly applicable to computational reproducibility, identify

gaps, and recommend further steps involving metadata toward

building a more robust infrastructure. To lay the groundwork

for these recommendations, we first review reproducible

computational research and metadata, examine how they relate

across different stages of an analysis, and discuss what com-

mon trends emerge from this approach.
Intended audience
This review is designed primarily to bridge the metadata and

reproducible research communities. The practitioners working
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Figure 1. Whitaker’s matrix of reproducibility
Whitaker’s matrix of reproducibility;10 made available under the Creative
Commons Attribution license (CC-BY 4.0).
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in this area may be considered information scientists or data en-

gineers working in the life, physical, and social sciences. Those

readers most interested in the representation of scientific data

and results will find sections on input and publication most rele-

vant, while those most closely aligned with analysis and data

engineering may be more interested in the sections on tools, re-

ports, and pipelines. During the development of this article, it

became evident that many important efforts that could be useful

and applicable to other domains will wither in isolation if not

discovered by a wider audience. Furthermore, many areas of

research homologous are not identified as such simply due to

differences in the use of terminology. Though much of the battle

ground of reproducibility has involved the fields of bioinformatics

and psychology, these are by no means the only affected areas.

It should be mentioned that while the reproducibility crisis has

played out on a public stage involving high-profile papers and

journals and is often connected to challenges in peer review pro-

cesses, the home front of reproducibility is borne by individuals

working in smaller settings who need to reproduce analyses writ-

ten by immediate colleagues, or even themselves.

Reproducible computational research
‘‘Reproducible research’’ is an umbrella term that encompasses

many forms of scientific quality, from generalizability of underly-

ing scientific truth, exact recreation of an experiment with or

without communicating intent, to the open sharing of analysis

for reuse. Specific to computational facets of scientific research,

RCR6 encompasses all aspects of in silico analyses, from the

propagation of raw data collected from the wet lab, field, or

instrumentation, through intermediate data structures, computa-

tional hardware, to open code and statistical analysis, and finally

publication. Here, our emphasis is on the scholarly record with

results reported in a journal article, conference proceeding,

white paper, or report, as a final reporting; although we clearly

recognize the importance of reproducibility and full scope of

scientific output including data, software, tools, and even data

papers.7 Reproducible research points to several underlying

concepts of scientific validity – terms that should be unpacked

to be understood. Stodden et al.8 devised a five-level hierarchy

of research, classifying it as reviewable, replicable, confirmable,
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auditable, and open or reproducible. Whitaker9 described an

analysis as "reproducible" in the narrow sense that a user can

produce identical results provided the data and code from the

original, and "generalizable" if it produces similar results when

both data are swapped out for similar data ("replicability"), and

if underlying code is swapped out with comparable replace-

ments ("robustness") (Figure 1).

While these terms may confuse those new to reproducibility, a

review by Barba disentangled the terminology while providing a

historical context of the field.11 Onemajor conflicted use of terms

(reproducible/replicable) has since then been harmonized.12 A

wider perspective places reproducibility as a first-order benefit

of applying FAIR principles: Findability, Accessibility, Interoper-

ability, and Reusability. In the next sections, we engage repro-

ducibility in the general sense and use "narrow-sense" to refer

to the same data, same code condition.

Reproducibility crisis

The scientific community’s challenge with irreproducibility in

research has been extensively documented.13 Two events in

the life sciences stand as watershed moments in this crisis: the

publication of manipulated and falsified predictive cancer thera-

peutic signatures by a biomedical researcher at Duke and sub-

sequent forensic investigation by Keith Baggerly and David

Coombes,14 and a review by scientists at Amgen who could

replicate the results of only 6 of 53 cancer studies.15 These

events involved different aspects: poor data structures and

missing protocols, respectively. Together with related studies,16

they underscore recurring reproducibility problems due to a lack

of detailed methods, missing controls, and other protocol fail-

ures in inadequate understanding or misuse of statistics,

including inappropriate statistical tests and/or misinterpretation

of results, which also plays a recurring role in irreproducibility.17

Regardless of intent, these activities fall under the umbrella

term of "questionable research practices." It bears speculation

whether these types of incidents are more likely to occur in novel

statistical or computational approaches compared with conven-

tional ones. Subsequent surveys of researchers13 have identified

selective reporting, while theory papers18 have emphasized the

insidious combination of underpowered designs and publication

bias, essentially a multiple testing problem on a global scale. We

contend that metadata have an undervalued role to play in ad-

dressing all of these issues and to shift the narrative from a crisis

to opportunities.19

In the wake of this newfound interest in reproducibility, both

the variety and volume of related case studies increased after

2015 (Figure 2). Likert-style surveys and high-level publica-

tion-based censuses (see Figure 3) in which authors tabulate

data or code availability are most prevalent. In addition, low-

level reproductions, in which code is executed, replications in

which new data are collected and used, tests of robustness

in which new tools or methods are used, and refactors to

best practices are also becoming more popular. While the life

sciences have generated more than half of these case studies,

areas of the social and physical sciences are increasingly the

subjects of important reproduction and replication efforts.

These case studies have provided the best source of empirical

data for understanding reproducibility and will likely continue to

be valuable for evaluating the solutions we review in the next

sections.



Figure 2. Case studies in reproducible
research
The term "case studies" is used in a general sense
to describe any study of reproducibility.5 A repro-
duction is an attempt to arrive at comparable results
with identical data using computational methods
described in a paper. A refactor involves refactoring
existing code into frameworks and reproducible
best practices while preserving the original data. A
replication involves generating new data and
applying existing methods to achieve comparable
results. A test of robustness applies various pro-
tocols, workflows, statistical models, or parameters
to a given dataset to study their effect on results. A
census is a high-level tabulation conducted by a
third party. A survey is a questionnaire sent to
practitioners. A case narrative is an in-depth first-
person account. An independent discussion uses a
secondary independent author to interpret the re-
sults of a study as a means to improve inferential
reproducibility.
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Big data, big science, and open data

The inability of third parties to reproduce results is not new to sci-

ence,21 but the scale of scientific endeavor and the level of data

and method reuse suggest replication failures may damage the

sustainability of certain disciplines, hence the term "reproduc-

ibility crisis." The problem of irreproducibility is compounded

by the rise of "big data," in which very large, new, and often

unique, disparate, or unformatted sources of data have been

made accessible for analysis by third parties, and "big science,"

in which terabyte-scale datasets are generated and analyzed by

multi-institutional collaborative research projects on specialized

and possibly unique infrastructure. Metadata aspects of big data

have been quantitatively studied concerning reuse,22,23 but not

reproducibility, despite some evidence that big data may play

a role in spurious results associated with reporting bias.24 Big

data and big science have increased the demand for high-per-

formance computing, specialized tools, and complex statistics,

with attention to the growing popularity and application of ma-

chine learning and deep learning (ML/DL) techniques to these

data sources. Such techniques typically train models on specific

data subsets, and the models, as the end product of these

methods, are often "black boxes," i.e., their internal predictors

are not explainable (unlike older techniques such as regression)

though they provide a good fit for the test data. Properly evalu-

ating and reproducing studies that rely on such algorithms pre-

sents new challenges not previously encountered with inferential

statistics.25,26 Computational reproducibility is typically focused

on the last analytic steps of what is often a labor-intensive scien-

tific process that often originates from wet-lab protocols, field-

work, or instrumentation and these last in silico steps present

some of the more difficult problems both from technical and

behavioral standpoints, because of the amount of entropy intro-

duced by the sheer number of decisions made by an analyst.

Developing solutions to make ML/DL workflows transparent,

interpretable, and explorable to outsiders, such as peer re-

viewers, is an active area of research.27

The ability of third parties to reproduce studies relies on ac-

cess to the raw data and methods employed by authors. Much

to the exasperation of scientists, statisticians, and scientific soft-

ware developers, the rise of "open data" has not been matched

by "open analysis," as evidenced by several case studies.20,28–30
Missing data and code can obstruct the peer-review process,

where proper review requires the authors to put forth the effort

necessary to share a reproducible analysis. Software develop-

ment practices, such as documentation and testing, are not a

standard requirement of the doctoral curriculum, the peer-re-

view process, or the funding structure, and as a result, the

scientific community suffers from diminished reuse and repro-

ducibility.31 Sandve et al.32 identified the most common sources

of these oversights in "Ten Simple Rules for Reproducible

Computational Research": lack of workflow frameworks,

missing platform and software dependencies, manual data

manipulation or forays into web-based steps, lack of versioning,

lack of intermediates and plot data, and lack of literate program-

ming or context can derail a reproducible analysis.

An issue distinct from the availability of source code and raw

data is the lack of metadata to support reproducible research.

We have observed that many of the findings from case studies

in reproducibility point to missing methods details in an analysis,

which can include software-specific elements such as software

versions and parameters,33 but also steps along the entire scien-

tific process, including data collection and selection strategies,

data processing provenance including hardware and statistical

methods, and linking these elements to publication. We find

the key concept connecting all of these issues is metadata.

An ensemble of dependency management and containeriza-

tion tools already exist to accomplish narrow-sense reproduc-

ibility34: the ability to execute a packaged analysis with little effort

from a third party. But context to allow for robustness and replica-

bility, "broad-sense reproducibility," is limited without endorse-

ment and integration of necessary metadata standards that sup-

port discovery, execution, and evaluation. Despite the growing

availability of open-source tools, training, and better executable

notebooks, reproducibility is still challenging.35 In the following

sections, we address these issues, first defining metadata,

defining an "analytic stack" to abstract the steps of an in silico

analysis, and then identifying and categorizing standards both es-

tablished and in development to foster reproducibility.

Metadata
Over the past 25 years, metadata have gained acceptance as a

key component of research infrastructure design. This trend is
Patterns 2, September 10, 2021 3



Figure 3. Reproducibility
Censuses like this one by Obels et al. measure data
and code availability and reproducibility in this case
over a corpus of 118 studies, 62 of which were
psychology studies that had preregistered a
Registered Report (RR).20
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defined by numerous initiatives supporting the development and

sustainability of hundreds of metadata standards, each with

varying characteristics.36,37 Across these developments, there

is a general high-level consensus regarding the following three

types of metadata standards38,39:

1. Descriptive metadata, supporting the discovery and gen-

eral assessment of a resource (e.g., the format, content,

and creator of the resource).

2. Administrative metadata, supporting technical and other

operational aspects affiliated with resource use. Adminis-

trative metadata include technical, preservation, and

rights metadata.

3. Structural metadata, supporting the linking among the

components of a resource, so it can be fully understood.

There is also general agreement that metadata are a key

aspect in supporting FAIR, as demonstrated by the FAIRsharing

project (https://fairsharing.org), which divides standards types

into "reporting standards" (checklists or templates, e.g., MI-

AME),40 "terminology artifacts or semantics" (formal taxonomies

or ontologies to disambiguate concepts, e.g., Gene Ontology),41

"models and formats" (e.g., FASTA),42 "metrics" (e.g., FAIRMet-

rics)43 and "identifier schemata" (e.g., DOI)44,45 (see Table 1).

Metadata are by definition structured. However, structured in-

termediates and results that are used as part of scientific ana-

lyses and employ encoding languages such as JSON or XML

are recognized as primary data, not metadata. While an exhaus-

tive distinction is beyond the scope of this paper, we define

reproducible computational research metadata broadly as any

structured data that aids reproducibility and that can conform

to a standard. While this definition may seem liberal, we contend

that metadata are the "glue" of reproducibility, and best identi-

fied by its function rather than its origins. This general under-

standing of metadata as a necessary component for research

and data management and growing interest in reproducible

computational research, together with the fact that there are

few studies targeting metadata about the analytic stack that

motivated the research presented in this paper.

Goals and methods
Our overall goal of this work is to review existing metadata stan-

dards and new developments that are directly applicable to

reproducible computational research, identify gaps, discuss

common threads among these efforts, and recommend next

steps toward building a more robust infrastructure.

Our method is framed as a state-of-the-art review based on

literature and ongoing software development in the scientific
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community. Review steps included: (1)

defining key components of the analytic

stack, and functions that metadata can

support; (2) selecting exemplary metadata
standards that address aspects of the identified functions; (3)

assessing the applicability of these standards for supporting

computational reproducibility functions; and (4) designing the

corresponding metadata hierarchy. Our approach was

informed, in part, by the Qin LIGO case study,46 catalogs of

metadata standards such as FAIRSharing, and comprehensive

projects to bind semantic science such as Research Objects.47

Compilation of core materials was accomplished mainly

through literature searches but also perusal of code reposi-

tories, ontology catalogs, presentations, and Twitter posts. A

"word cloud" of the most used abstract terms in the cited pa-

pers revealing most general terms is available in the code re-

pository.

The RCR metadata stack

To define the key aspects of reproducible computational

research, we have found it useful to break down the typical sci-

entific computational analysis workflow, or "analytic stack," into

five levels: (1) input, (2) tools, (3) reports, (4) pipelines, and (5)

publications. These levels correspond loosely to the CRISP-

DM data science process model (understanding, prep,

modeling, evaluation, deployment),48 scientific method (formula-

tion, hypothesis, prediction, testing, analysis), and various

research lifecycles as proposed by data curation communities

(data search, data management, collection, description, anal-

ysis, archival, and publication)49 and software development

communities (plan, collect, quality control, document, preserve,

use). However, unlike the steps in the life cycle, we do not

emphasize a strong temporal order to these layers, but instead

consider them simply interactive components of any scientific

output.

RESULTS

In the course of our research, we found most standards, pro-

jects, and organizationswere intended to address reproducibility

issues that corresponded to specific activities in the analytic

stack. However, metadata standards were unevenly distributed

among the levels. Standards that could arguably be classified or

repurposed into two or more areas were placed closest to their

original intent. While we present the standards as a linear list of

elements for the sake of clarity and comprehensibility, it is

impossible to ignore their strongly intertwined nature. Pipelines,

for example, also include data and code, journal articles, espe-

cially executable papers, and encompass metadata standards

across many components. If communities are to embrace the

RCR model, agreement is needed not just for individual meta-

data standards but also for elements that are used in concert.

https://fairsharing.org


Table 1. Types of FAIRsharing data and metadata standards

Type of standard Purpose

Reporting standards Ensure adequate metadata for

reproduction

Terminology artifacts or

semantics

Concept disambiguation and

semantic relationships

Models and formats Interoperability

Identifier schemata Discovery
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The synthesis below first presents a summary table (Table 2),

followed by amore detailed description of each of the five levels,

specific examples, and a forecast of future directions.

Input
Input refers to raw data from wet lab, field, instrumentation, or

public repositories; intermediate processed files; and results

from manuscripts. Compared with other layers of the analytic

stack, input data garner the majority of metadata standards.

Descriptive standards (metadata) enable the documentation,

discoverability, and interoperability of scientific research and

make it possible to execute and repeat experiments. Descriptive

metadata, along with provenance metadata, also provides

context and history regarding the source, authenticity, and life

cycle of the raw data. These basic standards are usually

embodied in the scientific output of tables, lists, and trees, which

take form in files of innumerable file and database formats as

input to reproducible computational analyses, filtering down to

visualizations and statistics in published journal articles. Most

instrumentation, field measurements, and wet lab protocols

can be supported by metadata used for detecting anomalies

such as batch effects and sample mix-ups.

Input metadata also serves to characterize gestalt aspects of

datasets that may explain failures to replicate, such as a lack

of population diversity in genomic studies,91 or those that can

quickly inform peer reviewers whether appropriate methods

were employed for an analysis.

While metadata are often recorded from firsthand knowledge

of the technician performing an experiment or the operator of

an instrument, many forms of input metadata are in fact metrics

that can be derived from the underlying data. This fact does not

undermine the value of "derivable" metadata in terms of its

importance for discovery, evaluation, and reproducibility.

Formal semantic ontologies represent one facet of metadata.

The OBO Foundry92 and NCBI BioPortal serve as catalogs of life

science ontologies. The usage of these ontologies appears to

follow a steep Pareto distribution, with the most popular ontol-

ogies generating thousands of citations, whereas the vast major-

ity of NCBO’s 883 ontologies have never been cited or

mentioned.

Examples

In addition to being the oldest, and arguably most visible of

reproducibility metadata standards, input metadata standards

serve as a watershed for downstream reproducibility. To under-

stand what input means for computational reproducibility, we

examine three well-established examples of metadata stan-

dards from different scientific fields. Considering each of these

standards reflects different goals and practical constraints of
their respective fields, their longevity merits investigating what

characteristics they have in common.

DICOM: An embedded file header. Digital Imaging and Com-

munications in Medicine (DICOM) is a medical imaging standard

introduced in 1985.93 DICOM images require extensive technical

metadata to support image rendering, and descriptive metadata

to support clinical and research needs. These metadata coexist

in the DICOM file header, which uses a group/element name-

space to designate public restricted standard DICOM tags

from private metadata. Extensive standardization of data types,

called value representations (VRs) in DICOM, also follow this

public/private scheme.94 The public tags, standardized by the

National Electrical Manufacturers Association (NEMA), have

served the technical needs of both 2- and 3-dimensional images,

as well as multiple frames, and multiple associated DICOM files

or "series." Conversely, descriptivemetadata have suffered from

"tag entropy" in the form of missing, incorrectly filled, nonstan-

dard, or misused tags by technicians manually entering in meta-

data.95 This can pose problems both for clinical workflows as

well as efforts to aggregate imaging data for data mining and

machine learning. Advanced annotations supporting image seg-

mentation and quantitative analysis have to conform to data

structures imposed by the DICOM header format. This has

made it necessary for programs such as 3DSlicer96 and its asso-

ciated plugins, such as dcqmi,97 to develop solutions such as se-

rializations to accommodate complex or hierarchical metadata.

EML: Flexible user-centric data documentation. Ecological

Metadata Language (EML) is a common language for sharing

ecological data.50 EML was developed in 1997 by the ecology

research community and is used for describing data in notable

databases, such as the Knowledge Network for Biocomplexity

(KNB) repository (https://knb.ecoinformatics.org/) and the Long

Term Ecological Network (https://lternet.edu/). The standard en-

ables documentation of important information about who

collected the research data, when, and how, describing the

methodology down to specific details and providing detailed

taxonomic information about the scientific specimen being stud-

ied (Figure 4).

MIAME: A submission-centric minimal standard. Minimum In-

formation About a Microarray Experiment (MIAME)40 is a set of

guidelines developed by the Microarray Gene Expression Data

(MGED). society that has been adopted bymany journals to sup-

port an independent evaluation of results. Introduced in 2001,

MIAME allows public access to crucial metadata supporting

gene expression data, i.e., quantitative measures of RNA tran-

scripts via the Gene Expression Omnibus (GEO) database at

the National Center for Biotechnology Information and European

Bioinformatics Institute (EBI) ArrayExpress. The standard allows

microarray experiments encoded in this format to be reanalyzed,

supporting a fundamental goal of computational reproducibility:

to support structured and computable experimental features.99

MIAME (Box 1) has been a boon to the practice of meta-ana-

lyses and harmonization of microarrays, offering essential array

probeset, normalization, and sample metadata that make the

over 2 million samples in GEOmeaningful and reusable.100 How-

ever, it should be noted that among MIAME and other Investiga-

tion/Study/Assay (ISA) standards that have followed suit,101

none offer a controlled vocabulary for describing downstream

computational workflows aside from slots to name the
Patterns 2, September 10, 2021 5
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Table 2. High-level summary

Metadata level Description Examples of metacontent Examples of standards Projects and organizations

1. Input metadata related

to raw data and

intermediates

sequencing parameters,

instrumentation,

spatiotemporal extent

MIAME,* EML,*

DICOM*, GBIF CIF

ThermoML, CellML,

DATS, FAANG, ISO/TC

276, NetCDF, OGC, GO

OBO, NCBO,

FAIRsharing, Allotrope

2.Tools metadata related

to executable and

script tools

version, dependencies,

license, scientific domain

CRAN DESCRIPTION file,*

Conda* meta.yaml/environment.

yml, pip requirements.txt,* pipenv

Pipfile/Pipfile.lock, Poetry

pyproject.toml/poetry.lock,

EDAM,* CodeMeta,*

Biotoolsxsd, DOAP,

ontosoft, SWO

Dockstore,

Biocontainers

3.Statistical reports

and notebooks

literate statistical

analysis documents

in Jupyter or knitr,

overall statistical

approach or rationale

session variables, ML

parameters, inline

statistical concepts

OBCS, STATO* SDMX

DDI, MEX,* MLSchema,

MLFlow,* Rmd YAML*

Neural Information Processing

Systems Foundation

4.Pipelines,

preservation,

and binding

dependencies and

deliverables of the

pipeline, provenance

file intermediates, tool

versions, deliverables

CWL,* CWLProv,* RO-Crate,*

RO, WICUS, OPM, PROV-O,

ReproZip Config, ProvOne,

WES, BagIt, BCO, ERC

GA4GH, ResearchObjects,

WholeTale, ReproZip

5.Publication research domain,

keywords, attribution

bibliographic, scientific

field, scientific approach

(e.g., "GWAS")

BEL,* Dublin Core, JATS,

ONIX, MeSH, LCSH, MP,

Open PHACTS, SWAN,

SPAR, PWO, PAV

NeuroLibre, JOSS,

ReScience, Manubot

Metadata standards, including MIAME,40 EML,50 DICOM,51 GBIF,52 CIF,53 ThermoML,54 CellML,55 DATS,56 FAANG,57 ISO/TC 276,58 GO,41 Bio-

toolsxsd,59 meta.yaml,60 DOAP,61 ontosoft,62 EDAM,63 SWO,64 OBCS,65 STATO,66 SDMX,67 DDI),68 MEX,69 MLSchema,70 CWL,71 WICUS,72

OPM,73 PROV-O,74 CWLProv,75 ProvOne,76 PAV,77 BagIt,78 RO,47 RO-Crate (abstract by Sefton et al., 2019), BCO,79 Dublin Core,80 JATS,81

ONIX,82 MeSH,83 LCSH,84 MP,85 Open PHACTS,86 BEL,87 SWAN,88 SPAR,89 PWO.90 *Standards that are featured within this article. Examples of

all standards can be found at https://github.com/leipzig/metadata-in-rcr.
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normalization procedure applied to what are essentially unitless

intensity values.

Future directions: Encoding, findability, granularity,

dimensionality

Metadata for input is developing along descriptive, administra-

tive, and structural axes. Scientific computing has continuously

and selectively adopted technologies and standards developed

for the larger technology sector. Perhaps most salient from a

development standpoint is the shift from extensible markup lan-

guage (XML) to more succinct Javascript Object Notation

(JSON) and Yet Another Markup Language (YAML) as preferred

formats, along with requisite validation schema standards.102

The term "semantic web" describes an early vision of the

Internet based on machine-readable contextual markup and

semantically linked data using Uniform Resource Identifier

(URI).103 Schema.org, a consortium of e-commerce companies

developing tags for markup and discovery, such as those recog-

nized byGoogleDataset Search,104 has coalesced a stable set of

tags that is expanding into scientific domains, demonstrating the

potential for findability. Schema.org can be used to identify and

distinguish inputs and outputs of analyses in a disambiguated

and machine-readable fashion. DATS,56 a Schema.org-compat-

ible tag-suite describes fundamental metadata for datasets akin

to that used for journal articles, especially to enable access to

sensitive data. Combined with solutions for securely accessing
6 Patterns 2, September 10, 2021
analysis tools,105,106 DATS can solve an often invoked impedi-

ment to reproducibility: that of unshareable data. The Open

Research Knowledge Graph107 (ORKG) aims to bring meaning-

fulness to scholarly documents in the same way as the semantic

web for online documents. ORKG’s structured semantic meta-

data on research contributions could not only improve findability

and make scientific knowledge machine readable, but also miti-

gate reproducibility challenges.

Of increasing interest to the life sciences is the representation

of phenotypic data to accompany various omics studies, as pri-

mary variables for genotype-by-environment studies, to control

for possible confounds and randomeffects, and as labels forma-

chine learning efforts toward genotype-to-phenotype prediction.

Phenotypic metadata for human studies, ranging from basic de-

mographics (e.g., sex, age) to complex attributes, such as

disease, is often crucial to interpreting and reusing omics data.

However, a study of 29 transcriptomics-based sepsis studies

revealed 35%of the phenotypic information was lost in public re-

positories relative to their respective publication.108 Efforts to

standardize phenotypic information for plants, such as Minimal

Information About Plant Phenotyping Experiment (MIAPPE),

are challenged by a highly heterogeneous landscape of species,

data types, and experimental designs.109 This has required the

development of the Plant Phenotyping Experiment Ontology

(PPEO) data model with elements unique to botany.

http://Schema.org
http://Schema.org
https://github.com/leipzig/metadata-in-rcr


Figure 4. Ecological metadata language
Geographic and temporal EML metadata and the associated display on
Knowledge Network for Biocomplexity (KNB) from Halpern et al.98
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Finally, the growing scope for input metadata describing and

defining unambiguous lab operations and protocols is important

for reproducibility. One example of such an input metadata

framework is the Allotrope Data Format, an HDF5 data structure,

and accompanying ontology for chemistry protocols used in the

pharmaceutical industry.110 Allotrope uses the W3C Shapes

Constraint Language (SHACL) to describe which RDF relation-

ships are valid to describe lab operations.
Tools
Tool metadata refers to administrative metadata associated with

computing environments, compiled executable software, and

source code. In scientific workflows, executable and script-

based tools are typically used to transform raw data into

intermediates that can be analyzed by statistical packages and

visualized as, e.g., plots or maps. Scientific software is written

for a variety of platforms and operating systems; although
Unix/Linux-based software is especially common, it is by no

means a homogeneous landscape. In terms of reproducing

and replicating studies, the specification of tools, tool versions,

and parameters is paramount. In terms of tests of robustness

(same data/different tools) and generalizations (new data/

different tools), communicating the function and intent of a tool

choice is also important and presents opportunities for meta-

data. Scientific software is scattered across many repositories

in both source and compiled forms. Consistently specifying the

location of software using URLs is neither trivial nor sustainable.

To this end, a Software Discovery Index was proposed as part of

the NIH Big Data To Knowledge (B2DK) initiative.1 Subsequent

work in the area cited the need for unique identifiers, supported

by journals, and backed by extensive metadata.111

Examples

The landscape of metadata standards in tools is best organized

into efforts to describe tools, dependencies, and containers.

CRAN, EDAM, and CodeMeta: Tool description and citation.

Source code spans both tools and literate statistical reports,

although for convenience we classify code as a subcategory of

tools. Metadata standards do not exist for loose code, but pack-

aging manifests with excellent metadata standards exist for

several languages, such as R’s Comprehensive R Archive

Network (CRAN) DESCRIPTION files (Box 2).

Recent developments in tools metadata have focused on tool

description, citation, dependency management, and containeri-

zation. The last two advances, exemplified by the Conda and

Docker projects (described below), have largely made computa-

tional reproducibility possible, at least in the narrow sense of

being able to reliably version and install software and related de-

pendencies on other people’s machines. Often small changes in

software and reference data can have substantial effects on an

analysis.113 Tools like Docker and Conda respectively make

the computing environment and version pinning software

tenable, thereby producing portable and stable environments

for reproducible computational research.

The EMBRACE Data And Methods (EDAM) ontology provides

high-level descriptions of tools, processes, and biological file

formats.63 It has been used extensively in tool recommenders,114

tool registries,115 and within pipeline frameworks and workflow

languages.116,117 In the context of workflows, certain tool combi-

nations tend to be chained in predictable usage patterns driven

by application; these patterns can be mined for tool recom-

mender software used in workbenches.118

CodeMeta119 prescribes JSON-LD (JSON for Linked Data)

standards for code metadata markup. While CodeMeta is not it-

self an ontology, it leverages Schema.org ontologies to provide

language-agnostic means of describing software as well as

"crosswalks" to translatemanifests from various software repos-

itories, registries, and archives into CodeMeta (Box 3).

Considerable strides have been made in improving software

citation standards,121 which should improve the provenance of

methods sections that cite those tools that do not already have

accompanyingmanuscripts. Code attribution is implicitly fostered

by the application of large-scale data mining of code repositories,

such as Github is the generation of dependency networks,122

measures of impact,123 and reproducibility censuses.124

Dependency and package management metadata. Compiled

software often depends on libraries that are shared by many
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Box 1. An example of MIAME in MINiML formathttps://www.ncbi.nlm.nih.gov/geo/info/MINiML_Affy_example.txt

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<MINiML

xmlns="https://www.ncbi.nlm.nih.gov/geo/info/MINiML"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="https://www.ncbi.nlm.nih.gov/geo/info/MINiML

https://www.ncbi.nlm.nih.gov/geo/info/MINiML.xsd"

version="0.5.0" >

<Contributor iid="contrib1">

<Person><First>Jun</First><Last>Shima</Last></Person>

</Contributor>

<Contributor iid="contrib2">

<Person><First>Fumiko</First><Last>Tanaka</Last></Person>

</Contributor>

<Contributor iid="contrib3">

<Person><First>Akira</First><Last>Ando</Last></Person>

</Contributor>

<Contributor iid="contrib4">

<Person><First>Toshihide</First><Last>Nakamura</Last></Person>

</Contributor>

<Contributor iid="contrib5">

<Person><First>Hiroshi</First><Last>Takagi</Last></Person>

</Contributor>

<Database iid="GEO">

<Name>Gene Expression Omnibus (GEO)</Name>

<Public-ID>GEO</Public-ID>

<Organization>NCBI NLM NIH</Organization>

<Web-Link>https://www.ncbi.nlm.nih.gov/geo</Web-Link>

<Email>geo@ncbi.nlm.nih.gov</Email>

</Database>

<Platform iid="GPL90">

<Accession database="GEO">GPL90</Accession>

</Platform>

<Sample iid="Sample1">

<Title>

before fermentation

</Title>

<Channel-Count>1</Channel-Count>

<Channel position="1">

<Source>mRNA T128</Source>

<Organism>Saccharomyces cerevisiae</Organism>

<Characteristics>
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programs on an operating system. Conflicts between versions of

these libraries, and software that demands obscure or outdated

versions of these libraries, are a common source of frustration for

users who install scientific software and amajor hurdle to distrib-

uting reproducible code. Until recently, installation woes and

"dependency hell" were considered a primary stumbling block

to reproducible research.125 Software written in high-level lan-

guages such as Python and R has traditionally relied on lan-

guage-specific packagemanagement systems and repositories,

e.g., pip and PyPI for Python, and the install.packages() function

and CRAN for R. The complexity yet unavoidability of controlling

dependencies led to competing and evolving tools, such as pip,

Pipenv, and Poetry in the Python community, and even different

conceptual approaches, such as the CRAN time machine. In
8 Patterns 2, September 10, 2021
recent years, a growing number of scientific software projects

use combinations of Python and compiled software. The Conda

project (https://conda.io) was developed to provide a universal

solution for compiled executables and script dependencies

written in any language. The elegance of providing a single re-

quirements file has contributed to Conda’s rapid adoption for

domain-specific library collections such as Bioconda,126 which

are maintained in "channels" that can be subscribed and priori-

tized by users.

Fledgling standards for containers. For software that requires a

particular environment and dependencies that may conflict with

an existing setup, a lightweight containerization layer provides a

means of isolating processes from the underlying operating sys-

tem, basically providing each program with its own miniature

https://conda.io
https://www.ncbi.nlm.nih.gov/geo/info/MINiML_Affy_example.txt
https://www.ncbi.nlm.nih.gov/geo/info/MINiML
http://www.w3.org/2001/XMLSchema-instance
https://www.ncbi.nlm.nih.gov/geo/info/MINiML
https://www.ncbi.nlm.nih.gov/geo/info/MINiML.xsd
https://www.ncbi.nlm.nih.gov/geo
mailto:geo@ncbi.nlm.nih.gov


Box 2. R description An R package DESCRIPTION file from DESeq2.112

Package: DESeq2

Type: Package

Title: Differential gene expression analysis based on the negative

binomial distribution

Version: 1.33.1

Authors@R: c(

person("Michael", "Love", email="michaelisaiahlove@gmail.com", role =

c("aut","cre")),

person("Constantin", "Ahlmann-Eltze", role = c("ctb")),

person("Kwame", "Forbes", role = c("ctb")),

person("Simon", "Anders", role = c("aut","ctb")),

person("Wolfgang", "Huber", role = c("aut","ctb")),

person("RADIANT EU FP7", role="fnd"),

person("NIH NHGRI", role="fnd"),

person("CZI", role="fnd"))

Maintainer: Michael Love<michaelisaiahlove@gmail.com>

Description: Estimate variance-mean dependence in count data from

high-throughput sequencing assays and test for differential

expression based on a model using the negative binomial

distribution.

License: LGPL (>= 3)

VignetteBuilder: knitr, rmarkdown

Imports: BiocGenerics (>= 0.7.5), Biobase, BiocParallel, genefilter,

methods, stats4, locfit, geneplotter, ggplot2, Rcpp (>= 0.11.0)

Depends: S4Vectors (>= 0.23.18), IRanges, GenomicRanges,

SummarizedExperiment (>= 1.1.6)

Suggests: testthat, knitr, rmarkdown, vsn, pheatmap, RColorBrewer,

apeglm, ashr, tximport, tximeta, tximportData, readr, pbapply,

airway, pasilla (>= 0.2.10), glmGamPoi, BiocManager

LinkingTo: Rcpp, RcppArmadillo

URL:https://github.com/mikelove/DESeq2

biocViews: Sequencing, RNASeq, ChIPSeq, GeneExpression, Transcription,

Normalization, DifferentialExpression, Bayesian, Regression,

PrincipalComponent, Clustering, ImmunoOncology

RoxygenNote: 7.1.1

Encoding: UTF-8
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operating system. The ENCODE project127 provided a virtual

machine for a reproducible analysis that produced many figures

featured in the article and serves as one of the earliest examples

of an embedded virtual environment. While originally designed

for deploying and testing e-commerce web applications, the

Docker containerization system has become useful for scientific

environments where dependencies and permissions become

unruly. Several papers have demonstrated the usefulness of

Docker for reproducible workflows125,128 and as a central unit

of tool distribution.129,130

Conda programs can be trivially Dockerized, and every Bio-

Conda package gets a corresponding BioContainer131 image

built for Docker and Singularity, a similar container solution de-

signed for research environments. Because Dockerfiles are

similar to shell scripts, Docker metadata are an underutilized

resource and one that may need to be further leveraged for

reproducibility. Docker does allow for arbitrary custom key-value

metadata (labels) to be embedded in containers (Box 4). The

Open Container Initiative’s Image Format Specification (https://
github.com/opencontainers/image-spec/) defines pre-defined

keys, e.g., for authorship, links, and licenses. In practice, the

now deprecated Label Schema (http://label-schema.org/rc1/)

labels are still pervasive, and users may add arbitrary labels

with prepended namespaces. It should be noted that container-

ization is not a panacea and Dockerfiles can introduce irrepro-

ducibility and decay if contained software is not sufficiently

pinned (e.g., by using so-called lockfiles) and installed from sour-

ces that are available in the future.

Future directions

Automated repository metadata. Source code repositories such

as Github and Bitbucket are designed for collaborative develop-

ment, version control, and distribution and as such do not

enforce any reproducible research standards that would be use-

ful for evaluating scientific code submissions. As a correspond-

ing example to the NLP above, there are now efforts to mine

source code repositories for discovery and reuse.132

Data as a dependency. ‘‘Data libraries,’’ which pair data sour-

ces with common programmatic methods for querying them, are
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Box 3. CodeMeta A snippet of CodeMeta JSON file from Price et al.120 using Schema.org contextual tags.

{

"@context": [

"https://doi.org/10.5063/schema/codemeta-2.0",

"http://schema.org"

],

"@type": "SoftwareSourceCode",

"identifier": "baydem",

"description": "Bayesian tools for reconstructing past and present\n

demography.",

"name": "baydem: Bayesian Tools for Reconstructing Past and Present Demography",

"license": "https://spdx.org/licenses/MIT",

"version": "0.1.0",

"programmingLanguage": {

"@type": "ComputerLanguage",

"name": "R",

"url": "https://r-project.org"

},

"runtimePlatform": "R version 4.0.2 (2020-06-22)",

"author": [

{

"@type": "Person",

"givenName": ["Michael", "Holton"],

"familyName": "Price",

"email": "michaelholtonprice@sgmail.com"

}

]
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very popular in centralized open source repositories such as

Bioconductor,133 and scikit-learn,134 despite often being large

downloads. Tierney and Ram provide a best practices guide to

the organization and necessary metadata for data libraries and

independent datasets.135 Ideally, users and data providers

should be able to distribute data recipes in a decentralized

fashion, for instance, by broadcasting data libraries in user chan-

nels. Most raw data include a limited number of formats, but

ideally, data should be distributed in packages bound to a variety

of tested formatters. One solution, Gogetdata136 is a project that

can be used to specify versioned data prerequisites to coexist

with software within the Conda requirements specification file.

A private company called Quilt is developing similar data-as-a-

dependency solutions bound to a cloud computing model. A

similar effort, Frictionless Data, focuses on JSON-encoded

schemas for tabular data and data packages featuring a mani-
Box 4. Excerpt from a Dockerfile: LABEL instruction with image m
dockerfiles/blob/master/examples/text-analysis-wordclouds_R-Bi

LABEL maintainer="daniel.nuest@uni-muenster.de" \

Name="Reproducible research at GIScience - comput

org.opencontainers.image.created="2020-04" \

org.opencontainers.image.authors="Daniel N€ust" \

org.opencontainers.image.url="https://github.com/nues

Dockerfile" \

org.opencontainers.image.documentation="https://gith

org.opencontainers.image.licenses="Apache-2.0"

org.label-schema.description="Reproducible work
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fest to describe constitutive elements. From a Docker-centric

perspective, the Open Container Initiative137 is working to stan-

dardize "filesystem bundles": the collection of files in a container

and their metadata. In particular, container metadata are critical

for relating the contents of a container to its source code and

version, its relationship with other containers, and how to use

the container. Ongoing research on container preservation138,139

can introduce new structural metadata on container usage to

avoid container images becoming just a binary bitstream when

they are archived, but instead they remain understandable and

even actionable.

Neither Conda nor Docker is explicitly designed to describe

software with fixed metadata standards or controlled vocabu-

laries. This suggests that a centralized database should

serve as a primary metadata repository for tool information,

rather than a source code repository, package manager, or
etadata Source: https://github.com/nuest/ten-simple-rules-
nder/Dockerfile.

ing environment" \

t/reproducible-research-at-giscience/blob/master/

ub.com/nuest/reproducible-research-at-giscience/" \

\

flow image (license: Apache 2.0)"

http://Schema.org
https://doi.org/10.5063/schema/codemeta-2.0
http://schema.org
https://spdx.org/licenses/MIT
https://r-project.org
https://github.com/nuest/ten-simple-rules-dockerfiles/blob/master/examples/text-analysis-wordclouds_R-Binder/Dockerfile
https://github.com/nuest/ten-simple-rules-dockerfiles/blob/master/examples/text-analysis-wordclouds_R-Binder/Dockerfile
https://github.com/nuest/reproducible-research-at-giscience/blob/master/Dockerfile
https://github.com/nuest/reproducible-research-at-giscience/blob/master/Dockerfile
https://github.com/nuest/reproducible-research-at-giscience
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container store. An example of such a database is the GA4GH

Dockstore,140 a hub and associated website that allows for a

standardizedmeans of describing and invoking Dockerized tools

as well as sharing workflows based on them.

Statistical reports and notebooks
Statistical reports and notebooks serve as an annotated session

of an analysis. Though they typically use input data that have

been processed by scripts and workflows (see below), they

can be characterized as a step in the workflow rather than apart

from it, and for some smaller analyses, all processing can be

done within these notebooks. Statistical reports and notebooks

occupy an elevated reputation as being an exemplar of repro-

ducible best practices, but they are not a reproducibility panacea

and can introduce additional challenges, one reason being the

metadata supporting them is surprisingly sparse.

Statistical reports that use ‘‘literate programming,’’ combining

statistical code with descriptive text, markup, and visualizations,

have been a standard for statistical communication since the

advent of Sweave.141 Sweave allowed R and LaTeX markup to

bemixed in chunks, allowing the adjacent contextual descriptions

of statistical code to serve as guideposts for anyone reading a

Sweave report, typically rendered as PDF. An evolution of

Sweave, knitr,142 extended choices of both markup (allowing

Markdown) and output (HTML) while enabling tighter integration

with integrated development environments such as RStudio.143

A related project that started in the Python ecosystem but now

supports several kernels, Jupyter,144 combined the concept of

literate programming with an REPL (read-eval-print loop) in a

web-based interactive session in which each block of code is

kept stateful and can be reevaluated. These live documents are

known as "notebooks." Notebooks provide a means of allowing

users to directly analyze data programmatically using common

scripting languages, and accessmore advanceddata science en-

vironments such as Spark, without requiring data downloads or

localized tool installation if run on cloud infrastructures. Using pre-

loaded libraries, cloud-based notebooks can alleviate time-

consuming permissions recertification, downloading of data,

and dependency resolution, while still allowing persistent analysis

sessions. Dataset-specific Jupyter notebooks "spawned" for

thousands of individuals temporarily have been enabled as com-

panions for Nature articles145 and are commonly used in educa-

tion. Cloud-based notebooks have not yet been extensively

used in data portals, but they represent the analytical keystone

to the decade-long goal of "bringing the tools to the data." Note-

books offer possibilities over siloed installations in terms of elim-

inating the data science bottlenecks common to data analyses:

cloud-based analytic stacks, cookbooks, and shared notebooks.

Collaborative notebook sharing has been used to accelerate

the analysis cycle by allowing users to leverage existing code.

The predictive analytics platformKaggle employs an open imple-

mentation of this strategy to host data exploration events. This

approach is especially useful for sharing data cleaning tasks—

removing missing values, miscategorizations, and phenotypic

standardization, which can represent 80% of effort in an anal-

ysis.146 Sharing capabilities in existing open-source notebook

platforms are at a nascent stage, but this presents possibilities

for reproducible research environments to flourish. One prom-

ising project in this area is Binder, which allows users to instan-
tiate live Jupyter notebooks and associated Dockerfiles stored

on Github within a Kubernetes-backed service.147,148

At face value, reports and notebooks resemble source code or

scripts, but as the vast majority of statistical analysis and ma-

chine learning education and research is conducted in note-

books, they represent an important area for reproducibility.

Examples

R Markdown headers. As we mentioned, statistical reports and

notebooks do not typically leverage structured metadata for

reproducibility. R Markdown–based reports, such as those pro-

cessed by knitr, do have a YAML-based header or front matter

(Box 5). These are used for awide variety of technical parameters

for controlling display options, for providing structuredmetadata

on authors, e.g., when used for scientific publications with the

rticles package,149 or for parameterizing the included workflow

(https://rmarkdown.rstudio.com/developer_parameterized_

reports.html). However, no schema or standards exist for their

validation beyond syntax, and different tools freely extend

them for their own needs.

Statistical and machine learning metadata standards. The

intense interest paired with the competitive nature of machine

learning and deep learning conferences such as Neurips

demands high reproducibility standards.150 Given the predomi-

nance of notebooks for disseminating machine learning

workflow, we focused our attention on finding statistical andma-

chine learning metadata standards that would apply to content

foundwith notebooks. The opacity, rapid proliferation, andmulti-

faceted nature of machine learning and data mining statistical

methods to nonexperts suggest it is necessary to begin cata-

loging and describing them at a more refined level than crude

categories (e.g., clustering, classification, regression, dimension

reduction, feature selection). So far, the closest attempt to

decompose statistics in this manner is the STATO statistical

ontology (http://stato-ontology.org/), which can be used to

semantically, rather than programmatically or mathematically,

define all aspects of a statistical model and its results, including

assumptions, variables, covariates, and parameters (Figure 5).

While STATO is currently focused on univariate statistics, it

represents one possible conception for enabling broader repro-

ducibility than simply relying on specific programmatic imple-

mentations of statistical routines.

MEX is designed as a vocabulary to describe the components

of machine learning workflows. The MEX vocabulary builds on

PROV-O to describe specific machine learning concepts such

as hyperparameters and performance measures and includes

a decorator class to work with Python.

Future directions: Parameter tracking

MLFlow152 is designed specifically to handle hyperparameter

tracking for machine learning iterations or "runs" performed in

the Apache Spark, but also tracks arbitrary artifacts and metrics

associated with these. The metadata format that MLFlow uses

exposes variables that are explored and tuned by end-users

(Box 6).

Pipelines
Most scientific analyses are conducted in the form of pipelines,

in which a series of transformations is performed on raw data,

followed by statistical tests and report generation. Pipelines

are also referred to as "workflows," which sometimes also
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Box 5. A YAML-based R Markdown header for demonstration purposes Full document shared in this papers’ repository at https://
github.com/leipzig/metadata-in-rcr/.

— title: "A title for the analysis" # author metadata, esp. used for scientific articles

author:

- name: Jeremy Leipzig

footnote: Corresponding author

affiliation: "Metadata Research Center, Drexel University, College of Computing and Informatics,

orcid: "0000-0001-7224-9620"

- name: Daniel N€ust

affiliation: "Institute for Geoinformatics, University of M€unster, Germany"

orcid: "0000-0002-0024-5046"

email:daniel.nuest@uni-muenster.de

# parameters to manipulate workflow; defaults can be changed when compiling the document

params:

year: 2020

region: "Europe"

printcode: TRUE

data: file.csv

max_n: 42

# configuration and styling of different output document formats

output:

html_document:

theme: lumen

toc: true

toc_float:

collapsed: false

code_folding: show

self_contained: true

pdf_document:

toc: yes

fig_caption: yes

df_print: kable

linkcolor: blue

# field values can be generated from code

date: "‘r format(Sys.time(), ’%d %B, %Y’)‘"

ll
OPEN ACCESS Review
encompasses steps outside an automated computational pro-

cess. Pipelines represent the computation component of many

papers, in both basic research and tool papers. Pipeline frame-

works or scientific workflow management systems (SWfMS)

are platforms that enable the creation and deployment of repro-

ducible pipelines in a variety of computational settings including

cluster and cloud parallelization. The use of pipeline frameworks,

as opposed to standalone scripts, has recently gained traction,

largely due to the same factors (big data, big science) driving

the interest of reproducible research. Although frameworks are

not inherently more reproducible than shell scripts or other

scripted ad hoc solutions, use of them tends to encourage

parameterization and configuration that promote reproducibility

and metadata. Pipeline frameworks are also attractive to

scientific workflows in that they provide tools for the reen-

trancy—restarting a workflow where it left off, implicit depen-

dency resolution—allowing the framework engine to automati-

cally chain together a series of transformation tasks, or "rules,"

to produce a user-supplied file target. Collecting and analyzing

provenance, which refers to the record of all activities that go

into producing a data object, is a key challenge for the design

of pipelines and pipeline frameworks.
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The number and variety of pipeline frameworks have

increased dramatically in recent years; each framework built

with design philosophies that offer varying levels of convenience,

user-friendliness, and performance. There are also tradeoffs be-

tween the dynamicity of a framework, in terms of its ability to

behave flexibly (e.g., skip certain tasks, re-use results from a

cache) based on input, that will affect the apparent reproduc-

ibility and the run-level metadata that is required to inspire con-

fidence in an analyst’s ability to infer how a pipeline behaved in a

particular situation. Leipzig153 reviewed and categorized these

frameworks into three key dimensions: using an implicit or

explicit syntax; using a configuration, convention, or class-

based design paradigm; and offering a command line or work-

bench interface.

‘‘Convention-based frameworks’’ are typically implemented in

a domain-specific language, a meaningful symbol set to repre-

sent rule input, output, and parameters that augment existing

scripting languages to provide the glue to create workflows.

These can often mix shell-executable commands with internal

script logic in a flexible manner. ‘‘Class-based pipeline frame-

works’’ augment programming languages to offer fine-granu-

larity means of efficient distribution of data for high-performance

https://github.com/leipzig/metadata-in-rcr/
https://github.com/leipzig/metadata-in-rcr/
mailto:daniel.nuest@uni-muenster.de


Figure 5. STATO
Concepts describing a linear mixed model used by STATO151
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cluster computing frameworks such as Apache Spark. ‘‘Config-

uration-based frameworks’’ abstract pipelines into configuration

files, typically XML or JSON which contain little or no code.

Workbenches such as Galaxy,154 Kepler,155 KNIME,156

Taverna,157 and commercial workbenches, such as Seven

Bridges Genomics and DNANexus, typically offer canvas-like

graphical user interfaces by which tasks can be connected

and always rely on configuration-based tool and workflow de-

scriptors. Customized workbenches configured with a selection

of pre-loaded tools and workflows and paired with a community

web portal are often termed "science gateways."

Examples

CWL: A configuration-based framework for interoperability.

The Common Workflow Language (CWL)71 is a specification

for tools and workflows to share across several pipeline

frameworks, adopted by several workbenches. CWL man-

ages the exacting specification of file inputs, outputs, param-

eters that are "operational metadata" used by the workflow

machinery to communicate with the shell and executable

software (Figure 6). While these metadata are primarily oper-

ational in nature and rarely accessed outside the context of a

compatible runner such as Rabix158 or Toil,159 CWL also en-

ables tool metadata in the form of versioning, citation, and

vendor-specific fields that may differ between implemen-

tations.

Using this metadata, an important aspect of CWL is the focus

on richly describing tool invocations both for reproducibility and

documentation purposes, with tools referenced as retrievable

Docker images or Conda packages, and identifiers to EDAM,63

ELIXIR’s bio.tools59 registry and Research Resource Identifiers
(RRIDs).161 This wrapping of command line tool interfaces is

used byGA4GHDockstore140 for providing a uniform executable

interface to a large variety of computational tools even outside

workflows.

While there are many other configuration-based workflow lan-

guages, CWL is notable for the number of parsers that support

its creation and interpretation, and an advanced linked data vali-

dation language, called SchemaSalad. Together with supporting

projects, such as ResearchObjects, the CWL appears amenable

to being used as metadata.

Future directions

Interoperable script and workflow provenance. For future meta-

data to support pipeline reproducibility, it must accommodate

a huge menagerie of solutions that coexist inside a number of

computing environments. Large organizations have been

encouraging the use of cloud-based data commons, but solu-

tions that target the majority of published scientific analysis

must address the fact that many if not most of them will not

use a data commons or even a pipeline framework. Because

truly reproducible research implies evaluation by third parties,

portability is an ongoing concern.

Pimentel et al. reviewed and categorized 27 approaches to

collecting provenance from scripts.162 Awide variety of relational

databases and proprietary file formats are used to store,

distribute, visualize, version, and query provenance from these

tools. The authors found that while four approaches—RData-

Tracker,163 SPADE,164 StarFlow,165 and YesWorkflow166—

natively adopt interoperable W3C PROV or OPM standards as

export, most were designed for internal usage and did not enable

sharing or comparisons of provenance. In part, these limitations
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Box 6. MLflow snippet showing exposed hyperparameters

name: HyperparameterSearch

conda_env: conda.yaml

entry_points:

# train Keras DL model

train:

parameters:

training_data: {type: string, default: "./datasets/wine-quality.csv"}

epochs: {type: int, default: 32}

batch_size: {type: int, default: 16}

learning_rate: {type: float, default: 1e-1}

momentum: {type: float, default: .0}

seed: {type: int, default: 97531}

command: "python train.py {training_data}

--batch-size {batch_size}

--epochs {epochs}

--learning-rate {learning_rate}

--momentum {momentum}"
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are related to primary goals and scope of these provenance

tracking tools.

For analyses that use workflows, a prerequisite for reproduc-

ible research is the ability to reliably share "workflow enact-

ments," or runs that encompass all elements of the analytic

stack. Unlike pipeline frameworks geared toward cloud-enabled

scalability, compatibility with executable command-line argu-

ments and programmatic extensibility afforded byDSLs, Vistrails

was designed explicitly to foster provenance tracking and

querying, both prospective and retrospective.167 As part of the

WINGS project, Garijo et al.168 use linked-data standards—

OWL, PROV, and RDF—to create a framework-agnostic Open

Provenance for Workflows (OPMW) for greater semantic possi-

bilities for user needs in workflow discovery and publishing.

The CWLProv75 project implements a CWL-centric and RO-
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based solution with a goal of defining a format of implementing

retrospective provenance.

Packaging and binding building blocks.While we have attemp-

ted to classify metadata across layers of the analytic stack, there

are a number of efforts to tie or bind all these metadata that

define a research compendia explicitly. A research compendium

(RC) is a container for building blocks of a scientific workflow.

Originally defined by Gentleman and Temple Lang as a means

for distributing and managing documents, data, and computa-

tions using a programming language’s packaging mechanism,

the term is now used in different communities to provide code,

data, and documentation (including scientific manuscripts) in a

meaningful and useable way (https://research-compendium.

science/). A best practice compendium includes environment

configuration files (see above), has files that are under version
Figure 6. Common workflow language
Snippets of a COVID-19 variant detection CWL
workflow and the workflow as viewed through the
cwl-viewer.160

Note the EDAM file definitions.

https://research-compendium.science/
https://research-compendium.science/


Box 7. erc.yml example fileSee the specification at https://o2r.info/erc-spec/.

id: b9b0099e-9f8d-4a33-8acf-cb0c062efaec

spec_version: 1

licenses:

code: Apache-2.0

data: data-licenses.txt

text: "Creative Commons Attribution 2.0 Generic (CC BY 2.0)"

metadata: "see metadata license headers"
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control, and uses accessible plain text formats. Instead of a

formal workflow specification, inputs, outputs, and control files

and the required commands are documented for human users

in a README file. While an RC can take many forms, the flexi-

bility is also a challenge for extracting metadata. The Executable

Research Compendium (ERC) formalizes the RC concept with

an R Markdown notebook for the workflow and a Docker

container for the runtime environment.169 A YAML configuration

file connects these parts (Box 7), configures the document to be

displayed to a human user, and provides minimal metadata on

licenses. The concept of bindings connects interactive parts of

an ERC workflow with the underlying code and data.170

Instead of trying to establish a common standard and single

point for metadata, the ERC intentionally skips formal metadata

and exports the known information into multiple output files and

formats, such as Zenodometadata as JSON or Datacite as XML,

accepting duplication for the chance to provide usable informa-

tion in the long term.

Perhaps the most prominent realization of the RC concept is

Research Objects171 and the subsequent RO-Crate (Carragáin,

E.Ó., et al., 2019, BOSC, abstract) projects (Box 8), which strive

to be comprehensive solutions for binding code, data, workflows,

and publications into a metadata-defined package. RO-Crate is

lightweight JSON-LD (javascript object notation linked data) that

supportsSchema.org concepts to identify anddescribeall constit-

uent files from the analytic stack and various people, publication,

and licensing metadata, as well as provenance both between

workflows and files and across crate versions.

An alternative approach to binding is to leverage existing work

in "application profiles,"172 a highly customizable means of

combining namespaces from different metadata schemas.

Application profiles follow along the Singapore Framework

(Figure 7), and guidelines supported by the Dublin Core Meta-

data Initiative (DCMI).
Publication
Our conception of the analytic stack points to the manuscript as

the final product of an analysis. Due to the requirements of cata-

loging, publishing, attribution, and bibliographic management,

journals employ a robust set of standards including MARC21

and ISO_2709 for citations, and Journal Article Tag Suite

(JATS) for manuscripts. Library science has been an early

adopter of many metadata standards and encoding formats

(e.g., XML) later used throughout the analytic stack. Supple-

menting and extending these standards to accommodate repro-

ducible analyses connected or even embedded in publications is

an open area for development.
For the purposes of reproducibility, we are most interested in

finding publication metadata standards that attempt to support

structured results as a "first-class citizen," essentially input

metadata but for integration into the manuscript.

The methods section of a peer-reviewed article is the oldest

and often the sole source of metadata related to an analysis.

However, methods sections and other free-text supplementals

are notoriously poor and unreliable examples of reproducible

computational research, as evidenced by the Amgen findings

and numerous reproduction studies. A number of text mining

efforts have sought to extract details of the software used in

analyses directly from methods sections for purposes of sur-

vey173,174 and recommendation175 using natural language pro-

cessing (NLP). The ProvCaRe database and web application

extend this to both computational and clinical findings by using

a wide-ranging corpus of provenance terms and extending exist-

ing PROV-O ontology.176 While these efforts are noble, they can

never entirely bridge the gap between human-readable proto-

cols and machine-readable metadata schemes.

Journals share an important responsibility to enforce and incen-

tivize reproducible research,177 but most peer-reviewed publica-

tions have been derelict in this role. While many have raised stan-

dards for open data access, "open analysis" is still an alien

concept to many journals and code execution during peer review

a rare understudied practice.178 Some journals, such as Nature

Methods, do require authors to submit source code.179 Of the

most prestigious life science journals (Nature, Science, Cell), the

requirements vary considerably and it is not clear how these

guidelines are actually enforced.180 Few journals have clear repro-

duction policies.181 TheCODECHECK initiative aims to establish a

minimum workflow for independent code execution during peer

review to be adopted by publishers.181 A YAML configuration

file (https://codecheck.org.uk/spec/config/1.0/) in each code re-

pository provides metadata for a check. The metadata connects

the publication’s and the reproduction certificate’s DOIs, provides

authorship information, lists the output files that were reproduced

in a manifest, and is published in a register listing all checks

(https://codecheck.org.uk/register/).

Container portals, package repositories, and workbenches do

provide some additional inherent structure that would be useful

for journals to require, but these often lack any binding with note-

books or elegant routes to report generation that would guar-

antee the scientific code matches the results contained with a

manuscript. We should not underestimate the technical chal-

lenges of building and maintaining these advances. Computa-

tional provenance between all figures and tables in a manuscript

and the underlying analysis is an open area of research that we

discuss below.
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Box 8. RO-Crate metadata

{ "@context": "https://w3id.org/ro/crate/1.0/context",

"@graph": [

{

"@type": "CreativeWork",

"@id": "ro-crate-metadata.jsonld",

"conformsTo": {"@id": "https://w3id.org/ro/crate/1.0"},

"about": {"@id": "./"}

},

{

"@id": "./",

"identifier": "https://doi.org/10.4225/59/59672c09f4a4b",

"@type": "Dataset",

"datePublished": "2020",

"name": "Data files associated with the manuscript:The Role of Metadata in

Reproducible Computational Research",

"description": "Palliative care planning for nursing home residents with

advanced dementia ...",

"license": {"@id": "https://creativecommons.org/licenses/by-nc-sa/3.0/au/"},

"hasPart": [

{

"@id": "src/"

},

{

"@id": "metadata_examples/"

}

]

},

{

"@id": "https://creativecommons.org/licenses/by-nc-sa/4.0/au/",

"@type": "CreativeWork",

"description": "Creative Commons Attribution 4.0 International Public License

(Public License)",

"identifier": "https://creativecommons.org/licenses/by-nc-sa/3.0/au/",

"name": "Attribution-NonCommercial-ShareAlike 3.0 Australia (CC BY-NC-SA 3.0 AU)"

}

]

}
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Examples

Formalization of the results of biological discovery. In the scien-

tific literature, authors must not only outline the formulation of

their experiments, their execution, and their results, but also an

interpretation of the results with respect to an overarching scien-

tific goal. Due to the lack of specificity of prose and the needless

jargon endemic to modern scientific discourse, both the goals

and interpretation of results are often obfuscated such that the

reader must exert considerable effort to understand. This burden

is further exacerbated by the acceleration of the growth of the

body of scientific literature. As a result, it has become over-

whelming, if not impossible, for researchers to follow the relevant

literature in their respective fields, even with the assistance of

search tools like PubMed and Google.

The solution lies in the formalization of the interpretation pre-

sented in the scientific literature. In molecular biology, several

formalisms (e.g., BEL,87 SBML,182 SBGN,183 BioPAX,184 GO-

CAM)185 have the facility to describe the interactions between bio-
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logical entities that are often elucidated through laboratory or

clinical experimentation. Further, there are several organiza-

tions186–190whose purpose is to curate and formalize the scientific

literature in these formats and distribute them in one of several

databases and repositories. Because curation is both difficult

and time-consuming, several semi-automated NLP191,192 cura-

tion workflows based on NLP-based relation extraction sys-

tems193–195 and assemblers196 have been proposed to assist.

The Biological Expression Language (BEL) captures causal,

correlative, and associative relationships between biological en-

tities along with the experimental/biological context in which

they were observed as well as the provenance of the publication

from which the relation was reported (https://biological-

expression-languge.github.io). It uses a text-based custom

domain-specific language (DSL) to enable biologists and cura-

tors alike to express the interpretations present in biomedical

texts in a simple but structured form, as opposed to a compli-

cated formalism built with low-level formats XML, JSON, and

https://biological-expression-languge.github.io
https://biological-expression-languge.github.io
https://w3id.org/ro/crate/1.0
https://doi.org/10.4225/59/59672c09f4a4b
https://creativecommons.org/licenses/by-nc-sa/3.0/au/
https://creativecommons.org/licenses/by-nc-sa/4.0/au/
https://creativecommons.org/licenses/by-nc-sa/3.0/au/


Figure 7. Singapore Framework application
profile model
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RDF or mid-level formats like OWL and OBO. Similarly to OWL

and OBO, BEL pays deep respect to the need for the use of

structured identifiers and controlled vocabularies for its state-

ments to support the integration of multiple content sources in

downstream applications. We focus on BEL because of its

unique ability to represent findings across biological scales,

including the genomic, transcriptomic, proteomic, pathway,

phenotype, and organism levels.

Below is a representation of a portion of the MAPK signaling

pathway in BEL (Box 9), which describes the process through

which a series of kinases are phosphorylated, become active,

and phosphorylate the next kinase in the pathway. It uses the

FamPlex (fplx)197 namespace to describe the RAF, MEK, and

ERK protein families.

While the additional provenance, context, andmetadata asso-

ciated with each statement have not been shown, this example

demonstrates that several disparate information sources can

be assembled in a graph-like structure due to the triple-like na-

ture of BEL statements.

While BEL was designed to express the interpretation pre-

sented in the literature, related formats are more focused on

mechanistically describing the underlying processes on either

a qualitative (e.g., BioPAX, SBGN) or quantitative (e.g., SBML)

basis. Ultimately, each of these formalisms has supported a

new generation of analytical techniques that have begun to

replace classical pathway-analysis.

Future directions: Reproducible articles

Attempts have been made to integrate reproducible analyses

into manuscripts. An article in eLife198 was published with an in-

line live R Markdown Binder analysis as part of a proof-of-

concept of the publisher’s Executable Research Article (ERA)

(Aufreiter and Penfold, 2018, IEEE eScience, abstract).199,200

Because of the technical metadata used for rendering and

display, subtle changes are required to integrate containerized

analyses with JATS, and the requirements for hosting workflows

outside the narrow context of Binder will require further engi-

neering and metadata standards.

DISCUSSION

The range and diversity of metadata standards developed that

aid researchers in their daily activities, also support them in
sharing research outputs (data, code, pub-

lications, and other component parts of the

research life cycle). If we promote

metadata as the "glue" of reproducible

research, what does that entail for the

metadata and reproducible research com-

munities? Clearly, no single metadata

standard can support all aspects of the an-

alytic stack. Metadata standards are

driven by needs associated with function,

discipline, and object format type; hence

the categorization of descriptive, adminis-
trative, and structural metadata, as well as standards targeting a

domain (e.g., biology) or object format (images, GIS mate-

rials).201 The fact that metadata standards continue to undergo

formal community reviews demonstrates value. Finally, as

research communities and activities converge around the analyt-

ical stack and seek to automate pipelines supporting scientific

services such as analytic cores, metadata not only has

continuing value for reproducibility, it is shown to be critical to

this endeavor.

In our review, we have attempted to describe metadata as it

addresses reproducibility across the analytic stack. Two prin-

cipal components: (1) embeddedness versus connectedness,

and the (2) methodology weight and standardization appear to

be recurring themes across all metadata facets.

Embeddedness versus connectedness
Certain efforts in the metadata context lend to the stickiness of

experimental details from data collection to publications, and

others are more directed to the goals of data sharing and imme-

diate access. Data formats have an influence on the long-term

reproducibility of analyses and reusability of input data, though

these goals are not always aligned. Some binary data formats

lend them to easily accommodate embedded metadata, i.e.,

metadata that is bound to its respective data by residing in the

same file, not to be confused from metadata embedded in sup-

plementary materials. In the case of the DICOM format used in

medical imaging, a well-vetted set of instrumentation metadata

is complemented by support for application-specific metadata.

Downstream, this has enabled support for DICOM images in

various repositories such as The Cancer Imaging Archive.202

The continued increase in the use of such imaging data has led

to efforts to further leverage biomedical ontologies in tags203

and issue DOIs to individual images.204 As discussed above,

the lack of explicit support for complex metadata structures

has not hindered the adoption of DICOM for a variety of uses

not anticipated by its authors (DICOM introduced in 1985). This

could be an argument that embeddedness is more important

than complexity for long-term sustainability, or merely that early

arrivals tend to stay entrenched. Software support in terms of

parsing and storing embedded metadata also plays a role in

the level of adoption. In the case of Binary Alignment Map205 files

used to store genomic alignments, file-level metadata resides in
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Box 9. MAPK signaling pathway in Biological Expression Language

act(p(fplx:RAF), ma(kin)) directlyIncreases p(fplx:MEK, pmod(Ph))

p(fplx:MEK, pmod(Ph)) directlyIncreases act(p(fplx:MEK), ma(kin))

act(p(fplx:MEK), ma(kin)) directlyIncreases p(fplx:ERK, pmod(Ph))

p(fplx:ERK, pmod(Ph)) directlyIncreases act(p(fplx:ERK)))
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an optional comment section above data. Once again, these are

arbitrary human-readable strings with no inherent advanced

data structure capabilities. In some instances, instrumentation

can aid in reproducibility by embedding crucial metadata (such

as location, instrument identifiers, and various settings) in such

embedded formats with no manual input, although ideally this

should not simply be used at face value as a sanity check against

metadata used in the analysis; for instance, to identify potential

sample swaps or other integrity issues. Reliance on ad hoc

formatting methods of supporting extensibility, as in through se-

rializations using comma or semicolon delimiters, can have dele-

terious effects on the stability of a format. In bioinformatics, a

number of genomic position-based tabular file formats have

faced "last-column bloat," as new programs have piled on an

increasingly diverse array of annotations.

This rigid embedded scheme employed by DICOM stands in

contrast to standards such as EML, where contributors are

encouraged with a flexible ontology to support supplemental

metadata for the express purposes of data sharing. MIAME ap-

pears to lie somewhere in the middle, where there is a required

minimal subset of tags to be supplied, much of it from the micro-

array instrument itself and aided by a strong open source

community (Bioconductor), and paired with a data availability

incentive in order to publish associated manuscripts.

In terms of reproducibility, embeddedness represents a dou-

ble-edged sword. As a packagingmechanism, embeddedmeta-

data serves to preserve aspects of attribution, provenance, and

semantics for the sharing of individual files, but a steadfast

reliance on files can lead to siloing, which may be antithetical to

discovery (the "Findable" in FAIR). Files as the sole means of

research data distribution are also contrary to the recent prolifer-

ation of "microservices": Software-as-a-Service often instanti-

ated in a serverless architecture and offering APIs. While prove-

nance can be embedded in the headers described above,

these types of files aremore likely to be found at the earlier stages

of an analysis, suggesting there is work to be done in developing

embedded metadata solutions for notebook and report output if

this is to be a viable general scheme. So much of reproducibility

depends on the relay of provenance between layers of the ana-

lytic stack that the implementation of metadata should be opti-

mized to encourage usage by the tools explored in this review.

Metadata is, of course, critical to the functioning of services

that support the "semantic web," in which data on the world

wide web is given context to enable it to be directly queried

and processed, or "machine-readable." Several technologies

enabling the semantic web and linked data—RDF, OWL,

SKOS, SPARQL, and JSON-LD—are best recognized as meta-

data formats themselves or languages for metadata introspec-

tion allowing the web to behave like a database rather than a

document store. Semantic web services now exist for such

diverse data sources as gene-disease interactions206 and geo-
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spatial data.207 RDF triples are the core of knowledge graph pro-

jects such as DBpedia208 and Bio2RDF.209 The interest in using

knowledge graphs for modeling and prediction in various do-

mains, and the increased use of "embedding knowledge

graphs," graph to vector transformations designed to augment

artificial intelligence approaches,210 has exposed the need for

reproducibility and metadata standards in this area.211

The development of large multi-institutional data repositories

that characterize "big science" and remote web services that

support both remote data usage and the vision of "bringing the

tools to the data" make the cloud an appealing replacement

for local computing resources.212 This dependence on data

and services hosted by others, however, introduces the threat

of "workflow decay"213 that requires extensive provenance

tracking or snapshotting to freeze inputs and tools in order to

ensure reproducibility at a later date.

Such centralized repositories tasked with storing and distrib-

uting a quickly growing scope of metadata both in volume and

complexity have also had to innovate away from rigid schemas

to more flexible representations of metadata. The EMBL-EBI

Biosamples portal, for example, permits user-supplied blocks

of JSON to be added to samples to accommodate a wide range

of metadata supporting downstream analysis.214 These changes

can, in principle, allow metadata that was previously confined to

supplementary materials to be findable.

The promise of distributed annotation services, automated

discovery, and the integration of disparate forms of data, using

web services and thereby avoiding massive downloads, is of

central import to many areas of research. However, the import

of the semantic web to reproducibility is a two-sided coin. On

one hand, as noted by Aranguren andWilkinson,215 the semantic

web provides a formalized means of providing context to data,

which is a crucial part of reproducibility. The semantic web is

by its very nature, open, and provides a universal low barrier to

data access with few dependencies other than an Internet

connection. Conversely, a review of the semantic web’s growing

impact on cheminformatics216 notes that issues of data integrity

and provenance are of concern when steps in an analysis rely on

data fetched piecemeal via a web service. The distributed nature

is a challenge for reproducibility that the self-contained research

compendia do not fall victim to.

Preservation

Web services of centralized repositories provide a common

source reference point for several unrelated analyses, but can

serve as a critical point of failure should they disappear. While

archival projects such as SoftwareHeritage.org can helpmitigate

problems of link decay and abandonware on the software side,

projects serving to provide long-term archival solutions for sci-

entific analyses need to cache or download web service data.

Preservation refers to ensuring the creation of long-term,

portable archives of analyses (sometimes referred to as "legacy

http://SoftwareHeritage.org
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workflows") that are immune to both link decay and missing de-

pendencies. Approaches to faithfully record retrospective prov-

enance employ either a configured or a "recorder" scheme. The

configured scheme is largely characterized by such provenance

modeling specifications such as CWLProv, and efforts aimed at

portable analyses such as BioCompute Objects (BCO),217 origi-

nally designed for in silico regulatory submissions. These gener-

ally combine Research Objects, bagit file manifests,78 and JSON

formatted specifications for capturing experimental details.

Reprozip takes a recorder approach by tracing Linux operating

system calls while executing an analysis script or workflow,

trackingbothsystemdependenciesandpackaging theminacom-

pressed format.218 While this automated approach differs consid-

erably from an entirely configured approach and doesn’t negate

the need for dependency management, version pinning, or

containerization, it can complement these tools for reproducibility.

Methodology weight and standardization
Our review has spotlighted several metadata solutions across a

spectrum of heavyweight versus lightweight solutions, bespoke

versus standard solutions, and offering different levels of granu-

larity, and adoption. Because these choices can often largely

reflect those of the stakeholders involved in the design and their

goals rather than immediate needs, a discussion of those groups

is warranted.

Sphere of influence

Governing and standards-setting organizations (e.g., NIH,

GA4GH,W3C), new applications (e.g., machine learning, transla-

tional health), new sensors (next generation sequencing, new

Earth observation satellites), and trends in the greater scientific

community (open science, reproducible research) are steering

metadata for reproducible research in different and broader di-

rections than traditional stakeholders, individual researchers.

There are also differences in the approaches taken between

different scientific fields, with the life sciences arguably more

varied in both the size of projects and the level of standards

than those physical sciences (e.g., LIGO). This does not discount

the fact that much of the progress in metadata for reproducibility

has been originally intended for other purposes, and often

"bespoke," or custom-designed solutions to address the prob-

lem at hand for small labs or individual investigators. A good

example is the tximeta Bioconductor package (Figure 8), which

implements reference transcriptome provenance for RNA-

sequencing experiments, extending a number of popular tran-

script quantification tools with checksum-based tracking and

identification.219 While this is an elegant solution, tximeta is

focused on one analysis pattern.

In practice, concerns over reproducibility appear to be corre-

lated with the number of stakeholders. While there are highly

conscientious scientists who have built tools and standards to

support the reproducibility of their own work, pressure coming

from attempts to reproduce published analyses, and the height-

ened reuse of data among participants in multi-institution con-

sortia, data repositories, and data commons have forced

the issue.

Metadata capital and reuse

The term "metadata capital"220was coined to describe howanor-

ganization’s efforts in producing high-quality metadata can have

a positive return on investment downstream.We contend this ap-
plies to computational reproducibility. In this context, it may be

useful to reposition the onus for collecting metadata along the

competitiveness of smaller groups: labs, cores, and individual in-

stitutions. These smaller organizations clearly experience a repro-

ducibility crisis in the form of impaired transfer of knowledge from

outgoing to incoming trainees. However, the seminal Nature

Baker survey of 1,500 scientists reported 34% of participants

had not established procedures for reproducibility in their own

labs.13 Workflows like CODECHECK can ensure that enough

metadata and documentation is provided for at least one person

besides the author to reproduce a computational workflow once,

and the experience shows that direct communication with au-

thors is crucial to achieve that. Even the limited scope of the

check, that is intentionally not formalized but relies on the code-

checker’s judgment, can build up metadata capital.

Metadata reuse, for replication, generalization, meta-analyses,

or general research use, is enabled by explicitly designing ana-

lyses for computational reproducibility and elemental to FAIR.

Reuse and extension typically demand greater metadata needs

than narrow-sense reproduction, for instance, to control for batch

effects or various assumptions that go into original research.221

Often the centralized submission portals demandmore expansive

metadata than an individual researcher would anticipate being

necessary, belying their importance in the reproducibility and

reuse process. In a similar vein, smaller domain data repositories

(e.g., PANGAEA, https://www.pangaea.de) have both much

higher requirements for metadata and the experienced staff to

curate thismetadata than general purpose repositories (e.g., Zen-

odo). Essential for reproducibility, surveys suggest provenance

information is an important criteria for reuse in the physical

sciences.222 Metadata for data reuse has relevance for data

harmonization for biomedical applications, such as toward highly

granular phenotype ontologies, genotype-phenotype meta-ana-

lyses,223 generating synthetic controls for clinical trials, and

consentmetadata, such as the Data UseOntology,224 to describe

allowed downstream usage of patient data. Designing metadata

for the needs of general reuse, especially outside narrow scientific

domains, may require greater foresight than that needed for

reproducibility but authors can follow similar templates.

Recommendations and future work
Widespread adoption of reproducible computational research is

highly dependent on a cultural shift within the scientific commu-

nity225,226 promoted by both journals and funding agencies. The

allegorical "stick" of higher reproducibility standards should be

accompanied by carrots in the form of publication incentives.

For example, the Journal of Water Resources Planning and Man-

agement waives or reduces fees of reproducible papers,227 and

several journals promote reproducible works, e.g., through

badges.228 Other carrots could involve a support mechanism

by which pre- and post-publication peer review can properly

evaluate and test statistical methods cited in papers. Such a

collaborative computational peer review could involve param-

eter exploration, swapping out individual statistical tests or

tool components for similar substitutes, and using new

datasets. We envision this "reproducibility-enabled advocated

software peer review" could be conducted by reviewers taking

a hands-on approach to strengthening analyses using collabora-

tive interactive notebooks or other tools.229 The recognition of
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Figure 8. tximeta
The high-level schematic of tximeta.219

ll
OPEN ACCESS Review
sharing reproducible works, the reproductions, and more exten-

sive reviewing efforts as important scientific contributions are

paramount for their adoption and reproducibility practices will

not be established without tackling the shortcomings of

researcher evaluation culture.230 Software citation231 and soft-

ware publications232 are concrete mechanisms to value tools

for reproducible computational research, and these mecha-

nisms need higher uptake beyond disciplines that are naturally

close to software. Only then can related metadata reach a broad

adoption via generally used research software.

One interesting development in the area of incentives is the

growing interest in developing FAIR metrics and reproducibility

"badges" todenotecompliance.TheFAIRshake toolkit implements

rubrics toevaluate thedigital resourcessuchasdatasets, tools, and

workflows.233 These rubrics include criteria such as data and code

availability but alsometadata suchascontact information, descrip-

tion, and licensing embedded using Schema.org tags.

Another important trend is the emergence of reporting guide-

lines, essentially checklists, many of which are found in the

EQUATOR network,234 perhaps the most prominent being CON-

SORT (Consolidated Standards of Reporting Trials) originally

from 1996 but updated in 2010.235 Newer examples include

STORMS (Strengthening The Organization and Reporting of Mi-

crobiome Studies) and STROBE (Strengthening the Reporting of

Observational Studies in Epidemiology). Such guidelines, while

useful for authors, are rarely paired with metadata schema to

allow them to be machine-readable. We envision that some of

these templates may eventually be auto-generated from compu-

tational workflows.

In terms of the analytic stack, there are several areas that offer

low-hanging fruit for innovation. One is developing inline semantic

metadata for publications and notebooks.While Schema.org tags

have been used for indexing data, to our knowledge there is no

journal that supports, much less encourages, semantic markup

of specific terms within a manuscript. There has been tacit sup-

port for such inlinemarkup in newermanuscript composition tools

such as Manubot236 or the ERC’s bindings,170 but generally such

terms could disambiguate concepts, point to the provenance of
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findings within a result section or from a

figure, accelerate linked data and discov-

ery, and improve understandability. Despite

their significance, funding for the sustain-

able development and maintenance of

core tools for research is scarce.237 Re-

sources for the continued improvement of

software, such as the Chan Zuckerberg Ini-

tiative’s ‘‘Essential Open Source Software

for Science’’ program (https://chanzucker

berg.com/rfa/essential-open-source-soft

ware-for-science/) or NumFOCUS (https://

numfocus.org) may be poised to improve

the reproducibility infrastructure more than

proof-of-concept tools.

The lack of integration between note-
books and pipeline frameworks can create friction during the

analysis process, which can discourage users from using them

jointly. Efforts such as NoWorkflow/YesWorkflow and internal

frameworks such as Targets238 are helping to bridge these dis-

tinctions, but few solutions have sought to aid notebook-pipeline

integration in general.

Furthermore, there is a clear need for greater annotation within

statistical reports and notebooks for semantic markup to cate-

gorize and disambiguate machine learning and deep learning

workflows. Because of the explosion in advances from this

area, researchers outside the machine learning core community

have found it difficult to keep up with the litany of terminology,

techniques, and metrics being developed. Clearly metadata

can play a role in augmenting understanding of, for instance,

how an existing technique relates most closely with a new one.

In addition, the data management tools frequently have built-in

metadata templates guiding researchers, and even applications

for automatically generating themetadata. And services, such as

Dryad, have front-line curators offering quality control. This will

facilitate the broader goals of reproducibility.

Statistical metadata are vital for users to discover, and re-

viewers to evaluate complex statistical analyses,239 but meta-

data that describes statistical methods is largely nonexistent.

The increasing diversity and application of machine learning ap-

proaches makes it increasingly difficult to discern the intent and

provenance of statistical methods.

This confusion has serious consequences for the peer review

system, as it provides more opportunities for submitters to

engage in "p-hacking," cherry-picking algorithms and parame-

ters that return a desired level of significance. Another, perhaps

less common, tactic is "steamrolling" reviewers by submitting a

novel, opaque algorithm to support a scientific hypothesis.

Without reproducible code, evaluating such submissions be-

comes impossible. Both of these strategies are arrested by

reproducible research standards at the publication level.

To test the robustness of a set of results, reviewers should be

able to swap in similar methods, but identifying and actually

applying an equivalent statistical method is not for the weak

http://Schema.org
http://Schema.org
https://chanzuckerberg.com/rfa/essential-open-source-software-for-science/
https://chanzuckerberg.com/rfa/essential-open-source-software-for-science/
https://chanzuckerberg.com/rfa/essential-open-source-software-for-science/
https://numfocus.org
https://numfocus.org


Box 10. Glossary

benchmark: a comparison of existing tools and models using a gold standard and a limited number of metrics

big data: data that are too large, too complex, too dynamic, too varying, or too unstructured to be analyzed with

regular statistical methods

computing environment: the totality of hard- and software components involved in a particular scientific workflow,

e.g., versions of used software, make and model of used processor; can be documented for both machines and humans

computational workflow: using algorithms and statistical methods to load, transform, analyze, and visualize digital data

container: a lightweight machine computing environment that serves to isolate processes and provide a compatible

virtual operating system interface for individual software applications

dependency manager: tools that rely structured files with dependencies, including versions or installation source, to

automatically provision all dependencies of a specific software for use or development

Docker: the most popular containerization scheme (see ‘‘container’’)

Domain-specific language: a collection of specialized operators that resembles a general programming language

but is designed to handle a very specific task

Generalizable: analysis that can accommodate changes to both code and data while maintaining core findings

Javascript object notation (JSON): simple file format with support for a data types such as arrays and dictionaries

literate programming: computer code and documentation are interspersed in a single source file, which can be

compiled or ‘‘woven’’ by tools into other formats for reading, exposing, or hiding parts of the code

Web Ontology Language (OWL): provides syntax for describing allowed entities and their allowed relations

pipeline framework: software and associated languages that provide a means of abstracting and executing

reentrant and distributed computational operations

PROV: a W3C ontology providing the basic concepts of agents, entities, and activities used by a number

of reproducibility standards

questionable research practices (QRP): practices that compromise scientific integrity such as hypothesizing

after the results are known, selective reporting, and inflation bias

Resource description framework (RDF): data model composed of entity-attribute-value triplets

registered report: a study in which a data collection and analysis plan have been pre-registered and reviewed

prior to commencement

replicable: returning core findings using a different dataset

reproducible computational research (RCR): area of reproducible research concerned mainly with computational,

or in silico analyses, as opposed to wet-lab, field studies, or other scientific methods in the physical world

research compendium: collection of files that accompanies, enhances a scientific publication by providing

data, code, and documentation for reproducing a computational workflow

retrospective provenance: a record of an executed task or workflow, i.e., what was actually run

prospective provenance: a plan of execution described by a workflow, i.e., what will be run

robustness (tool): the ability of software application or model to accommodate different datasets and

experimental designs and return tenable results

robustness (reproducibility): the ability of in silico study or analysis to accommodate roughly equivalent tool

substitutions and return similar results

runnability: ability for computational analysis to be packaged in a way that end-users can quickly achieve

arrive at results from raw data

software dependency: one software relies on features from another software

truth challenge: a competitive benchmark with a training set and sequestered test sets
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of heart. As an example, consider gradient boosted trees, a

method of building and improving predictive models that in-

volves weak learners (classifiers only slightly better than

random guess) using decision trees. Random forests is a pop-

ular machine learning algorithm for classification, also decision

tree–based. The choice between these two methods is so sub-

tle that even experienced data scientists may have to evaluate

them empirically but may substantially change model predic-

tions given limited data. As such, the test of robustness is the

flip side of the coin from benchmarking exercise.240 In a test

of robustness, the analysis itself, borne from the scientific hy-

pothesis, is under scrutiny, while in a benchmark the tools or

models are under scrutiny.
Metadata standards that can support lightweight and heavy-

weight solutions are well positioned for sustainability and adop-

tion, as are those that provide connections between layers of the

analytic stack without a steep learning curve or are fully inte-

grated into tools and thereby invisible to the user. One example

of this, which to our knowledge has yet not been implemented, is

file format and content sanity checks defined by input metadata

but implemented at the pipeline level. The capturing and docu-

mentation of the computing environment, hardware and soft-

ware, also requires conscious steps by authors and could be

largely automated if a common metadata standard existed. For

practical reproducible computational research, these metadata

on tools are just as important as the data and code itself.
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Finally there needs to be greater emphasis on translation be-

tween embedded and distributed metadata solutions and the

automation of meaningful metadata creation. As discussed, files

that support embedded metadata excel as data currency, but

may not be ideal for warehousing, querying, or remote access.

Conversely, solutions that rely on databases for metadata stor-

age to offer advanced features, whether they be for input meta-

data, provenance tracking, or workflow execution, usually do so

at the expense of portability. Systems and standards that pro-

vide conduits between these realities are more likely to succeed.

While metadata will always serve as the "who, what, where,

why, and how" of data, it is also increasingly the mechanism

by which scientific output is made reusable and useful. In our re-

view, we have attempted to highlight reproducibility as a vital

formal area of metadata research and underscore metadata as

an indispensable facet of reproducible computational research.

Software and resource availability
A repository containing metadata and examples for the stan-

dards discussed in this paper, as well as code for reproducing

the figures, is available at https://github.com/leipzig/metadata-

in-rcr. A glossary containing important terms can be found below

(Box 10).
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