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Abstract: In this manuscript, we use the primary source of geometrical information, i.e., Cambridge
Structural Database (CSD), combined with density functional theory (DFT) calculations
(PBE0-D3/def2-TZVP level of theory) to demonstrate the relevance of π-hole interactions in para-nitro
substituted pyridine-1-oxides. More importantly, we show that the molecular electrostatic potential
(MEP) value above and below the π–hole of the nitro group is largely influenced by the participation
of the N-oxide group in several interactions like hydrogen-bonding (HB) halogen-bonding (XB), triel
bonding (TrB), and finally, coordination-bonding (CB) (N+–O− coordinated to a transition metal).
The CSD search discloses that p-nitro-pyridine-1-oxide derivatives have a strong propensity to
participate in π-hole interactions via the nitro group and, concurrently, N-oxide group participates
in a series of interactions as electron donor. Remarkably, the DFT calculations show from strong
to moderate cooperativity effects between π–hole and HB/XB/TrB/CB interactions (σ-bonding).
The synergistic effects between π-hole and σ-hole bonding interactions are studied in terms of
cooperativity energies, using MEP surface analysis and the Bader’s quantum theory of atoms in
molecules (QTAIM).

Keywords: CSD analysis; π-hole interactions; σ-hole interactions; supramolecular chemistry; cooperativity

1. Introduction

Chemists working in supramolecular chemistry, crystal engineering, and materials science [1–3]
frequently put their faith in traditional hydrogen bonding (HB) [4–6], strong donor–acceptor
π-stacking interactions and, to a lesser extent, halogen bonding (XB) interactions [7–14]. However,
other noncovalent σ/π-hole interactions involving p-block elements have undertaken a fascinating
progress [15–25]. For instance, the strength and directionality of chalcogen, pnictogen, tetrel,
and aerogen bonds are comparable to XB [26–42]. Striking and distinctive features of σ–hole interactions
involving Groups 14-18 of elements with respect to HBs are the greater hydrophobicity and directionality.
These features have been recently used to design catalysts that function in apolar media. For instance,
benzodiselenazole and tris(perfluorophenyl)arsane have been used for chalcogen and pnictogen
bonding based catalysis that takes advantage of σ–holes on selenium/arsenic atoms pointing to the
catalytic site [43–47].

Apart from the emerging σ-hole interactions, noncovalent interactions involving π-holes are also
gaining attention. They have been studied in trivalent boron and aluminium compounds, carbonyls,
and particularly in nitro-derivatives and related compounds [48–54]. Nitrocompounds are common,
easy to synthesize, and a great deal of information is accessible in the largest source of geometrical
information: the Cambridge Structural Database (CSD) [55]. Additionally, in the gas-phase, it has been
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experimentally demonstrated by rotational spectroscopy that a noncovalent π–hole complex is formed
by the interaction of the free lone pair of trimethylamine and nitroethane. Remarkably, this study
shows that the Me3N···NO2Me π-hole interaction dominates over H-bonding [56]. Furthermore,
the 3D framework observed in the solid state X-ray structure of 2,4-dinitro-2,4-hexadiene is generated
exclusively by the formation of short nitro···nitro π–hole contacts involving the O-atoms as lone pair
donors and the N-atom (π-hole) as electron acceptor [57].

Molecular recognition and self-assembly processes [58,59] are often possible due to synergetic
effects between several intermolecular interactions, thus having many implications in biochemistry,
crystal engineering, and material science [60,61]. In fact, the ability of noncovalent forces to control
and tune highly specific binding is often due to an intricate combination of noncovalent forces
acting cooperatively [62]. The understanding of these effects can be obtained from X-ray crystal
structures (analyzing the CSD) and quantum chemical calculations, thus providing useful geometric
and energetic information.

We and others have demonstrated both experimentally and theoretically important cooperativity
effects in complexes where two or more noncovalent interactions coexist [63–68]. Moreover,
we have recently analyzed cooperativity effects between π-hole and halogen bonding interactions in
4-nitropyridine and 4-cyano-nitrobenzene [69], without experimental support from the CSD. In this
new work, we report a combined theoretical density functional theory (DFT) and CSD study where
the interplay between π–hole and several σ-hole interactions are analyzed. The π–hole interaction
involves the N-atom of the nitro group of p-nitro-pyridine-1-oxide and the other interactions involve
the N-oxide group (as electron donor). We have carefully chosen p-nitro-pyridine-1-oxide (see Figure 1)
because it contains an exocyclic O-atom suitable for interacting with Lewis acids and a π-hole donor
nitro group adequate for the interaction with electron rich atoms. As detailed in Figure 1a, compound
1 has two π-holes (+22.5 and +19.5 kcal mol−1 at the PBE0-D3/def2-TZVP level of theory) which are
adequate for interacting with Lewis bases. The molecular electrostatic potential (MEP) minimum is
located at the O-atom of the N-oxide group (−27.0 kcal mol−1). In fact, the X-ray structure of compound
1 (Figure 1b) provides strong experimental support to the ability of nitro’s π-hole to interact with Lewis
bases. The O-atom of the N-oxide group is situated above the C–N bond exactly over the location of
the π-hole, with the O···N distance slightly shorter than the O···C distance.
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Figure 1. (a) Molecular Electrostatic Potential (MEP) surface (0.001 a.u.) of 1. (b) X-ray solid state
structures of 1 (NTPYRO). Distances in Å.

As starting point, in this manuscript we have analyzed the CSD in order to investigate the
existence of π-hole interactions in p-nitropyridine-N-oxide derivatives in crystal structures. In addition,
we demonstrate the existence of ternary complexes where the N+–O− group is engaged in other
interactions simultaneously, particularly hydrogen-, halogen-, triel-bonding, and coordination bonds
(HB, XB, TrB, and CB, respectively). Consequently, we have focused our DFT study to the computation
of the geometric and energetic features of binary HB, XB, CB, and TrB-bonded complexes 2–5 and
π–hole (πH) complexes 6–10 depicted in Scheme 1. Next, we have calculated the three component
systems where πH and HB/XB/CB/TrB interactions exist in the same complex 11–30 represented in
Scheme 2. These multicomponent systems allow us to study the mutual influence of both interactions.
As electron rich atoms, we have used both anions and neutral lone pair donors, in order to investigate
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their effect in the cooperativity energies. In addition to the analysis of the energetic and geometric
features in the ternary systems with respect to the binary complexes, we have also used the quantum
theory of “atoms in molecules” (QTAIM) [70], to provide further insight into the synergistic effects.
This method provides a useful criterion to define which atoms from donor and acceptor groups
interact in a supramolecular complex and, also important, gives hints regarding the strength of
the interaction [71,72]. Finally, the molecular electrostatic potential values and surfaces have been
computed to investigate if the mutual reinforcement of the interactions is due to electrostatic effects.
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2. Results and Discussion

2.1. CSD Search

We have started this investigation by doing a CSD search, since this database is a huge reservoir
of geometrical information and frequently reveals details that have not been reported in the original
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work. For this search, we have simply used as quest p-nitropyridine-1-oxide and restricted the
search to those structures determined by single crystal X-ray spectroscopy, with “no error” in the
structure, 3D coordinates determined and no disorder. As a result, we have found 116 X-ray
structures and co-crystals having the p-nitropyridine-1-oxide core. A manual inspection of the
structures reveals that in most of them (80%) the nitro group participates in π-hole interactions
with a variety of electron rich atoms (from Lewis bases to anions). Also remarkably, in those
structures where a clear π-hole interaction is not observed (23 out of 116), the nitro group is stacked
over an aromatic ring, thus interacting with the electron rich π-cloud. Therefore, this preliminary
analysis confirms the strong ability of the nitro group to act as Lewis acid. Even more importantly,
the analysis of the solid state architecture of the X-ray structures of p-nitropyridine-1-oxide derivatives
also reveals that the N-oxide group participates in covalent/noncovalent interactions, as shown
in Figure 2. For instance, the bis(4-nitropyridine-1-oxide)trans-dichloro-diaqua-copper(II) (refcode
NPYOCU [72], see Figure 2a) structure forms dimers in the solid state where the O-atom of the nitro
group is located over the N atom of the nitro group of the adjacent molecule at a distance that is
significantly shorter than the sum of van der Waals radii (ΣRvdW = 3.10 Å). The coordination of the
N+–O− group to the Cu(II) metal center is likely increasing the π–acidity of the nitro group, thus
favouring the π-hole interaction. Similarly, in the (4-nitropyridine-1-oxide)-(trifluoroborane) adduct
(refcode MUFZUJ [73], see Figure 2b) the N-oxide group is bonded to the BF3 molecule, increasing
the intensity of the nitro’s π-hole that establishes a short contact with the O-atom of the adjacent
molecule in the solid state. Figure 2c shows the self-assembled tetramer formed by four molecules of
3-iodo-2,6-dimethyl-4-nitropyridine-1-oxide (refcode XIHCOG [74]). A double π-hole interaction is
established between the nitro group and, simultaneously, the N-oxide group forms a halogen bonding
interaction with the iodine. A similar situation is observed in the cocrystal of 4-nitropyridine-1-oxide
and 4-nitrophenol (refcode JUDNAX [75]), where the nitro group participates in a π-hole interaction
with the nitro of the 4-nitrophenol and, concurrently, the N-oxide group establishes a hydrogen bonding
interaction with the acidic H-atom of the 4-nitrophenol.
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Figure 2. Partial views of the X-ray structures of NPYOCU (a), MUFZUJ (b), XIHCOG (c),
and JUDNAX (d). Distances in Å.

2.2. MEP Study

Figure 3 represents the MEP surfaces of binary complexes 2–5 plotted onto the van der Waals
isosurface (0.001 a.u.) and Table 1 gathers the values of MEP at the π-hole (Vs,πh), over the ring
center (Vs,centroid) and at the maximum (Vs,max) that is located between the aromatic H-atoms in the
ring plane (represented by an asterisk in Figure 3). The MEP value above the C–N bond of the nitro
group is more positive than that over the center of the ring, thus revealing a slight preference for
establishing π-hole instead of anion–π interactions in these complexes, at least from an electrostatic
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point of view. It is worthy to point out that the MEP values at the π-holes and at the maximum increase
upon noncovalent complexation of 1 to either the HF or CF3I molecules. Interestingly, the increment is
larger in any of both π-holes (over the ring center and over the C–NO2) than in the maximum (Vs,max).
Consequently, there is an enhanced electronic communication between the σ-hole interaction and
the π-system. Therefore, a favorable interplay between either HB or XB and π-hole interactions is
predictable by analyzing the MEP surfaces of the compounds. Regarding the covalent complexes 3
and 4, the increment of MEP values at any of both π-holes and at the maximum is very significant.
For instance, in the BF3 complex, the MEP value at the nitro’s π-hole increases from +22.5 in 1 to
+43.5 kcal mol−1 in 5 and, similarly, over the ring centroid increases from +19.4 in 1 to +41.2 kcal mol−1

in 5. The same behavior is observed for the AgCl complex. Therefore, the synergistic effects in the
latter complexes are expected to be very important.
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Figure 3. Molecular electrostatic potential (MEP) surfaces plotted onto the van der Waals surface
(0.001 a.u.) for complexes 2–5 using the same scale. The MEP values are given in kcal mol−1. The asterisk
represents the location of the maximum (Vs,max).

Table 1. MEP values (PBE0-D3/def2-TZVP in kcal mol−1) at the π-hole and ring centroid (Vs,πh,
Vs,centroid respectively) and at the maximum Vs,max in compounds 1–5.

Compound Vs,πh Vs,centroid Vs,max

1 22.5 19.4 31.7
2 (1 + HF) 30.1 27.6 38.1

3 (1 + CF3I) 28.2 25.1 34.4
4 (1 + AgCl) 40.7 39.5 47.1
5 (1 +BF3) 43.1 41.2 45.3

2.3. Two Component Complexes

The interaction energies (∆E, kcal mol−1) and equilibrium distances (d, Å) of complexes 2–10
(see Scheme 1) are gathered in Table 2. Both energies and geometries were computed at the
PBE0-D3/def2-TZVP level of theory. The interaction energies of complexes 2 and 3 are in the
typical range of HB and XB interactions. The strength of the coordination complex 4 is stronger
(–21.2 kcal mol−1) and finally the triel bonded complex 5 is very strong −73.1 kcal mol−1) due to the
covalent nature of the O–B bond, as supported by the short distance (1.611 Å). The π-hole complexes
with anionic donors (6 and 7) exhibit large interaction energies (>12 kcal·mol−1) and those with neutral
Lewis basis are more modest, apart from the Me3N complex 8.

Figure 4 shows the optimized geometries of the π-hole 1:1 complexes. The O/N lone pair donor
atom in complexes 8 and 10 is located over the C–NO2 bond, displaced toward the N atom. In the
anionic and nitromethane complexes the binding mode is ditopic with one atom pointing to the nitro
group and the other to the ring centroid, so both π-holes are involved in the interaction. In these



Int. J. Mol. Sci. 2019, 20, 3440 6 of 15

complexes, the nitro’s π-hole distance is longer than the anion–π distance (6, 7 and 9). It is worthy
to note that in the monotopic complexes 8 and 10, the interaction is with the nitro’s π-hole, in good
agreement with the MEP surface shown in Figure 1a. Finally, the π-hole equilibrium distances are
shorter for the anionic complexes than for the neutral ones. They are in quite good agreement with the
distances observed in the X-ray structures (see Figure 2).

Table 2. Interaction distances and energies (d, in Å; ∆E in kcal mol−1) at the PBE0-D3/def2-TZVP level
of theory for complexes 2–10. Values of electron charge density ρ(r) and its Laplacian at the bond
critical points are given in a.u.

Complex ∆E d ρ(r) ∇
2ρ(r)

2 (1 + HF) −7.2 1.760 0.0289 0.1193
3 (1 + CF3I) −5.0 2.883 0.0195 0.0651
4 (1 + AgCl) −21.2 2.166 0.0672 0.3429
5 (1 +BF3) −73.1 1.611 0.1104 0.2615

6 (1 + NO3
−) −15.2 2.854 0.0134 a 0.0476

7 (1 + BF4
−) −12.4 2.901 0.0104 a 0.0403

8 (1 + Me3N) −7.0 2.903 0.0122 b 0.0418
9 (1 + MeNO2) −4.2 3.233 0.0061 a 0.0223

10 (1 + CO) −1.9 3.181 0.0059 a 0.0242
a The bond path interconnects the C-atom and the lone pair donor atom. b The bond path interconnects the N-atom
and the lone pair donor atom
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2.4. Three Component Systems

The interaction energies (∆E, kcal mol−1) and equilibrium distances (d, Å) of complexes of three
component systems 11–30 (see Scheme 2) are summarized in Table 3. Remarkably, the equilibrium
distances (dπh) of the π–hole interaction in the three component complexes 11–30 are shorter than
in complexes 6–10 (∆dπh values in binary complexes are negative,). Namely, the co-existence of
the σ-bonding interaction strengthens the π–hole interaction. Similarly, the equilibrium distance
of the σ-bonding interaction dσB in the three component systems is also shorter compared to two
component systems 2–5 (negative values in most of the cases for ∆dXB see Table 3). Consequently,
the existence of the π–hole bonding reinforces the σ–bonding interaction. To make more evident the
mutual influence between both interactions, we have selected complexes 16 and 28, as illustrated in
Figure 5. In complex 16, the CF3I molecule interacts with N-oxide group with an equilibrium distance
of 2.629 Å that represents a significant shortening of the σ–hole interaction (∆dσh = −0.254 Å) with
respect to complex 3 (see Table 2). Moreover, the three π-hole distances represented in the figure also
shorten (∆dXB = −0.016 Å for the O···N) with respect to complex 6 (see Figure 4a). This reveals that
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the mutual influence of both noncovalent interactions is communicated in both directions, from the
π-hole to the orthogonal O-atom in the molecular plane and vice versa. In this particular complex,
the σ–hole interaction is significantly more affected for the presence of the π-hole interaction than
vice-versa, likely due to the anionic nature of the donor. In complex 28 (see Figure 5, right), the N···N
and N···C equilibrium distances that characterize the π-hole interaction shorten with respect to the
binary complex 8 (see Figure 4c) due to the presence of the BF3 Lewis acid connected to the N-oxide
group. The shortening of the N···C distance is more pronounced than the N···N distance because the
location of the π-hole over the C–N bond moves toward the carbon upon formation of the triel bond.

Table 3. Interaction, binary, and cooperativity energies (∆E, ∆Ebin, and Ecoop, respectively, in kcal
mol−1) for complexes 11–30 at the PBE0-D3/def2-TZVP level of theory. Equilibrium distances in Å
denoted as dπh for π–hole and dσB for the HB/XB/CB/TrB interaction. The increment or decrement
(in bold) of the equilibrium distances denoted as ∆dπh and ∆dσ are also included. The values of the
charge density 100 × ρ(r) at the bond CP and its variation 100 × ∆ρ(r) for complexes 11–30 are given
in a.u.

Cmpnd ∆E Ecoop or
∆Ebin

dπh dσB ∆dπh ∆dσB
ρ(r)πh
× 100

ρ(r)σB
× 100

∆ρ(r)πh
× 100

∆ρ(r)σB
× 100

11 −32.9 −9.1 2.764 1.512 −0.090 −0.248 1.63 7.24 0.29 4.35
12 −29.0 −7.9 2.815 1.530 −0.086 −0.230 1.21 6.88 0.17 3.99
13 −18.2 −4.7 2.868 1.610 −0.035 −0.150 1.34 5.54 0.12 2.65
14 −15.7 −4.5 3.211 1.603 −0.022 −0.157 0.65 5.63 0.04 2.74
15 −12.5 −3.8 3.201 1.627 0.020 −0.133 0.57 5.28 −0.02 2.39
16 −26.5 −5.2 2.761 2.629 −0.093 −0.254 1.65 3.41 0.31 1.46
17 −22.7 −4.2 2.846 2.666 −0.055 −0.217 1.18 3.15 0.14 1.20
18 −12.5 −0.6 2.892 2.831 −0.011 −0.052 1.29 2.19 0.07 0.24
19 −10.0 −0.6 3.263 2.835 0.030 −0.048 0.63 2.19 0.02 0.24
20 −7.1 −0.2 3.153 2.915 −0.028 0.032 0.61 1.86 0.02 −0.09
21 −51.8 −31.5 2.716 2.132 −0.138 −0.034 1.88 7.49 0.54 0.77
22 −47.0 −26.0 2.795 2.136 −0.106 −0.030 1.32 7.39 0.28 0.67
23 −29.9 −9.4 2.838 2.164 −0.065 −0.002 1.47 6.87 0.25 0.15
24 −27.7 −6.9 3.128 2.158 −0.105 −0.008 0.68 6.89 0.07 0.17
25 −23.4 −2.3 3.264 2.165 0.083 −0.001 0.51 6.74 −0.08 0.02
26 −104.6 −30.7 2.656 1.547 −0.198 −0.064 2.13 13.17 0.79 2.13
27 −99.1 −25.8 2.748 1.555 −0.153 −0.056 1.39 12.85 0.35 1.81
28 −82.6 −8.8 2.804 1.596 −0.099 −0.015 1.59 11.51 0.37 0.47
29 −80.0 −6.6 3.232 1.594 −0.001 −0.017 0.67 11.53 0.06 0.49
30 −75.4 −2.2 3.175 1.608 −0.006 −0.003 0.59 11.14 0.00 0.10
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Figure 5. Optimized complexes 16 (left) and 28 (right). Distances in Å. The equations used to measure
the cooperativity energies are also indicated.

Table 3 also summarizes the cooperativity energies Ecoop (see below Section 3), which give an
approximation of the extra energetic stabilization that is gotten in the three component systems due to
the interplay between σ- and π-hole interactions. We have computed these energies for complexes
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where both interactions are noncovalent (11−20). For the rest of complexes, we have computed
the “binary” energies (∆Ebin) to evaluate cooperativity effects. The binary energies are computed
by considering the ternary system as a binary one. That is, we have assumed that the either the
coordination bond or the triel bond has been formed first and only evaluated the π-hole interaction.
The different equations used are also illustrated in Figure 5. In the top of Figure 5 we show the equation
used to compute the interaction energies (∆E, second column of Table 3), see also computational
methods. In addition, for complex 16 (both interactions are noncovalent), we have computed the
cooperativity energies (Ecoop, third column of Table 3) using the equation shown at the bottom of
Figure 5. Therefore, we have used the interaction energies of complexes 16 (Table 3), 6, and 3 (Table 2)
and an additional term [∆E(AC)], which is the interaction energies of the nitrate (A) and CIF3 (C) as
they stand in the ternary complex. In case of complex 16 the Ecoop = –5.2 kcal mol−1 corresponds to the
extra stabilization due to the coexistence of both interactions. For complex 28, since one interaction is
covalent (triel bond) we have computed ∆Ebin, which is simply the interaction energy of 28 considering
that the triel bond has been already formed. This interaction energy is –8.8 kcal mol−1, which is more
negative than that of complex 8 (–7.0 kcal mol−1). The difference between both values is an estimation
of the extra stabilization of the π-hole due to the presence of the triel bond. In all ternary complexes,
the Ecoop are negative and the ∆Ebin values are more negative than the corresponding binding energies
of the binary complexes included in Table 2. This favorable synergistic effects are in agreement with
the shortening of the equilibrium distances (apart from some exceptions commented below), see ∆dπh

and ∆dσB values. For complexes 11−20 the computed Ecoop values are larger for the anionic complexes
than for neutral ones. This is also observed in complexes 21−30, where the difference between ∆Ebin

and ∆E values are larger for anions.
It is important to comment those particular cases where the π-hole equilibrium distance increases

(instead of decreasing) in the three component systems in comparison to the relative two component
dimers (positive ∆dπh values, see values in bold in Table 3). Apparently, it strongly disagrees with
the favorable cooperativity energies obtained for these complexes. However, the enlargement of the
C/O···N π–hole equilibrium distance is complemented by a shortening of the C/O···C distance because
the electron rich atom gets closer to the ring center. Figure 6 depict two representative three component
systems to exemplify this behavior. In complex 15 (Figure 6a) the C···N distances slightly enlarges
(0.020 Å) and the C···C distance shortens (0.023Å) thus compensating for the apparent weakening of
the interaction and resulting in favorable cooperativity due to the additional reinforcement of the
H-bonding interaction. A similar behavior is observed in complex 19 (Figure 6b). That is, one π-hole
distance increases (O···N) and two shorten (O···C and O···Cg) thus evidencing that the interaction
of nitromethane with the π-system of 4-nitropyridine-1-oxide is reinforced, in agreement with the
negative value of Ecoop.
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As commented above, we have previously studied cooperativity effects between π-hole and
halogen bonding interactions in p-nitropyridine and p-nitrobenzonitrile compounds [69]. In their
ternary complexes with Lewis bases and halogen bond donors the reported cooperativity energies
ranged from –4.6 kcal mol−1 for anionic donors and strong electron acceptors (CF3I) to –0.1 kcal mol−1

for weak donors (CO) and acceptors (CF3Cl). In case of nitropyridine-N-oxide studied in this work,
the Ecoop values are larger in absolute value ranging from –0.2 kcal mol−1 for weak electron donors to
–9.1 kcal mol−1 for nitrate anion in combination with HF as H-bonding donor (complex 11).

2.5. QTAIM Results

We carried out the QTAIM analysis of the two and three component systems studied on this
work. The values of the electron charge density ρ(r) and its Laplacian [∇2ρ(r)] measured at the bond
critical points (CPs) that emerge upon complexation give information on the strength of noncovalent
interaction as previously shown in the literature. In fact, the values of ρ(r) have been used before to
analyze cooperativity effects in several multicomponent systems [64–69]. For instance, the ρ(r) and
∇

2ρ(r) values for the σ-complexes clearly correlate (see Table 2) well with the interaction energies
and equilibrium distances. For the π-hole complexes a direct comparison cannot be made because in
some complexes the bond path connects the electron rich atom with the N atoms and in others with
the C-atom. Taking complexes 6, 7, and 9 where the bond path connects the electron rich atom to
the C-atom, ρ(r) and ∇2ρ(r) values correlate with the interaction energies and equilibrium distances.
The values of ρ(r)πh and ρ(r)σB for all three component systems 11−30 are included in Table 3 along
with their variation with respect to the binary complexes 2−10 [∆ρ(r)πh and ∆ρ(r)σB]. The ∆ρ(r)σB

values are positive in all ternary complexes apart from 20, thus indicating a reinforcement of the
σ-bonding by the π-hole interaction. It is interesting to point out that the ∆ρ(r)σB values are in most
cases larger than the ∆ρ(r)πh ones, suggesting that the reinforcement of the σ-bonding by the presence
of the π-hole interaction is the dominant effect.

Apart from CO complexes 15 and 25, the ∆ρ(r)πh values summarized in Table 3 are positive, thus
indicating a reinforcement of the interaction. In 15 and 25 the negative values of ∆ρ(r)πh are due to
a displacement of the CO toward the aromatic system (see Figure 6a for complex 15) that enlarges
the equilibrium distance and, consequently, decreases the value of ρ(r)πh in the ternary complex with
respect to the binary one. In Figure 7, we have represented the distribution of critical points (CPs) and
bond paths for several complexes. In Figure 7a, we show the distribution of complex 13. The H-bond
is characterized by a bond CP and bond path interconnecting the H and O atoms. The π-hole is also
characterized by a bond CP and bond path interconnecting both N-atoms. It can be observed that the
Me3N moiety is also connected to the nitro group by two additional bond CPs and bond paths that
connect the O-atoms of the nitro to two H-atoms of the trimethylamino molecule. This H-bonds are
expected to be very weak since the directionality is very poor (C–H···O angle is 109.80). In ternary
complex 14 (Figure 7b) the ditopic nitromethane is connected to the aromatic ring by means of three
CPs, symmetrically distributed. One CP connects the O-atom of nitromethane to the C-atom in para.
The other O-atom of the nitromethane is connected by two bond CPs and bond paths to the two
C-atoms in ortho. In complex 16, the halogen bond is characterized by a bond CP interconnecting the I
and O atoms (see Figure 7c). Moreover, the nitrate anion is connected to the ring by four CPs, two of
them connect the anion to the C-atom in para and the other two connect the anion to the C-atoms in
meta. In complex 25 (see Figure 7d), the π–hole interaction is characterized by a bond CP and bond
path interconnecting the C atom of CO to the N-atom of the nitro group. Finally, in complex 27 the
anion is connected to the ring by means of four CPs and bond paths. One F-atom is connected to the
C-atom in para and other F-atom is connected to the N-atom of the N-oxide group and the two C-atoms
in ortho. In Figure 7, we have also indicated in blue the values of ρ(r) at the bond CPs that characterize
the σ-bonding and the π-hole interactions. Moreover, we have indicated in red the values of ρ(r) in the
respective binary complexes (values from Table 2). For the σ-bonding interactions, it can be observed
that the blue values are in all cases greater than the red ones, thus confirming the reinforcement of the
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interaction in the ternary complex. Apart from complex 25 commented above, the same behavior is
observed for the values of ρ(r) at the bond CP that characterizes the π–hole interaction, that is the blue
values are larger than the red ones, thus indicating a reinforcement of the π-hole interaction in the
ternary complex in agreement with the energetic and geometric results.
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3. Computational Methods

The energies of all complexes included in this study were computed at the PBE0-D3/def2-TZVP
level of theory. The geometries have been fully optimized imposing Cs symmetry constraints by using
the program TURBOMOLE [76]. X-ray coordinates of all optimized complexes are provided in the
supplementary material. All complexes and monomers are true minima, as confirmed by frequency
analysis. The interaction energy (or binding energy in this work) ∆E, is defined as the energy difference
between the optimized complex and the sum of the energies of the optimized monomers. For the
calculations we have used the Weigend def2-TZVP [77,78] basis set and the PBE0 [79]–D3 [80] DFT
hybrid functional. For I and Ag, the basis set includes scalar-relativistic calculations with effective
core potentials (ECPs) [81,82]: Relativistic effects are taken into account using the Dirac–Hartree–Fock
ECPs [83]. The MEP (Molecular Electrostatic Potential) calculations have been carried out by means
of the Gaussian-09 software [84] at the same level of theory. The AIM method is used to obtain
the distribution of critical points (CPs) and bond paths via analysis of the topology of the electron
density [85], which has been carried out at the same level of theory using the AIMALL program [86].
Since we have used the uncorrected energies in this study, for the weaker complexes (those complexes
where ∆E > –10 kcal mol−1) we have examined is the basis set superposition error is important.
The differences between the corrected and uncorrected energies are in all cases less than 5% of the
uncorrected interaction energy, thus not affecting the results and discussion. For instance, in the
weakest complex 10, the corrected energy is 1.81 kcal mol−1 almost identical to the uncorrected one
(1.9 kcal mol−1).
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In complexes in which the π–hole interaction coexists with other noncovalent interaction (HB or
XB), we computed the cooperativity energy Ecoop using Equations (1)–(5):

Ecoop = ∆E(ABC) − ∆E(AB) − ∆E(BC) − ∆E(AC) (1)

∆E(ABC) = E(ABC) − E(A) − E(B) − E(C) (2)

∆E(AB) = E(AB) − ∆E(A) − ∆E(B) (3)

∆E(BC) = E(BC) − ∆E(B) − ∆E(C) (4)

∆E(AC) = E(AC*) − ∆E(A) − ∆E(B) (5)

where ∆E(ABC), ∆E(AB), and ∆E(BC) terms correspond to the interaction energies of the three
component and two component systems. ∆E(AC) is the interaction energy of the electron rich molecule
(the lone pair donors in Scheme 1) with the H/X bond donor (CF3I or HF) as they stand the ternary
complex (denoted as AC*). This equation has been successfully used before to study cooperativity
effects in several multicomponent systems [40–42].

4. Conclusions

The CSD search reported herein provided strong experimental evidence of the ability of the nitro’s
π-hole in p-nitropyridine-1-oxide to interact with electron rich atoms. In fact, 80% of the X-ray structures
available in the database participate in this type of bonding. More importantly, the N-oxide group also
participates in a series of σ-bonding interactions, ranging from noncovalent hydrogen and halogen
bonding to covalent coordination bonds and triel bonding. The theoretical DFT results reported herein
evidence cooperativity effects between the π-hole interaction involving the nitro group and σ-bonding,
either covalent or noncovalent. We have evaluated the cooperativity effects energetically by means of
cooperativity energies (Ecoop) in those complexes where both interactions are noncovalent and by using
binary energies in the covalent ones. Remarkably the p-nitropyridine-1-oxide is able to communicate
the synergetic effect from the anion or lone pair donor through the conjugated π-system to the N–O
thus reinforcing the σ-bonding and vice versa, thus explaining their prevalence in X-ray structures.
Finally, molecular electrostatic potential calculations evidence that electrostatic effects are important
since the positive potential at the π-hole increases when the N-oxide group interacts with Lewis acids.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/14/
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