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Abstract

Overcoming the stress of starvation is one of an organism’s most challenging phenotypic responses. Those organisms that
frequently survive the challenge, by virtue of their fitness, will have evolved genomes that are shaped by their specific
environments. Understanding this genotype–environment–phenotype relationship at a deep level will require quanti-
tative predictive models of the complex molecular systems that link these aspects of an organism’s existence. Here, we
treat one of the most fundamental molecular systems, protein synthesis, and the amino acid biosynthetic pathways
involved in the stringent response to starvation. These systems face an inherent logical dilemma: Building an amino acid
biosynthetic pathway to synthesize its product—the cognate amino acid of the pathway—may require that very amino
acid when it is no longer available. To study this potential “catch-22,” we have created a generic model of amino acid
biosynthesis in response to sudden starvation. Our mathematical analysis and computational results indicate that there
are two distinctly different outcomes: Partial recovery to a new steady state, or full system failure. Moreover, the cell’s fate
is dictated by the cognate bias, the number of cognate amino acids in the corresponding biosynthetic pathway relative to
the average number of that amino acid in the proteome. We test these implications by analyzing the proteomes of over
1,800 sequenced microbes, which reveals statistically significant evidence of low cognate bias, a genetic trait that would
avoid the biosynthetic quandary. Furthermore, these results suggest that the pattern of cognate bias, which is readily
derived by genome sequencing, may provide evolutionary clues to an organism’s natural environment.
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Introduction
Predicting or measuring the natural microenvironment of an
organism is a complex and challenging task (Savageau 1983;
Ward et al. 1998; Xu 2006). In contrast, sequencing an organ-
ism’s genome has become routine, and the scientific commu-
nity continues to sequence organisms from varied
environments at an increasing pace, yet the vast majority of
those organisms cannot be cultured by current methods, in
part because their natural environment is unknown (Curtis
and Sloan 2005; Xu 2006). Genomic data are clearly outpacing
environmental data, but the sequences themselves may pro-
vide information about the environment from which they
were taken. Recent statistical analyses of overall amino
acid composition across organisms indicate that the environ-
ment is a major evolutionary influence (Chen et al. 2013;
Moura et al. 2013). More specifically, the cognate bias hypoth-
esis (Alves and Savageau 2005) suggests that nutritional stress
places evolutionary pressure on the composition of the
enzymes in the amino acid biosynthetic pathways. (The
“cognate amino acid” refers to the amino acid produced by
the corresponding biosynthetic pathway, and the “cognate
bias” refers to the number of cognate amino acids in the
enzymes of the corresponding biosynthetic pathway relative
to their number in the proteome of the organism.)

The bacterial response to nutritional stress, the well-
known stringent response, has been studied for over five
decades. In 1961, it was shown that amino acid starvation
inhibited the accumulation of stable RNA, and the locus
responsible was christened RC, or the RNA Control gene
(Stent and Brenner 1961), later renamed relA in reference
to the relaxed response of the mutant phenotype (Friesen
et al. 1974). Today, it is clear that the stringent response is a
general reaction to stress and starvation that is conserved
across species (Draper 1996; Harris et al. 1998; van der
Biezen et al. 2000; Chatterji and Ojha 2001), and is character-
ized by increased levels of guanosine tetraphosphate (ppGpp)
(Cashel 1969; Wendrich et al. 2002), which has at least 75
known effects in Escherichia coli, including decreased rRNA
and tRNA transcription, decreased growth rate, and increased
expression of the biosynthetic enzymes for many amino
acids (Draper 1996; Magnusson et al. 2005; Potrykus and
Cashel 2008; Dalebroux and Swanson 2012). However, the
stringent response may not be enough to protect the cell
from the shock of starvation. Part of the response is the
upregulation of amino acid biosynthetic pathways, but the
situation creates a potential catch-22. The missing amino acid
could hold up the construction of the enzymes needed to
create more of their cognate amino acid, a stalemate from
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which the cell might not recover. A logical evolutionary
defense would be to remove the vulnerability—to bias the
biosynthetic enzymes against the use of their cognate amino
acid.

Our first hint that organisms might evolve such a molec-
ular mechanism came in the early days of protein sequencing
when tryptophane synthetase, an enzyme in the tryptophan
biosynthetic pathway, was sequenced and the alpha subunit
was found to contain no tryptophan (Yanofsky 1988). Hardly
conclusive, it took many years and a new technology to begin
testing the hypothesis more generally. Additional support for
what we termed the cognate bias hypothesis was obtained
from genomic data for three well-studied bacteria: Two en-
teric bacteria, E. coli and Salmonella enterica (serovar
Typhimurium), and the soil-dwelling bacteria Bacillus subtilis
(Alves and Savageau 2005). The results suggested a bias
toward fewer cognate amino acids in certain amino acid bio-
synthetic pathways and a profile of bias across amino acids
that differed between the two groups, suggesting a possible
correlation with the organisms’ ecological niches. The cognate
bias hypothesis was recently tested and confirmed using a few
organisms from the other domains of life: Methanococcus
jannaschii, Saccharomyces cerevisiae, and Homo sapiens
(Perlstein et al. 2007; Meiler et al. 2012). However, the
number of organisms examined to date is too few to provide
for a meaningful statistical test.

Complete genome sequences are now available for more
than 1,800 microorganisms. Thus it is an opportune time to
go beyond correlations and comprehensively examine the
cognate bias hypothesis, with an analysis of the underlying
molecular mechanism using a kinetic model of protein syn-
thesis and amino acid starvation, in order to provide a stron-
ger molecular link between the genomic evidence of amino
acid composition and the environmental dynamics of amino
acid availability.

In particular, we are interested in the environment’s effect
on the proteome, in terms of three classes of amino acids: 1)
For amino acids the organism is never required to create, it
could dispense with the biosynthetic pathway entirely (e.g., as
occurs with obligate intracellular parasites that receive the
amino acid from their host, and with humans that receive
their essential amino acids from their diet); 2) for amino acids
the organism is always required to create, it could dispense
with the regulation and synthesize the amino acids constitu-
tively, without regard for cognate bias; and 3) for all other
environments, regulation would be advantageous, and a com-
pensating cognate bias would likely exist for amino acids that
experience the most frequent and extreme fluctuations in the
organism’s natural environment. In order to study the last
case more rigorously, we have created a generic model of
amino acid biosynthesis and regulation in response to
sudden starvation. The results indicate that there are two
distinctly different outcomes—partial recovery or full fail-
ure—that are dictated by the cognate bias, the number of
cognate amino acids in the corresponding biosynthetic path-
way relative to the average number of that amino acid in the
proteome. Furthermore, we mine the abundant genomic
data that are currently available and reveal statistical evidence

of cognate bias. The results describe how the natural environ-
ment of an organism—or more precisely, the stresses and
strains to which the organism is exposed—may leave a ge-
netic fingerprint.

Results

Model of Translation during Starvation

Before describing a larger model of amino acid biosynthesis
and regulation, we present a model of translation that ac-
counts for the effect of starvation, or more specifically for a
decreased supply of the cognate amino acid of interest.
Mathematical models of the translational process have
been created, but they are too detailed to be tractable
within our larger model of regulation (Gromadski and
Rodnina 2004; Elf and Ehrenberg 2005; Gilchrist and
Wagner 2006; Fluitt et al. 2007; Shah and Gilchrist 2010;
Brackley et al. 2011, 2012). Here, we consider a somewhat
simpler approach. Translation proceeds through three well-
known steps (Alberts et al. 2002). First, the ribosome, which is
attached to the mRNA and a growing peptide chain, exposes
an empty A-site. Second, a charged, aminoacyl-tRNA (aa-
tRNA) fills the empty A-site. In fact, the aa-tRNA may leave
the A-site, returning the system to the first step. Finally, the
ribosome incorporates the amino acid into the peptide chain,
discharges the uncharged tRNA, and advances. The sequence
of steps is reminiscent of an enzymatic reaction and has in
fact been modeled as such in the past by Elf and Ehrenberg
(2005). However, they consider the incorporation of an amino
acid in isolation—a single instance of those three steps—and
use the result to represent the average rate of amino acid
consumption in a larger model of global protein synthesis.
Here, we consider the sequential incorporation of every
amino acid in the protein as a longer sequence of enzymatic
reactions, and consequently the combined impact of starva-
tion at multiple steps in the synthesis of a single protein.
When modeling translation as an enzymatic reaction, the
ribosome–mRNA complex represents the catalyst. The tran-
sition between the first and second steps is treated as a re-
versible reaction between a complex with an empty A-site
and an intermediate complex with an aa-tRNA in the A-site.
The transition between the second and third steps—the ad-
dition of the amino acid to the peptide chain and the ad-
vancement of the ribosome—is treated as the essentially
irreversible step in the enzymatic reaction. Figure 1 depicts
the transitions between states. We assume that the concen-
tration of aa-tRNA is coupled to the concentration of the free
amino acid pool, so that when the supply of amino acid
decreases, the concentration of aa-tRNA decreases propor-
tionally, and the rate of its incorporation into the A-site de-
creases. In the limiting case where none of the particular
amino acid is available, the ribosome remains stalled with
an empty A-site. We assume that the longer the ribosome
is stalled, the more likely it is to prematurely terminate trans-
lation and dissociate from the mRNA, which is consistent
with models of nonsense errors produced by frameshift, ribo-
somal drop-off, or release factors (Jørgensen and Kurland
1990; Gilchrist and Wagner 2006; Shah and Gilchrist 2010)
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and models of ribosome rescue by transfer-messenger RNA
(Roche and Sauer 1999; Moore and Sauer 2007; Keiler 2008).

The complete translation of a protein with N amino acids
can be modeled as a linked chain of N enzymatic reactions, as
shown in figure 2. The entire process begins with initiation,
when the ribosome binds to the mRNA, and ends with the
release of the completed protein, which requires the presence
of release factors. If all of the amino acid concentrations are
high, the rate of abortion becomes vanishingly small, and the
entire process can be viewed as an unbranched pathway,
implying that at steady state, what goes in must come out.
Assuming the concentrations of ribosome and all ancillary
factors are constant or saturating, then the steady-state rate
of protein production, without starvation and abortion, is
simply vout ¼ kinM, or proportional to the concentration of
the specific mRNA. Nearly all models of biosynthetic gene
circuits treat the rate of protein synthesis as proportional to
the concentration of mRNA, and there is good evidence in
bacterial literature to support this (Guet et al. 2008). On the
other hand, if the supply of a particular amino acid is signif-
icantly decreased, then the ribosome will stall at each point
that requires that amino acid (Pedersen 1984; Varenne et al.
1984; Sørensen et al. 1989), increasing the rate of abortion and

slowing the overall rate of protein production. The exact rate
of protein production can be determined by an inductive
argument. In the simplest case, where the protein only re-
quires a single amino acid that is in short supply, the process
has a single branch point at step i, as shown in figure 1. It can
be shown that at steady state, vout at step i is a function of vin

and the limiting amino acid concentration, or

vout ¼ vin
Si

Si þ Km

� �
; ð1Þ

where

Km ¼
k4

k3

k2 þ k3

k1

� �
: ð2Þ

More intuitively, Km is the amino acid concentration for
half-maximal velocity through step i. vin is a result of the
proceeding steps, which in this case form an unbranched
pathway, and is therefore kinM at steady state. The remaining
steps also form an unbranched pathway, meaning that the
overall rate of protein production is equal to the velocity
through step i.

For a protein that requires more than one of the limiting
amino acid, vout at the first occurrence is identical to the case
with one. vout at the second occurrence is equal to the output
of the proceeding steps multiplied by the same attenuating
factor. As such, for a protein that requires n of the limiting
amino acid, the overall rate of protein production is

vout ¼ kinM
S

Sþ Km

� �n

; ð3Þ

where S is the concentration of the limiting amino acid. The
implication of equation (3) is dramatic. Considering the av-
erage protein in E. coli contains approximately 300 amino
acids, and assuming the 20 amino acids are equally repre-
sented, n is on the order of 15, making translation ultrasensi-
tive to the limiting amino acid concentration. If the amino
acid concentration drops below some critical threshold, Km,
then the rate of translation will practically halt.

The submodel above captures the essential features
needed in our larger model of amino acid biosynthesis and
regulation in the next section. One could conceivably add
more detail, and attempt to account for such factors as
tRNA abundance, specific constants for the binding of
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FIG. 2. Model of translation as an enzymatic process. The translation of a full protein is modeled by a series of enzymatic reactions, each as shown in
figure 1. Free ribosome R binds to mRNA M and initiates translation. At each step i, the required aa-tRNA Si is added to the ribosome–mRNA–peptide
complex Ei that already has a peptide chain of length i. The final complex EN is released by release factor F to create free ribosome R, mRNA M, and
protein P. kin, rate of translational initiation; kout, rate of protein release. Ii, Xi, and k1–k4 are described in figure 1.

Si

Ei Ii

Xi

k1 k3

k2
k4
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FIG. 1. Model of a single branch point in translation. At step i, the
advancement of the ribosome is modeled by a single enzymatic reac-
tion. The required aa-tRNA Si enters the A-site of the ribosome–
mRNA–peptide complex Ei, to create a new intermediate complex Ii.
The process is reversed if the aa-tRNA leaves the A-site. Otherwise, the
amino acid is irreversibly linked to the growing peptide chain, advancing
the complex to Ei + 1. In the absence of aa-tRNA, the complex can dis-
sociate from the mRNA, creating the aborted complex Xi. k1, rate con-
stant of the appropriate aa-tRNA entering the A-site; k2, rate constant of
the appropriate aa-tRNA leaving the A-site; k3, rate constant of amino
acid i being incorporated into the growing peptide chain; k4, rate con-
stant of the ribosome aborting and dissociating from the mRNA; vin,
rate of ribosomes advancing to the current position; vout, rate of ribo-
somes proceeding to the next position.
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amino acid to various tRNAs and the binding of tRNA antic-
oding sites to codons in mRNA, salt and pH concentrations,
or any other physical–chemcial aspect of the intracellular
milieu that differs according to cell type (e.g., high pH in
extreme halophilic archaea vs. low pH in halophobic bacteria).
However, such detailed models would become so complex
that analysis would be difficult if no precluded, most values of
the parameters would not be available for most organisms,
and even if these obstacles were overcome in a particular case,
the results would not generalize to other systems.

Model of Amino Acid Biosynthesis and Regulation

Mathematical models of amino acid biosynthetic systems
have been developed in the past, in many cases for specific
systems, such as Trp biosynthesis in E. coli (Xiu et al. 2002;
Alves and Savageau 2005; Elf and Ehrenberg 2005). Many of
these models tend to be complex with idiosyncratic features
that do not readily generalize to other systems, as discussed
above for our submodel. For instance, the pathways may have
different numbers of enzymes with very different kinetic
properties. Rather, we require relatively simple models that
nevertheless retain the essential generic character of amino
acid biosynthetic systems, can be readily analyzed to make
testable predictions, and can be used to elucidate general
design principles. For example, models of inducible and re-
pressible pathways, very similar to the one developed below,
were used to make predictions regarding the coupling of ex-
pression in elementary gene circuits; the resulting predictions
were confirmed experimentally in over 50 specific cases and
the predicted coupling rules are now established as a general
design principle (Hlavacek and Savageau 1996, 1997; Wall
et al. 2003, 2004). Figure 3 depicts our model of amino acid
biosynthesis, one that includes the transcription and transla-
tion of enzymes in the biosynthetic pathway, as well as the
synthesis of the cognate amino acid. Feedback repression of
the biosynthetic enzymes, which is a prominent control
mechanism in bacteria (Neidhardt et al. 1996), is also in-
cluded, as is the ability to import amino acid from the external
environment. As was shown in the previous section, the rate
of translation of the biosynthetic enzymes depends on the
concentration of the free cognate amino acid, which is also
depleted by cellular demand.

The model is mathematically described by a conventional
system of ordinary differential equations (ODEs):

dX1

dt
¼ �1X4

�X
g13

3 þ K13

X
g13

3 þ K13

� �
� �1X1; ð4Þ

dX2

dt
¼ �2X1X5

X3

X3 þ K23

� �n

� �2X2; ð5Þ

dX3

dt
¼ �31X2X6 þ �32X7 � �3X8

X3

X3 þ K23

� �m

: ð6Þ

X1 represents the concentration of mRNA that encodes some
critical enzyme of the biosynthetic pathway. Transcription is
dependent on the cognate amino acid concentration, X3, and

is described by a rational function with a Hill number of g13,
and a ratio between minimum and maximum rates
� ¼ V1L=V1H. The loss of X1 is dominated by first-order deg-
radation of mRNA. X2 represents the concentration of the
critical enzyme, which is assumed to be stable. As was shown
in the previous section, the rate of translation, or protein
production, is drastically affected by the limiting amino acid
concentration, X3, and the exponent n is the number of cog-
nate amino acids in the critical enzyme. The loss of X2 is
dominated by first-order dilution in an exponentially growing
cell, and therefore �2 is equal to the growth rate constant,
which is in turn affected by the availability of free amino acid,
or �2 ¼ � ¼ �M½X3=ðX3 þ K23Þ�

m, where �M is the maxi-
mum growth rate constant when X3 is in excess. The free
cognate amino acid concentration, X3, can be increased by
biosynthesis or import from an external supply, each repre-
sented by a positive term. The free cognate amino acid pool is

mRNANA

AA1-20 enzymes

AAi

precursors

B

A

X4 X1

X5 X2

X6 X3

X7

X8

FIG. 3. Model of amino acid biosynthesis and regulation during starva-
tion. (A) Model illustration of amino acid biosynthesis and regulation
with an external supply. NA, nucleic acid precursors; mRNA, messenger
RNA for the enzymes of the amino acid biosynthetic pathway; AA1–20,
free amino acid; AAi, free cognate amino acid. (B) Abstract model of
species concentrations and interactions used here. X1, mRNA; X2, critical
enzyme of the amino acid biosynthetic pathway; X3, free cognate amino
acid; X4, nucleic acid precursors; X5, protein precursors; X6, cognate
amino acid precursors; X7, external cognate amino acid; X8, total cellular
mRNA.
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depleted by the cellular demand for amino acid, which we
assume is dominated by protein synthesis. If the amino acids
are quickly recycled from the aborted ribosome–peptide
complex, then intuitively the rate of amino acid utilization
is the rate of successful protein production, and the final term
of equation (6) is therefore similar to the first term of equa-
tion (5). We assume that the exponent m is the average
number of cognate amino acids in each protein of the ex-
pressed proteome, rather than n, the average number in the
critical enzyme of the corresponding biosynthetic pathway.
Furthermore, if the cell produces P proteins, each with an
average number of cognate amino acids m, at a rate equal
to that of the critical enzyme in the biosynthetic pathway,
then �3 ¼ Pm�2X5.

To simplify the analysis, and without loss of generality, the
variables and parameters are normalized with respect to ini-
tial concentrations and a chosen time constant: xi ¼ Xi=Xi0,
ki ¼ Ki=X30, and � ¼ t�M. The normalized system is
described by equations (7–9):

dx1

d�
¼ A

1þ k13

� þ k13

� �
�xg13

3 þ k13

x
g13

3 þ k13

� �
� x1

� �
; ð7Þ

dx2

d�
¼ x1 1þ k23ð Þ

n x3

x3 þ k23

� �n

� x2 1þ k23ð Þ
m x3

x3 þ k23

� �m� �
;

ð8Þ

dx3

d�
¼ B Cx2 þ ð1� CÞx7 � 1þ k23ð Þ

m x3

x3 þ k23

� �m� �
;

ð9Þ

where A ¼ �1

�M
, B ¼ �3X80

�MX30
, and C ¼ �31X60X20

�31X60X20þ�32X70
.

It should be noted that care is taken when normalizing
the system. To create a well-controlled comparison between
systems with different parameters, the terms were chosen to
ensure that the corresponding reaction rates in each
system were equal at the initial conditions. Simple inspec-
tion confirms that the gain and loss of each species at the
initial conditions is unity, no matter what the parameter
values.

Parameter Estimation

The mathematical model described by equations (7–9) con-
tains nine parameters: A, B, C, g13, �, k13, k23, m, and n. Of the
nine, five are aggregates of other parameters. Table 1 lists the
estimated parameter values. Where possible, the parameters
are estimated based on published data for E. coli. In the re-
maining cases, reasonable estimates are made to reflect ex-
pected operating conditions. The aggregate parameter A is
calculated based on published values. Similarly, B is based on
published values and a reasonable estimate for P. C is chosen
to reflect a heavily repressed biosynthetic pathway during
growth in an initial state of amino acid abundance. k13 and
k23 represent the critical thresholds of transcriptional and
translational regulation, respectively, and are normalized rel-
ative to the initial cognate amino acid concentration, X30.

Their values are chosen so that the initial rate of transcription,
based on X30, is near minimum but still within the regulatory
regime, whereas the initial rate of global translation, also based
on X30, is near maximum but still within the regulatory regime.

Dynamic Response to Starvation

We define the cognate bias as n�m, or the difference be-
tween the number of cognate amino acids in a critical enzyme
of the corresponding biosynthetic pathway, n, and the aver-
age number in the proteome, m. If the critical enzyme of the
pathway is compositionally similar to the rest of the prote-
ome, then there is no bias, or n�m = 0. Low bias represents
the case where there are relatively fewer cognate amino acids
in the biosynthetic pathway, or n�m< 0, whereas high bias
represents the case where there are more, or n�m 4 0. To
examine the effect of cognate bias, various systems with dif-
ferent biases were computationally simulated in response to
rapid and complete starvation: The normalized external
supply of amino acid, x7, was decreased from 1 to 0 at
� = 0. The results are shown in figure 4. All of the systems
immediately experience a rapid drop in free cognate amino
acid and a commensurate rise in the mRNA that encodes the
biosynthetic pathway. The response is expected, as the large
cellular demand quickly depletes the free amino acid reserves.
Systems with low (blue) or no (green) cognate bias compen-
sate by derepression and stabilize at a new steady-state amino
acid concentration. Systems with a slight high bias (red and
light blue) recover more slowly, but eventually stabilize as well
(see the final values in fig. 4C). Systems with slightly higher
bias (pink and yellow) do not recover, but do stabilize at lower
amino acid concentrations. Figure 4C and D clearly shows
how the final steady-state concentration and response
times vary with bias: The higher the bias, the slower the re-
sponse and the lower the final steady-state concentration of
free amino acid. Similar behavior is observed when the pa-
rameter values are varied—A between 5 and 100, B between
104 and 106, and m between 4 and 16—indicating that the
result is insensitive to the values of the parameters.
Furthermore, the behavior changes significantly between
n = 32 (yellow) and 36 (black), at which point the amino
acid concentration does not appear to stabilize at all, but
rather continues on a trajectory toward zero, suggesting the
full failure of the system. However, the response time is ex-
tremely slow, and the large exponents magnify rounding
errors, which may introduce uncertainty in the final steady-
state values. Nevertheless, the concentrations do eventually
reach zero, which is confirmed by the following analysis of the
steady states.

Steady-State Concentrations after Starvation

At steady state, the derivatives that represent the changing
concentrations vanish in equations (7–9). Also, complete
starvation sends the external amino acid supply x7 to zero.
Simple inspection of the equations when dxi/d� and x7 are
zero reveals that x3 = 0 is always a solution, meaning
that a steady-state amino acid concentration of zero is a
possibility. Subsequent manipulation of equations (7–9)
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yields the following equation, in terms of the free amino
acid concentration x3 and the estimated parameters of the
system:

C
1þ k13

� þ k13

� �
�x

g13

3 þ k13

x
g13

3 þ k13

� �
¼ 1þ k23ð Þ

2m�n x3

x3 þ k23

� �2m�n

:

ð10Þ

There is no closed-form solution for x3 given the general form
of equation (10). However, when both sides of the equation,
fleft and fright, are plotted as shown in figure 5A, the intersec-
tions identify the values of x3, or the normalized steady-state
concentrations, that satisfy equation (10). In figure 5A, fleft is
drawn for g13 = 2, whereas fright is drawn for several different
values of cognate bias, or n�m. Overall, there are six labeled
intersections in figure 5A, and a numerical solver was used to
verify and refine each of them, producing six potential steady-
state concentrations for x3: 0.013, 0.047, 0.090, 0.12, 0.17, and
0.28. However, the number of intersections is not equal to the
number of curves—for some values of bias, fleft and fright

clearly intersect at a single point; for other values, the
curves intersect at two points or not at all.

Figure 5A reveals three distinct cases of interest. When
n � 2m, the system has only one intersection, and therefore
one steady state, in addition to the zero steady state that was
previously identified. The eigenvalues of the system linearized
near the steady states confirm, as the simulations indicated,
that the positive steady state is stable whereas the steady state
at zero is unstable. This implies only one possible outcome for
n � 2m: A low, albeit nonzero, stable steady-state amino acid
concentration, which is considered safe. When n is slightly
greater than 2m, but still below some threshold mc, the
system has two intersections in figure 5A, or two nonzero
steady states, in addition to the ever-present steady state at

zero. The eigenvalues of the system linearized near these
steady states confirm, as the simulations indicated, that the
high steady state is stable, the intermediate steady state is
unstable, and the zero steady state is stable. Thus, there are
two possible outcomes: Recovery or full system failure. When
n is much greater than 2m, or greater than the threshold mc,
there are no intersections in figure 5A, but the steady state at
zero is still stable, implying that the only possible outcome is
full failure. In this final case, the high cognate bias is fatal.
Indeed, the steady-state analysis confirms the results indi-
cated by the dynamic simulations. The key determinant of
survival is the cognate bias, or the relative values of n and m.
In particular, the key measure is n� 2m, or the “critical bias.”
Values of n� 2m � 0 are safe, whereas values of
n� 2m 4 0 are potentially fatal. Furthermore, figure 5B
shows that even when n<mc, and the system therefore sta-
bilizes at a nonzero steady state amino acid concentration,
the normalized growth rate �/�M = [x3/(x3 + k23)]m varies
with n, and the lower the bias, the higher the growth rate.

Statistical Evidence of Bias across Genomes

A biological design that would protect against full failure
during starvation would be a low cognate bias for the critical
enzymes of the amino acid biosynthetic pathways. Past work
suggests that there is statistical evidence of low cognate bias
in the pathways of some organisms, including B. subtilis, E. coli,
and S. enterica (serovar Typhimurium) (Alves and Savageau
2005). However, that analysis used a different model and a
different measure of bias based on relative percentage of
amino acid composition. Our model presented here indicates
that the key measure of bias should instead be based on
relative number of cognate amino acids. Furthermore, there
is now a substantially larger body of genomic data to mine.

Table 1. Parameters Estimates for Amino Acid Biosynthesis.

Parameter Description Value Used Sources

b1 Rate constant of mRNA degradation 1 min�1 Leive and Kollin (1967);
Blundell and Kennell (1974)

lM Rate constant of maximum growth and enzyme dilution 0.01 min�1a Bremer and Dennis (1996)

a2X5 Rate of initiation of translation 20 min�1b Draper (1996)

X30 Initial concentration of free cognate amino acid 75mM Sundararaj et al. (2004)

X80 Initial concentration of total mRNA 1mM Sundararaj et al. (2004)

A Normalized rate constant of mRNA degradation 100

B Normalized initial maximum supply of cognate amino acid 106

C Initial fraction of cognate amino acid autosynthesized 0.01

g13 Strength of repression 2

r Potential capacity (inverse) 10�4c

k13 Concentration for half-maximal velocity raised to the power g13

(K13 relative to Xg13

30 )
0.001

k23 Concentration for half-maximal velocity through step i (K23 relative to X30) 0.1

m Average number of cognate amino acids in a protein 16d Tatusova et al. (1999); Rudd (2000);
Pruitt et al. (2005)

NOTE.—The parameter values are estimated based on published data for Escherichia coli, or reasonable estimates are made to reflect expected operating conditions.
aRate of dilution dominates rate of degradation; slowest growth rate as observed on minimal media.
bRate at which efficient mRNAs initiate translation of trp.
cPotential capacity may not be observed capacity.
dBased on average protein length and an amino acid composition of 0.05.
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To search for evidence of cognate bias in the genomes
of sequenced prokaryotes, we utilized the MetaCyc path-
way database (Caspi et al. 2011) and the UniProt protein
database (UniProt Consortium 2014). In our model, n rep-
resents the number of cognate amino acids in some critical
enzyme of the amino acid biosynthetic pathway. However,
the identification of a critical enzyme is problematic. It
could be a rate-limiting enzyme—and yet different en-
zymes may be rate limiting under different conditions.
The selection could be based on other factors, including
activity, half-life, normal concentration, or regulative capac-
ity, each of which is relatively uncharacterized when com-
pared with the wealth of sequence data. Furthermore,
amino acid biosynthetic pathways are intertwined, which
complicates the identification of a critical enzyme for a
specific biosynthetic pathway. Nevertheless, it can be
argued that the selective pressure for cognate amino acid

bias applies to all of the regulated enzymes of the path-
way—after all, the entire pathway must be upregulated in
response to starvation—and the last enzyme in each path-
way can be uniquely and easily identified. Using MetaCyc,
we compiled a list of the last enzymes in all of the known
pathways leading to one of the 20 fundamental amino
acids, shown in supplementary table S1, Supplementary
Material online. From UniProt, we downloaded the com-
plete proteomes of 1,816 completely sequenced prokary-
otes. Within each proteome, we searched for the
biosynthetic enzymes identified in supplementary table
S1, Supplementary Material online. If an enzyme was
found, we used the number of cognate amino acids in
the enzyme to represent n in our model. If more than
one enzyme was found for the production of a particular
amino acid, we assumed that the organism has multiple
alternative pathways and the pathway with the lowest
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FIG. 4. Dynamics of cognate amino acid concentration during starvation. (A) Normalized concentration of mRNA for the critical enzyme, x1, and (B)
normalized concentration of free cognate amino acid, x3, during complete and instantaneous starvation. The time scale is normalized to the rate of
dilution in the growing cell, or � ¼ t�M. (C) Final concentration of free cognate amino acid, x30, when the simulation continues to steady state, and (D)
the speed of the response after the initial rapid drop, or the time �1/2 required to cover half the distance to the final steady-state concentration. The
number of cognate amino acids in the critical enzyme of the biosynthetic pathway varies from 1 to 50; specific values are n = 12 (blue), 16 (green), 20
(red), 24 (light blue), 28 (pink), 32 (yellow), and 36 (black). The average number of cognate amino acids in the proteins of the proteome, m, is 16. Values
of n<m represent a low cognate bias in the biosynthetic pathway, whereas values of n 4 m represent a high cognate bias.
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number of cognate amino acids is the most resilient; there-
fore the lowest of the numbers was used to represent n.
Finally, we counted the number of cognate amino acids in
each protein of the proteome and used the average
number to represent m. The cognate bias, as we have
shown, is n�m, and the critical bias is n� 2m. The re-
sulting data, used in subsequent analyses, are included in
supplementary table S2, Supplementary Material online.

Figure 6 displays histograms of the cognate biases mea-
sured for each of the 20 amino acids over all 1,816 proteomes.
As expected, histograms of the critical biases are similar in
shape and shown in supplementary figure S2, Supplementary
Material online. There are obvious cases of extreme cognate
bias in figure 6: Tryptophan, in almost every case, has a low
bias, whereas Arginine, in almost every case, has a high bias.
To statistically analyze the significance of the biases, we per-
formed a sign test (see Materials and Methods), a nonpara-
metric test that does not assume a particular population
distribution and measures the probability that the values
are drawn from a population with a median value of zero,
or no bias. The results of the test are listed in table 2. Low P
values indicate that the population is biased, and the sample
median indicates whether it is biased high or low. The results
indicate that there is significant statistical evidence of low
cognate bias (P< 0.001) in the biosynthetic pathways of six
amino acids: Asparagine, Tryptophan, Proline, Leucine, Serine,
and Cysteine. All but one of the pathways—Glutamate—
show statistically significant evidence of low, or safe, critical
bias. Organisms that have a close phylogenetic relationship
might be expected to have similar biases and might not be
considered independent samples. However, we obtained es-
sentially the same results for the UniProt reference prote-
omes, which have been selected specifically to provide a
wide phylogenetic distribution (UniProt Consortium 2014).
Moreover, when clustering on the basis of cognate bias, even
organisms that have a close phylogenetic relationship split
into different clusters, as shown in the following section.

Clustering of Cognate Bias Compared with Taxonomy

Without any prior knowledge, each protein of the proteome
would naively be expected to contain equal amounts, or 5%,
of each amino acid. However, it is widely know that this is not
the case, and figure 7A depicts our calculation of the amino
acid composition biases for each of the completely sequenced
prokaryotes found in the UniProt database. The composition
bias is measured as the average difference between the
number of an amino acid in each protein of the proteome
and the expected number, or 5% of the length of the protein.
A positive number, or high composition bias, indicates a
higher than expected number of a given amino acid in the
proteins of the proteome; a low bias indicates a lower than ex-
pected number. Figure 7A shows that Cysteine, Tryptophan,
Histidine, and Methionine are consistently underrepresented
in the proteomes, whereas Leucine is consistently overrepre-
sented. The remaining amino acids vary between a high and
low composition bias, depending on the organism. The ver-
tical ordering is sorted by the similarity of the organisms
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FIG. 5. Steady-state cognate amino acid concentration and growth
rate after starvation. (A) After starvation (x7 = 0), the normalized,
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intersection of fleft, the value of the left side of equation (10) (dotted
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2m< n<mc (dark red) have multiple potential outcomes. Cases where
n 4 mc (red and dashed red) have only one steady state at zero (not
evident on the logarithmic axis), and are therefore fatal. (B) Normalized
growth rate �/�M = [x3/(x3 + k23)]m given the steady-state amino acid
concentrations found for n = 1–33 (gray), specifically for n = 22, 29, 31,
32, and the coincident doublet at 33 (black).
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across all 20 amino acids, and reveals large and small clusters
with similar bias profiles. The adjacent bar indicates the tax-
onomic phylum of each organism, and in several cases the
bias clusters roughly correspond to phyla, especially in the
highly represented cases of Proteobacteria, Fimicutes, and
Actinobacteria.

On the other hand, figure 7B depicts the measured cog-
nate biases for each of the complete proteomes. A positive
number, or high cognate bias, indicates a higher than ex-
pected number of a given amino acid in the final enzyme
of the biosynthetic pathway; a low bias indicates a lower than
expected number. Missing values indicate that none of the

known enzymes, and presumably none of the known path-
ways, was found in the proteome. Note that the cognate bias,
by definition, is measured with respect to the composition
bias, and so it is remarkable, for example, that Tryptophan,
which is already underrepresented in the proteome, tends to
have an even lower number in the biosynthetic pathway. The
vertical ordering of the cognate bias profiles, based on simi-
larity, reveals fewer obvious clusters than the ordering based
on composition bias, although a small cluster in the center
includes E. coli and other organisms that can synthesize all 20
amino acids, and a larger cluster at the bottom includes pro-
teomes with a very high Glutamate cognate bias. Likewise,
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clustering based on cognate bias does not appear to corre-
late as strongly with the taxonomic phyla as does the
clustering based on composition bias, especially in the
highly represented cases of Proteobacteria, Fimicutes, and
Actinobacteria. A similar result is apparent when the prote-
omes and pathways are clustered by critical bias, as shown in
supplementary figure S3, Supplementary Material online.
(Raw data for fig. 7A and B, and supplementary fig. S3, can
be found in supplementary tables S3–S5, respectively.)
Indeed, the larger clusters apparent in figure 7A are broken
up and scattered in figure 7B and supplementary figure S3,
suggesting that any similarity in cognate bias may depend less
on taxonomy and more on the environment.

Discussion
Part of the cell’s stringent response to starvation is the upre-
gulation of amino acid biosynthetic pathways, and yet the
stringent response might not be enough to protect the cell
from the shock of rapid starvation. Cognate bias—relatively
fewer cognate amino acids in the corresponding pathway
synthesizing the amino acid—could avoid a potential catch-
22, in which the emergency response requires the very amino
acid that has disappeared from the environment. Past work
(Alves and Savageau 2005) suggested that there is a low cog-
nate bias in the pathways of some amino acids, that the bias
tends to be lower for the key enzymes in the pathway, and
that the profile of bias differs between E. coli, S. enterica
(serovar Typhimurium), and B. subtillis—organisms from

different environmental niches. However, the analysis used
a different model and a different measure of bias based on
relative percentage of amino acid composition, whereas our
more detailed model indicates that the key measure of bias
should be based on the relative number of cognate amino
acids. To illustrate the difference, consider three proteins of
100, 200, and 400 amino acids, each containing two cognate
amino acids. The first consists of 2% cognate amino acid, the
second consists of 1%, and the third 0.5%. Based on relative
percentages, the first protein has the highest bias, whereas the
third has the lowest bias; but based on relative numbers of
cognate amino acids, their bias is the same. The impact of the
different definitions can be significant.

Dynamic simulations and a steady-state analysis of our
model show that important aspects of the system depend
on the cognate bias, the number of cognate amino acids in
the corresponding biosynthetic pathway (n) relative to the
number in the expressed proteome (m), or n-m. The lower
the cognate bias, the faster the system responds to starvation
and the higher the recovered concentration of the free amino
acid pool will be, potentially creating a selective evolutionary
pressure to lower the cognate bias. Furthermore, our results
confirm that a key determinant of the cell fate is the cognate
bias. The crucial measure, based on cognate bias, is the critical
bias, or n� 2m. A low critical bias is always safe, whereas a
very high critical bias is fatal. An ambiguous critical bias—
slightly high, but below some threshold—can lead to either
recovery or failure, depending on the initial conditions and
the dynamics of the system. The results suggest immediate
predictions that can be experimentally tested. Although single
amino acid starvation experiments have been performed in
bacteria over the years (Venetianer 1969; Stephens et al. 1975;
Shand et al. 1989; Parish 2003; Ohashi et al. 2008), they have
not comprehensively tested all of the amino acids. We pro-
pose that samples taken from an unstressed culture, grown on
rich medium, in steady-state exponential growth, could be
used to inoculate a series of cultures grown on 20 different
chemically defined media, where each medium has an excess
of all amino acids except one. We predict new cultures that
upregulate pathways with low critical bias will recover,
whereas those that upregulate pathways with high critical
bias may fail, or at least experience a long lag in recovery.
Furthermore, the model is general enough to make predic-
tions for a variety of organisms. Measures of critical bias
should predict relative growth rates and differential recovery
times between two organisms starving for the same amino
acid or the same organism starving for different amino acids.

A key aspect of our analysis is the changing environment.
In a broader context, three classes of amino acids likely cor-
respond to different environmental effects on the proteome:
For amino acids that are never required by the organism, the
biosynthetic pathway can be dispensed with entirely. For
amino acids that are always required by the organism, regu-
lation can be dispensed with, and the amino acids synthesized
constitutively without regard for cognate bias. For all other
environments, regulation would be advantageous, and a com-
pensating cognate bias would likely exist for amino acids that
experience the most frequent and extreme fluctuations in the

Table 2. Statistical Measures of Bias.

Amino Acid Number of
Organisms

Median
Cognate

Bias

P Value Median
Critical

Bias

P Value

Asparagine 1,790 �3.1 1e-166 �15.7 0

Tryptophan 1,526 �1.7 6e-161 �5.4 0

Proline 1,288 �3.0 3e-112 �16.6 5e-281

Leucine 1,142 �4.4 2e-80 �36.3 2e-249

Serine 694 �4.5 6e-40 �23.0 1e-142

Cysteine 1,509 �0.5 8e-12 �3.3 8e-246

Methionine 1,229 0.1 0.2 �7.9 3e-141

Glutamine 1,443 0.7 0.0005 �10.3 1e-273

Valine 1,142 1.3 1e-17 �20.7 3e-250

Isoleucine 1,142 1.6 2e-23 �18.0 7e-246

Phenylalanine 315 4.6 3e-29 �7.4 9e-68

Tyrosine 433 5.1 3e-46 �3.7 1e-55

Lysine 1,470 2.3 8e-52 �13.4 1e-307

Histidine 1,409 2.1 6e-91 �4.2 5e-209

Aspartate 799 5.2 5e-99 �11.7 2e-165

Threonine 1,253 6.6 9e-181 �9.7 7e-188

Alanine 1,427 13.8 1e-216 �12.7 7e-204

Glutamate 1,046 45.0 7e-220 25.4 3e-23

Arginine 1,438 10.5 1e-295 �7.2 3e-166

Glycine 1,727 12.6 3e-303 �10.1 4e-264

NOTE.—For each amino acid, the table lists the number of organisms in which a
biosynthetic pathway enzyme was found, the median cognate bias and critical bias
of the population, and their P values based on a sign test (see Materials and
Methods). Low P values (P< 0.001) indicate a statistically significant high or low
(positive or negative) bias.
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FIG. 7. Hierarchical clustering of composition bias and cognate bias profiles, based on bias similarity in the complete proteomes of the UniProt database.
(A) The clustering is based on the composition bias: The average difference between the number of an amino acid in each protein and the expected
number, or 5% of the protein length. High composition bias (red) indicates that the amino acid is relatively overrepresented in the proteins of the
proteome; low bias (green) indicates that the amino acid is relatively underrepresented. Each row describes the biases measured for a sequenced
organism, and the vertical ordering is based on the similarity of the bias profile across all 20 amino acids, with rows closer to the top being more similar.
Each column represents one of the 20 amino acids, and the horizontal ordering is based on the similarity of the bias values for that given amino acid
over all of the organisms, with columns to the left being more similar. The phylum of each row, or organism, is plotted in a distinct color to the right.
The number of organisms in each phylum is shown in parenthesis in the legend. (B) The clustering is based on the cognate bias: The difference between
the average number of a given amino acid in each protein of the proteome and the number in the final enzyme of the amino acid biosynthetic pathway.
A high cognate bias (red) represents a higher number in the pathway; a low bias (green) represents a lower number in the pathway. Missing values
(white) indicate that the biosynthetic pathway was not found in the proteome. The vertical and horizontal ordering are based on similarity, as described
in (A). The phylum of each row, or organism, is plotted to the right as in (A).
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organism’s natural environment. In figure 7B, the missing data
points may indicate biosynthetic pathways the organisms
have eliminated. High bias may represent the second case:
Amino acids that are constitutively produced without regard
to bias because they are absent in the environment. In this
case, the evidence might suggest that other mechanisms lead
to the selection for high cognate bias. Our analysis and results
shed light on the last case, a dynamic environment where the
amino acid supply is in flux.

An analysis of the proteomes for over 1,800 fully sequenced
organisms indicates a statistically low cognate bias in six
amino acid biosynthetic pathways, and a low critical bias in
all but one. The results open up the possibility that an organ-
ism’s genome may reflect the nutritional stress that the or-
ganism naturally encounters. It should be noted that large
protein data sets such as UniProt are built in part by homol-
ogy with known proteins, which could skew the results
toward a few well-studied organisms such as E. coli. On the
other hand, we obtained similar results when analyzing only
the reference proteomes in UniProt, which represent a small,
diverse set of well-studied model organisms. Furthermore, we
have only considered the case of immediate and complete
starvation, whereas organisms naturally experience a variety
of transitions from abundance to scarcity and vice versa,
sometimes in patterns. For example, E. coli encounters periods
of starvation and abundance while passing through the guts
of successive hosts (Savageau 1983). Future work could ex-
plore a full range of environmental conditions and patterns of
stress. Ideally, transcriptomic, proteomic, and metabolomic
studies would be performed over a full range of concentra-
tions for a single amino acid. In fact, genome-wide studies
continue to advance our understanding of the stringent re-
sponse in E. coli (DeRisi et al. 1997; Chang et al. 2002; Durfee
et al. 2008; Traxler et al. 2008; Jozefczuk et al. 2010) as well as
other organisms (Brockmann-Gretza and Kalinowski 2006;
Vercruysse et al. 2011; Gaca et al. 2012), but the studies
have not focused on individual amino acid starvation.

The stringent response is a drastic and complex measure
taken to cope with a changing environment. Likewise deter-
mining the natural environment of most organisms is a chal-
lenging task. Our model of starvation and the stringent
response establishes a link between the genome and the en-
vironment. The results suggest at least one design principle—
a low cognate bias—that cells may use to cope with nutri-
tional stress. Armed with that knowledge, we may be able to
mine our growing genomic storehouse for clues to an organ-
ism’s environmental niche.

Materials and Methods
All analyses were performed with custom scripts and the
built-in functions of MATLAB R2009a (7.8). The dynamic
simulations utilized the built-in MATLAB solver for stiff
ODEs: ode15s. The steady-state solutions were found by sam-
pling equation (10), and then verified and polished using the
built-in MATLAB function fzero. The linearization of the
system and the evaluation of the local stability of the
steady states were accomplished with the aid of the
MATLAB Symbolic Math Toolbox.

Information on amino acid biosynthetic pathways and
their final enzymes was curated manually from the
MetaCyc pathway database (Caspi et al. 2011). Protein data
were retrieved, parsed, and analyzed using custom MATLAB
scripts from the UniProt protein database (UniProt
Consortium 2014). The resulting data, used in the subsequent
analyses, can be found in supplementary tables S1–S5,
Supplementary Material online. The statistical tests for signif-
icant cognate bias and critical bias utilized the sign test, a
nonparametric test that does not make assumptions about
the population distribution, and measures the probability
that values were drawn from a population with a median
value of zero, or in this case, no bias. The sign test used
here was one-sided, in order to measure whether the popu-
lation deviated in a particular direction, either high or low.
The sign tests were performed through the built-in MATLAB
function signtest. The clustering analysis was based on nearest
Euclidean distance and performed through the built-in
MATLAB function linkage.

Supplementary Material
Supplementary figures S1–S3 and tables S1–S5 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).

Acknowledgments

The authors thank Jason G. Lomnitz, Mitchell Singer, and
Marc T. Facciotti for discussions and suggestions. This work
was supported by a grant from the United States Public
Health Service grant number RO1-GM30054 to M.A.S. and
by an Earl C. Anthony Fellowship to R.A.F.

References
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2002.

Molecular biology of the cell. New York: Garland Science.
p. 335–365.

Alves R, Savageau MA. 2005. Evidence of selection for low cognate
amino acid bias in amino acid biosynthetic enzymes. Mol
Microbiol. 56:1017–1034.

Blundell M, Kennell D. 1974. Evidence for endonucleolytic attack in
decay of lac messenger RNA in Escherichia coli. J Mol Biol. 83:
143–161.

Brackley CA, Broomhead DS, Romano MC, Thiel M. 2012. A max-plus
model of ribosome dynamics during mRNA translation. J Theor Biol.
303:128–140.

Brackley CA, Romano MC, Thiel M. 2011. The dynamics of supply and
demand in mRNA translation. PLoS Comput Biol. 7:e1002203.

Bremer H, Dennis PP. 1996. Modulation of chemical composition and
other parameters of the cell by growth rate. In: Neidhardt FC, Curtiss
R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley
M, Schaechter M, Umbarger HE, editors. Escherichia coli and
Salmonella: cellular and molecular biology. Washington (DC):
ASM Press. p. 1553–1569.

Brockmann-Gretza O, Kalinowski J. 2006. Global gene expression during
stringent response in Corynebacterium glutamicum in presence and
absence of the rel gene encoding (p)ppGpp synthase. BMC
Genomics 7:1–15.

Cashel M. 1969. The control of ribonucleic acid synthesis in Escherichia
coli: IV. Relevance of unusual phosphorylated compounds from
amino acid-starved stringent strains. J Biol Chem. 244:3133–3141.

Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM,
Kothari A, Krummenacker M, Latendresse M, Mueller LA, et al.
2011. The MetaCyc database of metabolic pathways and enzymes

2876

Fasani and Savageau . doi:10.1093/molbev/msu225 MBE

a
like
like 
'
ordinary differential equations (
)
as
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu225/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu225/-/DC1
-
via 
via 
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu225/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu225/-/DC1
http://www.mbe.oxfordjournals.org/
http://www.mbe.oxfordjournals.org/


and the BioCyc collection of pathway/genome databases. Nucleic
Acids Res. 40:D742–D753.

Chang D-E, Smalley DJ, Conway T. 2002. Gene expression profiling of
Escherichia coli growth transitions: an expanded stringent response
model. Mol Microbiol. 45:289–306.

Chatterji D, Ojha AK. 2001. Revisiting the stringent response, ppGpp
and starvation signaling. Curr Opin Microbiol. 4:160–165.

Chen W, Shao Y, Chen F. 2013. Evolution of complete proteomes: gua-
nine-cytosine pressure, phylogeny and environmental influences
blend the proteomic architecture. BMC Evol Biol. 13:1–15.

Curtis TP, Sloan WT. 2005. Exploring microbial diversity—a vast below.
Science 309:1331–1333.

Dalebroux ZD, Swanson MS. 2012. ppGpp: magic beyond RNA poly-
merase. Nat Rev Microbiol. 10:203–212.

DeRisi JL, Iyer VR, Brown PO. 1997. Exploring the metabolic and ge-
netic control of gene expression on a genomic scale. Science 278:
680–686.

Draper DE. 1996. Translational initiation. In: Neidhardt FC, Curtiss R III,
Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M,
Schaechter M, Umbarger HE, editors. Escherichia coli and Salmonella:
cellular and molecular biology. Washington (DC): ASM Press.
p. 902–908.

Durfee T, Hansen A-M, Zhi H, Blattner FR, Jin DJ. 2008. Transcription
profiling of the stringent response in Escherichia coli. J Bacteriol. 190:
1084–1096.

Elf J, Ehrenberg M. 2005. Near-critical behavior of aminoacyl-tRNA pools
in E. coli at rate-limiting supply of amino acids. Biophys J. 88:132–146.

Fluitt A, Pienaar E, Viljoen H. 2007. Ribosome kinetics and aa-tRNA
competition determine rate and fidelity of peptide synthesis.
Comput Biol Chem. 31:335–346.

Friesen JD, Fiil NP, Parker JM, Haseltine WA. 1974. A new relaxed mutant
of Escherichia coli with an altered 50S ribosomal subunit. Proc Natl
Acad Sci U S A. 71:3465–3469.

Gaca AO, Abranches J, Kajfasz JK, Lemos JA. 2012. Global transcriptional
analysis of the stringent response in Enterococcus faecalis.
Microbiology 158:1994–2004.

Gilchrist MA, Wagner A. 2006. A model of protein translation including
codon bias, nonsense errors, and ribosome recycling. J Theor Biol.
239:417–434.

Gromadski KB, Rodnina MV. 2004. Kinetic determinants of high-fidelity
tRNA discrimination on the ribosome. Mol Cell. 13:191–200.

Guet CC, Bruneaux L, Min TL, Siegal-Gaskins D, Figueroa I, Emonet T,
Cluzel P. 2008. Minimally invasive determination of mRNA concen-
tration in single living bacteria. Nucleic Acids Res. 36:e73.

Harris BZ, Kaiser D, Singer M. 1998. The guanosine nucleotide (p)ppGpp
initiates development and A-factor production in Myxococcus
xanthus. Genes Dev. 12:1022–1035.

Hlavacek WS, Savageau MA. 1996. Rules for coupled expression of reg-
ulator and effector genes in inducible circuits. J Mol Biol. 255:
121–139.

Hlavacek WS, Savageau MA. 1997. Completely uncoupled and perfectly
coupled gene expression in repressible systems. J Mol Biol. 266:
538–558.

Jørgensen F, Kurland CG. 1990. Processivity errors of gene expression in
Escherichia coli. J Mol Biol. 215:511–521.

Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A,
Steinhauser D, Selbig J, Willmitzer L. 2010. Metabolomic and tran-
scriptomic stress response of Escherichia coli. Mol Syst Biol. 6:364.

Keiler KC. 2008. Biology of trans-translation. Annu Rev Microbiol. 62:
133–151.

Leive L, Kollin V. 1967. Synthesis, utilization and degradation of lactose
operon mRNA in Escherichia coli. J Mol Biol. 24:247–259.

Magnusson LU, Farewell A, Nystr€om T. 2005. ppGpp: a global regulator
in Escherichia coli. Trends Microbiol. 13:236–242.

Meiler A, Klinger C, Kaufmann M. 2012. ANCAC: amino acid, nucleotide,
and codon analysis of COGs—a tool for sequence bias analysis in
microbial orthologs. BMC Bioinformatics 13:1–8.

Moore SD, Sauer RT. 2007. The tmRNA system for translational surveil-
lance and ribosome rescue. Annu Rev Biochem. 76:101–124.

Moura A, Savageau MA, Alves R. 2013. Relative amino acid composition
signatures of organisms and environments. PLoS One 8:e77319.

Neidhardt FC, Curtiss Iii R, Ingraham JL, Lin ECC, Low KB, Magasanik B,
Reznikoff WS, Riley M, Schaechter M, Umbarger HE, editors. 1996.
Escherichia coli and Salmonella: cellular and molecular biology.
Washington (DC): ASM Press. p. 391–611.

Ohashi Y, Hirayama A, Ishikawa T, Nakamura S, Shimizu K, Ueno Y,
Tomita M, Soga T. 2008. Depiction of metabolome changes in his-
tidine-starved Escherichia coli by CE-TOFMS. Mol BioSyst. 4:135–147.

Parish T. 2003. Starvation survival response of Mycobacterium tubercu-
losis. J Bacteriol. 185:6702–6706.

Pedersen S. 1984. Escherichia coli ribosomes translate in vivo with var-
iable rate. EMBO J. 3:2895–2898.

Perlstein EO, de Bivort BL, Kunes S, Schreiber SL. 2007. Evolutionarily
conserved optimization of amino acid biosynthesis. J Mol Evol. 65:
186–196.

Potrykus K, Cashel M. 2008. (p)ppGpp: still magical? Annu Rev Microbiol.
62:35–51.

Pruitt KD, Tatusova T, Maglott DR. 2005. NCBI Reference Sequence
(RefSeq): a curated non-redundant sequence database of genomes,
transcripts and proteins. Nucleic Acids Res. 33:D501–D504.

Roche ED, Sauer RT. 1999. SsrA-mediated peptide tagging caused by rare
codons and tRNA scarcity. EMBO J. 18:4579–4589.

Rudd KE. 2000. EcoGene: a genome sequence database for Escherichia
coli K-12. Nucleic Acids Res. 28:60–64.

Savageau MA. 1983. Escherichia coli habitats, cell types, and molecular
mechanisms of gene control. Am Nat. 122:732–744.

Shah P, Gilchrist MA. 2010. Effect of correlated tRNA abundances on
translation errors and evolution of codon usage bias. PLoS Genet. 6:
e1001128.

Shand RF, Blum PH, Mueller RD, Riggs DL, Artz SW. 1989. Correlation
between histidine operon expression and guanosine 50-diphos-
phate-30-diphosphate levels during amino acid downshift in strin-
gent and relaxed strains of Salmonella typhimurium. J Bacteriol. 171:
737–743.

Sørensen MA, Kurland CG, Pedersen S. 1989. Codon usage determines
translation rate in Escherichia coli. J Mol Biol. 207:365–377.

Stent GS, Brenner S. 1961. A genetic locus for the regulation of ribonu-
cleic acid synthesis. Proc Natl Acad Sci U S A. 47:2005–2014.

Stephens JC, Artz SW, Ames BN. 1975. Guanosine 50-diphosphate
30-diphosphate (ppGpp): positive effector for histidine operon tran-
scription and general signal for amino-acid deficiency. Proc Natl
Acad Sci U S A. 72:4389–4393.

Sundararaj S, Guo A, Habibi-Nazhad B, Rouani M, Stothard P, Ellison M,
Wishart DS. 2004. The CyberCell Database (CCDB): a comprehen-
sive, self-updating, relational database to coordinate and facili-
tate in silico modeling of Escherichia coli. Nucleic Acids Res. 32:
D293–D295.

Tatusova TA, Karsch-Mizrachi I, Ostell JA. 1999. Complete genomes in
WWW Entrez: data representation and analysis. Bioinformatics 15:
536–543.

Traxler MF, Summers SM, Nguyen H-T, Zacharia VM, Hightower GA,
Smith JT, Conway T. 2008. The global, ppGpp-mediated stringent
response to amino acid starvation in Escherichia coli. Mol Microbiol.
68:1128–1148.

UniProt Consortium. 2014. Activities at the universal protein resource
(UniProt). Nucleic Acids Res. 42:D191–D198.

van der Biezen EA, Sun J, Coleman MJ, Bibb MJ, Jones JDG. 2000.
Arabidopsis RelA/SpoT homologs implicate (p)ppGpp in plant sig-
naling. Proc Natl Acad Sci U S A. 97:3747–3752.

Varenne S, Buc J, Lloubes R, Lazdunski C. 1984. Translation is a non-
uniform process: effect of tRNA availability on the rate of elongation
of nascent polypeptide chains. J Mol Biol. 180:549–576.

Venetianer P. 1969. Level of messenger RNA transcribed from the his-
tidine operon in repressed, derepressed and histidine-starved
Salmonella typhimurium. J Mol Biol. 45:375–384.

Vercruysse M, Fauvart M, Jans A, Beullens S, Braeken K, Cloots L, Engelen
K, Marchal K, Michiels J. 2011. Stress response regulators identi-
fied through genome-wide transcriptome analysis of the

2877

Evolution of a Genome-Encoded Amino Acid Bias . doi:10.1093/molbev/msu225 MBE



(p)ppGpp-dependent response in Rhizobium etli. Genome Biol. 12:
1–19.

Wall ME, Hlavacek WS, Savageau MA. 2003. Design principles for regu-
lator gene expression in a repressible gene circuit. J Mol Biol. 332:
861–876.

Wall ME, Hlavacek WS, Savageau MA. 2004. Design of gene circuits:
lessons from bacteria. Nat Rev Genet. 5:34–42.

Ward DM, Ferris MJ, Nold SC, Bateson MM. 1998. A natural view of
microbial biodiversity within hot spring cyanobacterial mat com-
munities. Microbiol Mol Biol Rev. 62:1353–1370.

Wendrich TM, Blaha G, Wilson DN, Marahiel MA, Nierhaus KH. 2002.
Dissection of the mechanism for the stringent factor RelA. Mol Cell.
10:779–788.

Xiu Z-L, Chang Z-Y, Zeng A-P. 2002. Nonlinear dynamics of regulation of
bacterial trp operon: model analysis of integrated effects of repres-
sion, feedback inhibition, and attenuation. Biotechnol Prog. 18:
686–693.

Xu J. 2006. Microbial ecology in the age of genomics and metagenomics:
concepts, tools, and recent advances. Mol Ecol. 15:1713–1731.

Yanofsky C. 1988. Transcription attenuation. J Biol Chem. 263:609–612.

2878

Fasani and Savageau . doi:10.1093/molbev/msu225 MBE


