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even when matched for body mass index (BMI).21–23 These differences 
may either be due to a higher percentage of body fat mass in women or 
to the stimulatory effects of estrogen and progesterone. Interestingly, 
17β-estradiol increases leptin secretion in adipose tissue cultures 
from women but not from men.24,25 In children, serum leptin levels 
increase progressively with age until puberty in both girls and boys. 
After puberty, serum leptin levels in boys either remain unchanged 
or decrease slightly. This might be due to testosterone’s effect on body 
composition in men. Body fat in men generally decreases as muscle 
mass increases following puberty. Additionally, testosterone may inhibit 
leptin production in the adipose tissue.26

Leptin has both central and peripheral effects in the body as 
indicated by the widespread distribution of its receptors. Some of these 
effects include regulating food intake and body weight,27 modulating 
the hypothalamic–pituitary–thyroid28,29 and hypothalamic–pituitary–
growth hormone axes,30,31 cartilage growth and bone formation,32,33 
proliferation of vascular smooth muscle cells,34,35 immunity, 
inflammation,36,37 and reproduction.

LEPTIN AND REPRODUCTION
Leptin plays an important role in pubertal development and fertility, 
more so in women. Mice lacking the leptin gene (ob/ob mice) are 
infertile.38 Gonadotropin levels are lower in both male and female 
ob/ob mice, although the gonadotrophs in these mice have been shown 
to respond adequately when challenged with gonadotropin-releasing 
hormone (GnRH).39 Testes and ovaries in leptin-deficient mice are 
smaller with several morphological and biochemical abnormalities 
compared to those of age-matched wild-type control mice. In addition, 
seminiferous tubules of leptin-deficient mice contain fewer sperm than 

INTRODUCTION
Leptin, a 16-kDa nonglycosylated peptide hormone consisting of 
167 amino acids, is a product of the obese (ob) or leptin (LEP) gene 
on chromosome 6 in mice and chromosome 7 in humans.1 It was 
discovered in 1994 through positional cloning of the mouse gene2 
and is mainly synthesized and secreted constitutively by white adipose 
tissue.3 Small quantities of leptin are also secreted by the gastric 
mucosa,4 mammary epithelial cells,5 placenta,6 anterior pituitary 
gland,7 myocytes,8 human spermatozoa,9 ovaries, lymphoid tissue, 
and bone marrow.10

Leptin acts by binding to its receptors,11 which are widely distributed 
in the hypothalamus,12 pancreas, testes,13 ovaries,14 skeletal muscles,15 
kidneys, lungs,16 and even on the tails of spermatozoa.17 These receptors, 
often denoted as leptin receptor (ObR or LEPR), belong to the class 1 
cytokine receptor family.18 To date, six leptin receptor isoforms have 
been identified: ObRa–ObRf. Based on their structure, the isoforms are 
divided into long, short, or soluble types. The long form is responsible 
for the isoform’s cellular actions, the short form is responsible for its 
transport across the cell membrane and blood–brain barrier, and the 
soluble form aids its transport in the circulation.18 After binding to 
its receptor, leptin activates several signaling pathways, including the 
Janus kinase-signal transducer and activator of transcription (JAK-
STAT), 5’ adenosine monophosphate-activated protein kinase (AMPK), 
mammalian target of rapamycin (mTOR), phosphoinositide 3-kinase 
(PI3K), and mitogen-activated protein kinase (MAPK) signaling 
pathways,19,20 depending on the target cell type.

Serum leptin levels are positively correlated with body fat 
percentage. The levels are generally higher in women than in men, 
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those of their wild-type littermates, and their Leydig cells are smaller 
with less cytoplasmic content.40 Leptin treatment restores fertility in 
ob/ob mice.41

Leptin is believed to initiate puberty by triggering the nocturnal 
gonadotropin surges associated with puberty. Appropriate energy 
stores must be attained before reproduction commences, particularly 
in women. Serum leptin levels, which correlate positively with body 
fat percentage, provide the required information on energy status to 
the hypothalamus. Whether the same is true in males is uncertain. 
The exact mechanism by which leptin triggers GnRH neurons to 
secrete gonadotropins remains uncertain. GnRH neurons are devoid 
of leptin receptors; therefore, stimulation of gonadotropins by leptin 
must involve another indirect pathway. In this regard, the role of 
kisspeptin neurons has been proposed; however, kisspeptin neurons 
appear to contain few leptin receptors42 and therefore may not trigger 
GnRH release. The other possibility is the premammillary nucleus 
(PMN). Cells in the PMN have been shown to express abundant leptin 
receptors, and PMN has projections on both kisspeptin and GnRH 
neurons.43 Thus, leptin may stimulate the PMN, which in turn excites 
the GnRH neurons, both directly and possibly through the kisspeptin 
neurons, to release the gonadotropins.44

Other possible mechanisms of action of leptin on GnRH neurons 
have been suggested. Several hypothalamic neuropeptides, including 
pro-opiomelanocortin (POMC) and cocaine-and-amphetamine-
regulated transcript (CART), stimulate GnRH neurons, both of which 
are stimulated by leptin. Neuropeptide Y (NPY) and agouti-related 
peptide (AgRP) inhibit the GnRH neurons, and secretion of these 
peptides is inhibited by leptin.45 Removal of AgRP- or NPY-producing 
neurons, either by ablation or gene knockout, resurrects partial fertility 
in leptin-deficient mice.46 Several of these neurons act together with 
kisspeptin/neurokinin B/dynorphin (KNDy) neurons, which are 
upstream regulators of GnRH secretion.47 In addition, studies also 
suggest that leptin acts at different levels of the pituitary–testicular 
axis in males48 to exert its effects on the male reproductive organs. The 
presence of leptin receptors in the seminiferous tubules and seminal 
plasma49 on the Sertoli and Leydig cells suggests that leptin may also 
have a direct role in spermatogenesis and endocrine function of the 
testes.50–52

LEPTIN AND MALE INFERTILITY
While leptin is necessary for normal sexual maturation and 
function, corroborative evidence from human and animal studies 
suggests that, when in excess, leptin may detrimentally affect 
sperm parameters. Serum leptin levels correlate positively with the 
percentage of body fat or BMI. Males with high BMI have low total 
sperm counts,53–57 decreased sperm motility,55 and increased sperm 
DNA fragmentation.57,58 They also have significantly higher levels of 
estradiol and luteinizing hormone and lower levels of testosterone 
than normal-weight males.56,59,60 A case–control study on 42 obese 
and nonobese men found that obese men with high leptin levels, 
in addition to having low sperm concentrations and vitality and 
higher sperm DNA fragmentation, had higher sperm mitochondrial 
membrane potential than normal-weight men.61 Male Wistar rats 
fed with a high-fat diet over different time periods had increased 
body weight that correlated positively with serum leptin levels 
but had lower sperm motility.62 A more recent study that further 
substantiated leptin’s role in male infertility found that male Wistar 
rats treated with leptin for 42 days had significantly decreased 
fertility potential and increased preimplantation embryo loss after 
artificial insemination in utero.63 These findings from human and 

animal studies suggest that leptin might be the link between poor 
sperm parameters and obesity.

Adipocytes produce numerous adipokines that signal the 
functional status of the adipose tissue to targets in the brain and other 
tissues. Secretion of some of these, including leptin, adiponectin, 
fibroblast growth factor 21 (FGF21), retinol-binding protein 4 (RBP4), 
bone morphogenetic protein (BMP)-4, BMP-7, dipeptidyl peptidase 
4 (DPP-4), apelin, chemerin, resistin, vaspin, tumor necrosis factor-
alpha (TNF-α), and progranulin, is altered in obese individuals and 
is believed to contribute to several obesity-associated diseases. Some 
adipokines, such as leptin, are pro-inflammatory, while others are 
anti-inflammatory. However, except for leptin, little is known about 
their impact on sperm function and reproduction.

An in vitro study examining the effect of leptin on mature ejaculated 
human sperm found no difference in the motility and capacitation 
ability of sperm after either 3 h or 24 h of incubation;64 however, recent 
studies in vivo have shown that leptin adversely affects rat sperm. 
Sprague-Dawley rats given single-daily intraperitoneal injection of 
leptin, in doses ranging from 5 to 30 µg kg−1 body weight for 6 weeks, 
had significantly lower sperm count, higher fraction of sperm with 
abnormal morphology. In addition, they also had lower seminiferous 
tubular epithelial height and diameter than normal age-matched rats.65 
Neither serum leptin levels nor body weight differed significantly 
between the controls and leptin-treated rats in this study. The reason for 
this lack of difference in serum leptin concentration and body weight 
is unclear but might be attributed to leptin’s short half-life, which is 
9–12 min in the circulation. Leptin was administered as a single daily 
dose in this study, and blood samples were collected 24 h after the last 
dose to measure leptin and other hormones.65 These findings were 
confirmed by another research group using similar leptin doses with 
a similar study design.66 A more recent study using 60 µg kg−1 body 
weight of leptin also reached the same conclusions.67 Researchers in 
the latter studies also found evidence of increased reactive oxygen 
species (ROS)66 levels, high 8-hydroxy-2-deoxyguanosine (8-OHdG) 
levels, and increased sperm DNA fragmentation67,68 after administering 
leptin. Incidentally, leptin has been shown to induce ROS formation in 
phagocytic69,70 and nonphagocytic71,72 cells and in renal tubular cells by 
activating nicotinamide adenine dinucleotide phosphate (reduced form) 
(NADPH) oxidase.73 Thus, leptin may increase sperm damage by 
generating ROS in the seminiferous tubular cells or in the epididymis. 
That oxidative stress might indeed be involved is also supported by 
findings that these adverse effects of leptin are prevented by concurrent 
administration of melatonin, a very powerful antioxidant.68

ROS can either positively or negatively impact sperm function 
depending on the nature, concentration, location, length of exposure, 
and exposure to environmental factors such as temperature, ions, 
proteins, and ROS scavengers.74 At physiological levels, ROS play 
significant roles in sperm maturation, capacitation,75 and acrosome 
reaction.76 At pathological levels, ROS impair testicular germ cell 
proliferation,77 negatively impact sperm plasma membrane fluidity,74 
impair sperm motility,78 and increase sperm DNA damage.79 Infertile 
men with high ROS levels tend to have more sperm with abnormal 
morphology.80 ROS have also been associated with increased 
apoptosis in sperm samples.81 The somewhat higher susceptibility 
of spermatozoa to ROS attack may be because the sperm have less 
cytoplasm than somatic cells82 and the spermatic cell membrane is 
rich in polyunsaturated fatty acids.82–84

While high leptin levels evidently increase oxidative stress and 
consequently adversely affect the sperm, the precise mechanisms and 
pathways in the testes and sperm remain unclear. However, one of the 
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many leptin-signaling pathways may be involved. Of the five pathways 
mentioned herein, those related to oxidative stress are the AMPK, PI3K, 
MAPK, and mTOR pathways. These pathways have well-established 
roles in leptin’s mode of action.19 Microarray analysis of the testes from 
leptin-treated Sprague-Dawley rats in our laboratory showed a 2-fold 
upregulation in the expression of genes associated with these pathways 
(unpublished data). Additionally, our preliminary study in which leptin 
was concurrently administered with either a PI3K inhibitor (LY294002) 
or an AMPK pathway inhibitor (dorsomorphin) found that the PI3K 
inhibitor prevented leptin’s adverse effects on sperm, while the AMPK 
inhibitor did not.85 Leptin’s action on these pathways and their roles in 
leptin’s adverse effects require further study.

The effects of leptin on sperm count and morphology are reversible. 
Nearly all sperm parameters that were affected by 6 weeks of leptin 
treatment (60 µg kg−1 body weight) returned to levels that were 
similar to those of age-matched controls by 8 weeks after stopping the 
treatment.67 The time required for the parameters to normalize after 
leptin treatment suggests that leptin’s effects may occur somewhere 
upstream in spermatogenesis and may not involve the spermatogonia 
or the matured sperm.

CONCLUSIONS
Since its discovery, leptin has been shown to have significant roles 
in numerous physiological functions, including reproduction. The 
widespread presence of leptin receptors throughout the body supports 
its pleiotropic role. However, recent studies suggest that increased leptin 
levels may have detrimental effects. Serum leptin levels are closely 
associated with body fat percentage and weight. Obesity is associated 
with numerous lifestyle diseases and is often considered a contributing 
factor to male infertility. Although adipocytes also produce many 
other adipokines, studies suggest that leptin may be an important link 
between obesity and obesity-related diseases. In this regard, leptin 
administration has been shown to increase blood pressure in pregnant 
and nonpregnant female rats, increase urinary protein excretion, 
interfere with glucose metabolism, and activate endothelial cells.86,87 
When administered to nonobese male rats, leptin decreases sperm 
count and increases sperm abnormalities. Current evidence suggests 
that most of these effects on sperm are due to leptin’s ability to increase 
oxidative stress because markers of DNA damage due to oxidative 
stress increase in the sperm after administering leptin. In addition, 
these effects are prevented by concurrently administering melatonin. 
Though the effects of oxidative stress on sperm function have been well 
established, the exact mechanism through which leptin exerts these 
effects is uncertain and awaits further study. More importantly, leptin’s 
role in infertility in obese males must be considered. Understanding 
the mechanisms involved in leptin’s effects on sperm parameters and 
function may improve the management of obesity-associated infertility 
in males.
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