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Abstract: Road traffic accidents regarding commercial vehicles have been demonstrated as an impor-
tant culprit restricting the steady development of the social economy, which are closely related to the
distracted behavior of drivers. However, the existing driver’s distracted behavior surveillance sys-
tems for monitoring and preventing the distracted behavior of drivers still have some shortcomings
such as fewer recognition objects and scenarios. This study aims to provide a more comprehensive
methodological framework to demonstrate the significance of enlarging the recognition objects,
scenarios and types of the existing driver’s distracted behavior recognition systems. The driver’s
posture characteristics were primarily analyzed to provide the basis of the subsequent modeling.
Five CNN sub-models were established for different posture categories and to improve the efficiency
of recognition, accompanied by a holistic multi-cascaded CNN framework. To suggest the best
model, image data sets of commercial vehicle driver postures including 117,410 daytime images
and 60,480 night images were trained and tested. The findings demonstrate that compared to the
non-cascaded models, both daytime and night cascaded models show better performance. Besides,
the night models exhibit worse accuracy and better speed relative to their daytime model counterparts
for both non-cascaded and cascaded models. This study could be used to develop countermeasures
to improve driver safety and provide helpful information for the design of the driver’s real-time
monitoring and warning system as well as the automatic driving system. Future research could
be implemented to combine the vehicle state parameters with the driver’s microscopic behavior to
establish a more comprehensive proactive surveillance system.

Keywords: driver’s distracted behavior; proactive recognition system; deep learning approaches;
commercial vehicle surveillance system

1. Introduction

In recent years, road traffic accidents have been demonstrated as an important culprit
restricting the steady development of the social economy, especially those accidents relating
to commercial vehicles. The World Health Organization’s Global Status Report on Road
Safety 2018 pointed out that road traffic accidents are the main cause of death for the
global population, with about 3700 people dying every day in the world due to road traffic
collisions [1]. According to the China Statistical Yearbook, in 2018, a total of 216,200 motor
vehicle accidents occurred in China and resulted in 581,000 deaths, 227,400 injuries, with
direct property losses reaching 1.31 billion yuan [2]. The survey illustrates that the propor-
tion of deaths and injuries caused by commercial vehicle accidents is much higher than
other types of accidents [3].

The occurrence of traffic accidents is closely related to the bad behavior of drivers.
Researchers generally believe that about 80% of road traffic accidents were associated with
driver factors [4–6], such as furious driving, fatigue driving, and distracted driving.

Notably, driver behavior analysis has obtained many of the theoretical achievements
in previous studies [7–12]. However, one element that has not been studied adequately is
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the dynamic real-time monitoring of the driver behavior under the existing supervision
methods of the networked joint control of the commercial vehicles, since the existing tech-
nology mainly acquires dynamic indicators through secret visits by management personnel
or the manual viewing of background videos, incapable of automatically identifying the
wrong driving posture or behavior and thus providing real-time warning. Besides, the
existing mature driver real-time monitoring systems are mostly fatigue-state detection
products, which have not been widely promoted to detect the driver’s distracted posture
and behavior.

Note that the rise of artificial intelligence (AI) and computer vision (CV) has provided
the basis of addressing the aforementioned problems and laid the technical foundation
for automatically identifying wrong driving behaviors. Various machine learning and
deep learning methods can be more commonly applied. Research results of CV, such
as target detection, motion tracking and image recognition classification, are constantly
emerging. The computer processing performance is close to the human level and the results
on specific data sets even exceed the human level, which provides technical feasibility for
the automatic recognition of driving postures.

On the other hand, driver’s posture recognition systems are now mostly developed by
automobile manufacturers and used for commercial purposes. At the level of safe driving,
drivers of commercial vehicles have greater safety requirements for posture monitoring.
However, there is insufficient research on drivers of commercial vehicles. Past work on
driver’s posture detection and recognition is mainly aimed at car drivers, whereas relevant
studies relating to commercial vehicle drivers are still lacking, especially with regard to
truck drivers, a vulnerable group at greater risk of driving.

Additionally, some actual investigations suggest that the commercial vehicle drivers
spend about one third of the time driving at night with far worse light conditions relative
to their daytime counterparts, and due to the divergent light conditions between daytime
and night, there is a substantial difference between the video image data set generated
by night monitoring and the daytime monitoring data set. It is noteworthy that posture
detection at night is also a promising topic to be investigated, while the previous research
focused on posture detection in the daytime, generally with good light conditions.

An alternate limitation of the previous studies regarding the driver’s posture recog-
nition lies in the monotonicity of recognized posture, i.e., single postures were mainly
recognized such as normal driving, controlling the gear, calling the phone, and smoking,
only covering a small part of the driver’s posture. Multiple postures such as eating or
drinking water, using the dashboard, using the mobile phone, not looking ahead and
keeping hands off the steering wheel will also greatly affect driving safety, which were
not adequately investigated in previous studies. Also, superimposed posture (e.g., the
driver uses the mobile phone while controlling the steering wheel) recognition research is
relatively blank. Based on the aforementioned issues confronted by the existing driver’s
posture recognition systems, there is a great necessity to develop a comprehensive driver’s
posture recognition system with multiple recognition objects, scenarios, types, and so on.

In the existing studies, static posture recognition is found to be the major target of
the present research relating to driver behavior, which is suitable for the post-recognition
of long-period captured images. However, it is inconsistent with the naturalistic driving
environment due to its ideal assumption to neglect the dynamism of driver behavior.
The intrinsic characteristics including continuity, similarity, superposition and mutual
influence of the driver’s posture and behavior have not been studied. To better aid in the
enhancement of the current driving safety technique, more research should be conducted
to explore the dynamic driver’s posture characteristics using the whole process of video or
image sequences.

To contribute to traffic safety analysis regarding driver’s posture recognition sys-
tems to prevent distracted driving behavior, the objectives of this research are three-fold:
(1) to identify driver’s posture characteristics and provide a methodological framework
that demonstrates the significance of enlarging the recognition objects, scenarios and types
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of the existing driver’s posture recognition in a naturalistic dynamical driving environ-
ment; (2) to apply the provided methodological framework to conduct the driver’s posture
recognition of commercial vehicles based on both daytime and night models, including
multiple distracted driving behavior; and (3) to compare the performances of different
models and select the most appropriate recognition model.

The study utilized the cascaded convolutional neural network (CCNN) as the in-
strument to implement the commercial vehicle drivers’ distracted behavior recognition.
The image and video dataset collected from Top Chains International Logistics Company
(TCILC) and Hurricane Logistics Company (HLC) were categorized and labeled according
to driver’s posture characteristics. Daytime and nighttime models relating to commercial
vehicle driver’s distracted behavior recognition were separated and compared. Finally,
a holistic model (including both daytime and nighttime) was established with CCNN to
determine the accuracy of the recognition and prediction.

2. Related Work
2.1. Change in Driving Data Acquisition Methods

There are three main methods for obtaining driver’s status and behavior data: vehicle
behavior-based detection method, intrusive detection method based on driver physiological
parameters and non-intrusive detection method based on computer vision.

The detection method based on vehicle behavior mainly reflects the state and behav-
ior of the driver by detecting the abnormal state of the vehicle. The general detection
parameters are the direction, trajectory and speed of the vehicle. This method has a long
information transmission path, which leads to information loss. The accuracy of detecting
driver status and behavior by this method is relatively low. Qu (2012) established a fatigue
recognition model by separating the two states of vehicle active lane change and passive
deviation [13]. A real-time monitoring device for the steering wheel developed by an
American company showed that if the steering wheel does not move within 4 s, the driver
is determined to be in an abnormal state [14].

The intrusive detection method based on the physiological parameters of the driver
mainly judges whether it is in a fatigue state by analyzing the changed law of the physio-
logical signal in the driver’s body. Common physiological signals mainly include electroen-
cephalogram (EEG), electrocardiogram (ECG), heart rate and respiratory rate. This method
requires the driver to wear sensing equipment such as electrodes, optical marks, and air
pressure. The detection method is characterized by high accuracy and is not disturbed by
changes in the external environment. However, wearing additional equipment will cause
interference to the drivers and cause safety hazards. In addition, the high cost of intrusive
detection is not conducive to promotion. Zhao, Zhao, Liu and Zheng (2012) successfully
developed a driver fatigue detection system based on brain waves (EEG) and electrocar-
diogram (ECG) [15]. Jung, Shin and Chung (2014) established a monitoring system for
driver health based on electrocardiogram (ECG) [16]. Yu, Sun, Member and Yu (2016) have
constructed a remote driver health and fatigue monitoring system based on bio signals
such as electrocardiogram (ECG), brain waves (EEG), and eye features [17]. Wang, Wang,
Zhang, Wu and Darvas (2014) invented a driver distraction detection system based on
brain waves (EEG) [18]. Wang, Jung and Lin (2015) proposed a driver attention tracking
system based on brain waves (EEG) [19].

The non-intrusive detection method, based on computer vision, analyzes the driver’s
state and behavior through the video or image of the drivers. This method has convenient
data acquisition, good safety, and high detection accuracy. It has become the most main-
stream method for detecting driver state and behavior. The research methods mentioned
later are all computer vision-based detection methods. Wang, Qiong, Wang and Zhao (2010)
proposed a driver fatigue detection method based on continuous frames to identify the
eye state [20]. Jiménez, Bergasa, Nuevo, Hernández and Daza (2012) proposed a driver
attention detection method based on facial posture and gaze state [21].
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2.2. Expansion of Driver’s Posture Detection Area

In recent years, research on driver posture detection based on computer vision has
mainly focused on the driver’s head area, which is mostly used to monitor the driver’s
fatigue or distraction. In order to expand from driver state detection to driver behavior
detection, it is necessary to extract more information on the driver’s limb. Therefore, some
scholars expanded the scope of the study area to the upper body consisting of the head,
arms and body.

The driver’s head area research mainly determines the driver’s fatigue and distraction
state through the driver’s eye state, gaze direction, face orientation and head posture.
Zhang et al. (2013) proposed a driver’s eye location method based on skin color detection
and texture features [22]. Fu, Guan, Peli, Liu and Luo (2013) developed a particle filter
update parameter method to locate the driver’s head [23]. Zhang et al. (2014) combines
the percentage of eyelid closure over the pupil (PERCLOS) algorithm and fuzzy principle
to detect driving fatigue [4]. Vicente et al. (2015) proposed a visual system to detect
distracted driving [24]. Geng (2018) used infrared images and CCNN to extract the eye
area and recognize the open and closed state of the eyes [25]. Yang, Chen and Lei (2018)
proposed a driving fatigue detection method based on back projection correction and eye
gaze correction [26].

The study of the driver’s upper body area mainly uses the position information of the
driver’s head and arms to determine whether the driver’s posture and behavior meet the
requirements of safe driving. Zhao, Zhang and He (2013) proposed a method for extracting
the driver’s posture features based on skin color, region segmentation and regional centroid
distance calculation, using a Bayesian classifier for driver posture recognition [27]. Zhao,
Zhang, Zhang and Dang (2014) proposed a driving posture feature extraction method based
on contourlet transform and edge direction histogram feature fusion, used multi-classifier
integration for driving posture recognition [28]. Gupta, Mangalraj, Agrawal and Kumar
(2015) developed an automatic driving assistance system based on skin color recognition
and an artificial neural network, which can recognize six postures of the driver [29].

2.3. Expansion of Driver’s Posture Detection Application Scenarios

At present, the application scenarios of driving posture detection are gradually ex-
panding from day to night, from simulator to naturalistic driving environments. The ability
to complete all-day driver posture detection in real scenes is an important prerequisite for
such system products.

Most of the current research focuses on the driver’s posture recognition during the
daytime. Some scholars also considered the need for driving safety at night. They used
infrared video sensors to detect the posture of drivers at night and extended the appli-
cation scenarios of driver posture detection from day to night. Kolli, Fasih, Al Machot
and Kyamakya (2011) proposed a driver emotion recognition method based on infrared
video sensors [30]. Flores, Armingol and La Escalera (2012) successfully developed a
driver detection system based on near-infrared video sensors [31]. Kondyli, Sisiopiku and
Barmpoutis (2013) proposed a driver motion recognition system based on an infrared depth
sensor (Microsoft Kinect) [32]. Cyganek and Gruszczyński (2014) established a driving
fatigue detection system based on a near-infrared spectrometer and conventional video
sensor [33]. Okuno et al. (2018) used infrared images and depth images to detect the
driver’s body posture and face orientation through feature sharing and deep convolutional
neural networks [34].

In the case of a lack of naturalistic driving environment data sets in the early research,
researchers often used driving simulator data sets for experimental tests. In recent years,
scholars also choose simulated driving data for rapid optimization when trying new al-
gorithms to recognize driver’s posture, and then generalize in the naturalistic driving
environment data set, so as to realize the expansion from driving simulation scenarios
to naturalistic environment scenarios. Eren, Celik and Poyraz, (2007) developed a sys-
tem based on webcams to monitor the activities of car drivers using simulated driving
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images [35]. Sekizawa, Inagaki, Suzuki and Hayakawa (2007) used a three-dimensional
driving simulator to propose a method of modeling and recognition of human driving
behavior based on a random switching autoregressive exogenous (SS-ARX) model [36].
Yamada (2016) proposed a high-precision method for detecting the position of the driver’s
joints using depth images and color images. He also proposed an algorithm for detecting
abnormal driving postures [37]. Sigg (2018) used a driving simulator and Wi-Fi sensor to
complete the multi-label classification task for driving posture [38].

2.4. Optimization of Driving’s Posture Detection Technology

With the development of computer vision, the technology of driving posture detection
has also made great progress. From the early skin color detection model method, to the
mid-term detection method based on machine learning, and then to the widely used deep
learning intelligent detection method. The robustness, accuracy and real-time performance
of the method have been greatly improved.

Early driver detection technologies mostly used skin color detection models, including
RGB model, YCrCb model and HSV model. The skin color model can quickly extract the
driver’s head, hands and other feature areas from the image, however, this method is less
robust to light. Once the light changes greatly, the recognition accuracy will drop sharply.
Yan et al. (2016) uses a Gaussian mixture model to detect skin color regions, and uses deep
convolutional neural networks to classify driver’s behavior [39].

The mid-term driver’s posture detection technology began to change to other image
processing methods and machine learning methods. The basic idea of the method is to
collect a picture of the driver and train a classifier to detect the features of the posture.
Common classifiers include support vector machines, decision trees, random forests and
shallow neural networks, etc., which solves the problem of skin color models interfered
by light. Wu et al. (2018) proposed a driver feature detection method based on the center
of mass of both arms, using decision trees and KNN methods to identify the driver’s
posture [40].

At present, deep learning technology is developing rapidly. Driver’s state and behav-
ior detection based on deep learning is very extensive. This method mainly uses a deep
convolutional neural network to realize image recognition. After training with a large
amount of image data, the recognition performance far exceeds the traditional machine
learning methods. Hu (2018) proposed a real-time driver head positioning method based
on the YOLO algorithm, which used deep convolutional neural networks to extract fea-
tures to recognize postures [41]. Zhao (2018) proposed a locally integrated convolutional
neural network model to detect driver fatigue status through facial multi-source dynamic
behavior [42].

3. Driver Posture Analysis and Video Data Collection
3.1. Analysis of Driver’s Distracted Behavior Characteristics

At present, most research regarding driver’s posture recognition focuses on the in-
vestigations and improvement of recognition algorithms with only three to four kinds
of static attitude posture data sets, neglecting the exploration of the characteristics of
driver’s posture itself. It should be noted that the characteristic analysis of the driver’s
posture also has a great influence on posture recognition, and this paper has made some
attempts in this aspect. By observing the naturalistic driving samples of commercial vehicle
drivers more than 30 h, it can be considered that the driver’s posture has the following
significant characteristics.

1. Continuity

In the traditional driver’s posture data set, the body movements of the driver in the
same posture are basically similar, which require less processing and training of the data
set. However, in the naturalistic driving environment, the driver’s posture is a continuous
behavior and the continuity of the posture has a great influence on the definition of the
posture boundary. The dynamic posture needs to be further decomposed considering a
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better coordination of its continuity and diversity. As far as the dynamic posture of drinking
water is concerned, the driver takes the water bottle, opens the cap, and then sends the
water to the mouth, drinks water, puts down the bottle, tightens the cap, and puts back the
water bottle, which can be considered as a continuous process. However, given the diverse
characteristics of these postures, a clear definition should be determined, such as which
part can be identified as a posture of drinking water, and which part can be thought of as a
posture of taking things.

As shown in Figure 1, the action of holding the bottle above the steering wheel is
defined as the posture of taking things. The action of opening the bottle cap and taking
the bottle to the mouth and drinking is defined as drinking or eating. Similar postures like
eating and drinking, smoking, and taking things all intersect with each other and are more
difficult to segment. A similar method of defining boundaries is needed.
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2. Diversity

Human behavior tends to be ambiguous and difficult to predict. Although the be-
havior of the driver will be constrained by the driving vehicle, different people will have
different driving habits and styles and even the same person will have many differences in
driving posture and behavior. The driver’s postures in the cab can be extensively multiple,
composed of the behavior of different body parts, such as the head, torso, and hands.
The overall posture of each part will have diverse characteristics, which lead to various
postures. In addition, the same posture may also have large differences. For example, in
a normal driving posture, there is a big difference between straight-forward driving and
cornering driving.

3. Superposition

The overall posture of the driver can be formed by superimposing different postures,
which is also one of the leading causes of the diversity of postures. Some behaviors of
drivers are not mutually exclusive and there is no obstruction between them, especially the
one-handed driving posture, which can be compatible with most postures. For example,
gear controlling, smoking and one-handed driving can simultaneously occur. As shown in
Figure 2, three driver postures are recognized simultaneously in one image.
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4. Similarity

Part of the driver’s postures is similar in the image due to the similarity of their
head, torso and hand positions, which will cause errors in the recognition of the algorithm
(Figure 3). This situation is generally divided into two types. One is that the difference
between the two postures is only in the small objects in the hand, which has little effect on
driving behavior. For example, normal driving with two hands is very similar to normal
driving with two hands holding a cigarette, and the latter can be considered as normal
driving with both hands. The other is that the two postures are similar, as shown in the
image, whereas they are actually quite different actions with different effects on driving
safety. For example, there is a strong similarity between manipulating the instrument panel
and taking things near the instrument panel, which is also marginally similar to using the
mobile phone/rack. Furthermore, smoking and eating can sometimes be regarded as a
similar posture.
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5. Transitional

Due to the continuity of the driver’s posture, after explicitly defining the boundary
of the posture, there will be an intermediate area between different postures (as shown
in Figure 4), indicating that there exists a transitional interval between postures, which is
common in one-hand driving. For example, there is a short one-hand driving transition
between two-hand driving and controlling the gears.
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6. Mutual influence

There is a mutual influence between postures. One is the mutual exclusion of some
driving postures. For example, drinking water and smoking cannot be generated at the
same time. The other is the mutual influence of the before–after posture on the transi-
tional posture. The analysis of transitional poses is helpful to integrate the categories of
before–after actions, so as to distinguish poses with strong similarity. Besides, further
judgements of specific posture can be made to determine which action it continues or
transits based on its before–after actions.

3.2. Video Data Collection and Label Processing
3.2.1. Video Data Collection

Video data were captured and split regarding commercial vehicle drivers from TCILC
and HLC, including 666,060 images (452,840 images during the day and 213,220 images
at night). The object of the data sets is mainly truck drivers who are at higher risk, and
thus, have higher research value. The data sets were divided into naturalistic driving
data sets and supplementary driving data sets. The naturalistic driving data sets consist
of naturalistic driving images of the truck drivers, with a relatively low proportion of
dangerous postures. To avoid the imbalance of the dataset and ensure the accuracy of
the prediction for the dangerous postures, this study established a supplementary driving
image dataset to capture more comprehensive samples of dangerous postures, by means of
reproducing the dangerous driving postures and actions by the truck drivers in static state.

The data acquisition can be categorized into three stages:

(1) Preparation stage, a primary investigation was firstly conducted on the cockpit struc-
ture of commercial trucks to learn about the distracted behavior of commercial truck
drivers. In this stage, the appropriate view was also selected for obtaining the best
shooting effect to reduce the avoidable error that might occur to the model. As shown
in Figure 5, through the field test, the No. 3 and No. 5 view points were abandoned
as the line of sight could not cover all the key areas, and the No. 4 visual angle
point was abandoned as it would affect the driver’s driving. Finally, the No. 1 and
No. 2 visual angle points were selected as the best view;

(2) Car-following data acquisition stage. In this stage, a total of 10 h of non-interference
dual view video data was captured from eight professional commercial truck drivers
in the natural driving state;

(3) Targeted-data acquisition stage. Due to insufficient video data obtained from car-
following data collection to build the database behind, a supplementary shoot was
conducted aimed at those with distracted behavior, including eating, smoking, making
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a phone call, operating the dashboard, etc. In this stage, a 200 min driving video data
of eight drivers was collected.
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3.2.2. Behavior Labelling
Distracted Behavior Identification

By observing all the video images of the driver’s posture data set, it was found that the
driver’s posture mainly depends on the position of the head and hands, and secondarily
depends on the position of objects that may cause dangerous driving actions, such as
headphones, cigarettes, dashboards, mobile phones, etc. Different combinations of head,
hands, and object positions constitute the complex categories of driver’s posture. The
driver’s posture should be properly regulated and simplified to a certain extent. Generally,
it can be categorized from three aspects: the position of the hands; the position of the head;
and the relative position of the objects to the hands and head. Four key areas (KA) were
determined for identification as presented in Figure 6.
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Finally, the distracted behavior labels were set as two-hand driving (DB1), one-hand
driving (DB2), no-hand driving (DB3), not looking ahead (DB4), smoking (DB5), calling the
phone (DB6), controlling the gear (DB7), using the rack (DB8), using the dashboard (DB9),
eating or drinking water (DB10), taking things (DB11).

KA1:driver’s head area, which mainly involves actions such as smoking, using
headphones, eating;

KA2:vehicle steering wheel area, involving all actions;
KA3:vehicle operation panel and mobile navigation display area, including operation

navigation and instrument panel;
KA4:vehicle shift lever area, involving actions mainly including one-hand driving, shifting

and handling things.
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Superposition of Driving Posture

According to the current study, the driver’s posture is supposed to be superimposed.
The driver may make multiple postures at the same time. At this time, the result cannot
be recognized by the model of single posture. Therefore, it is necessary to analyze which
actions can be superimposed, and which actions cannot be superimposed owing to their
compatibility and mutual exclusion. Considering the superposition of the driver’s postures,
53 types of driver’s postures were identified, including eight two-hand driving postures
and 44 one-hand driving postures. It should be stated that all no-hand driving was classified
into one category, denoting extremely dangerous postures.

As shown in Table 1, the definition of two-hand driving (DB1), one-hand driving (DB2)
and no-hand driving (DB3) can be obtained by judging the position of the hands. The other
two position categories (i.e., the position of the head and the relative position of the objects
to the hands and head) can be thought of as action postures. State postures are internal
exclusive, for example, one-handed driving and two-hand driving cannot exist at the same
time. However, there is external compatibility between state postures and action postures,
for example, two-hand driving and not-looking-ahead driving can exist at the same time.
Besides, action postures are partially internal compatible, e.g., the driver can be smoking
when calling the phone.

Table 1. Compatibility and mutual exclusion of different postures.

DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 DB11

DB1 — × ×
√ √ √

× × × × ×
DB2 × — ×

√ √ √ √ √ √ √ √

DB3 × × — 0 0 0 0 0 0 0 0
DB4

√ √
0 —

√ √ √ √ √ √ √

DB5
√ √

0
√

—
√ √ √ √

×
√

DB6
√ √

0
√ √

—
√ √ √ √ √

DB7 ×
√

0
√ √ √

— × × × ×
DB8 ×

√
0

√ √ √
× — × × ×

DB9 ×
√

0
√ √ √

× × — × ×
DB10 ×

√
0

√
×

√
× × × — ×

DB11 ×
√

0
√ √ √

× × × × —

(Note: ”
√

” means compatible,”×” indicates incompatibility, “0” means it is not necessary to consider compatibility).

Label Processing

Data labelling processing mostly uses a dichotomous variable to indicate “yes” and
“no”, i.e., “1” means “yes” and “0” means “no”. In the traditional labelling processing
method, if there are N kinds of recognition results, a 1 × N array consisting of N dichoto-
mous variables can be used. However, given the superposition of postures, there are as
many as 53 types of driver postures. If a 1 × 53 array is used, the calculation will become
substantially redundant with low efficiency. Thus, this study applied the Orthogonalization
method to simplify the label processing.

The core of the Orthogonalization method is that each independent variable only
changes a specific attribute of the dependent variable, i.e., one indicator only affects one
attribute, the vertical idea was used to avoid one indicator corresponding to multiple
attributes. With the Orthogonalization method, each posture can be regarded as a di-
chotomous variable to form a 1 × 11 array. Besides, since there can be multiple variables
with the value of “1”for the label, the representation of the superimposed posture can be
used to simplify the label processing and thus improve the calculation efficiency of the
subsequent models.

Thus, driver’s posture label set in this research based on the Orthogonalization method
is as follows: [DB1, DB2, DB3, DB4, DB5, DB6, DB7, DB8, DB9, DB10, DB11], each label in
the label set can be quantitatively demonstrated by the dichotomous variable, for example,
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the posture of one-handed driving, smoking and controlling the gear can be expressed as
[0 1 0 0 1 0 1 0 0 0 0]. More details about the label can be seen in Appendix A (Table A1).

4. Methodology
4.1. The Standard Module of Convolutional Neural Network

To realize the real-time requirements of the recognition model, the network depth
should be reduced as much as possible on the basis of ensuring that the accuracy is greater
than 98%. After testing, this study established a CNN model with three convolution blocks
to satisfy the aforementioned need, including three convolutional layers, three pooling
layers and one fully connected layer. The dimensions and calculations of the convolution
kernels used in each layer of the network can be seen in Tables 2 and 3. The training process
has been presented in Figure 7. Besides, the learning rate and batch size set in the current
study is 0.001 and 128 regarding the balance of iterating speed and model accuracy.

Table 2. Structure parameter table of CNN with an image resolution of 180 × 320.

Convolution Blocks Filter Size Number of Filters Feature Image
Dimension

1 3 × 3 8 180 × 320 × 8
2 3 × 3 16 90 × 160 × 16
3 3 × 3 32 45 × 80 × 32

Fully Connected
Layer 1 Number of Hidden

Units 115,200

Table 3. Structure parameter table of CNN with an image resolution of 360 × 640.

Convolution Blocks Filter Size Number of Filters Feature Image
Dimension

1 3 × 3 8 360 × 640 × 8
2 3 × 3 16 180 × 320 × 16
3 3 × 3 32 90 × 160 × 32

Fully Connected
Layer 1 Number of Hidden

Units 460,800
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Figure 7. Basic training process of CNN utilized in this study.

4.2. Separation of Day and Night Models

The driving environment of commercial vehicle drivers includes a daytime driving
environment and a nighttime driving environment. As the two driving environments
have very different light conditions, it is unrealistic to collect and process data in the same
way. At present, cameras that are used for both daytime and nighttime pictures, are shot
on the market and generate color images during the daytime and rely on an infrared
imaging technique to generate infrared images at night. It should be emphasized that these
two images are quite different.

Each color channel in the RGB color images has different histograms, as shown in
Figure 8a. With regard to the infrared image, which should be a single-channel image, this
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sometimes will be automatically separated into RGB channels with the same histogram
by the cameras, as shown in Figure 8b. Intuitively, the grey image is very similar to the
infrared image, however the main difference is that the infrared image is an image obtained
by focusing on the intensity of infrared light of the object, while the grey image is made
by focusing on the intensity of visible light of the object. Therefore, when processing
infrared images at night, three channels can be synthesized into one channel to save
computing resources.
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4.3. Multi-Task Classification Model

Owing to the diversity of driving postures, if each posture is transformed into a
dichotomous variable, the label set will be represented by a marginally long array of
1 × 11 dimensions. Besides, the value of “1”, which represents a certain posture that has
occurred, may take place frequently in the array of the label set due to the superimposition
of the driver’s postures. However, the activation function of the corresponding output
layer in the CNN model is generally the sigmoid function and the softmax function, both of
which can only apply the dichotomous variable to represent the features and labels and will
show bad performance when dealing with the model containing numerous features and
labels with the value of “1”. Therefore, to address this problem and ameliorate the accuracy
of algorithms, multiple sub-models of CNNs were employed in the current research.

According to the compatibility and mutual exclusion of drivers’ postures discussed in
the previous part of this study, the long label data set of 1 × 11 dimensions was separated
into multiple sub-labels to construct the multi-cascaded CNN sub-models. Two-hand
driving, one-hand driving and no-hand driving are mutually exclusive postures and cannot
occur at the same time, which were labeled with one-hot coding method [43,44] and
combined as the hand posture set. For this posture set, the softmax function was used as
the output layer activation function of this CNN sub-model.

The postures of not looking forward, smoking and calling the phone are basically
compatible with other postures and were classified as three posture sets. Sigmoid function
was used as the output layer activation function of these CNN sub-models. The remaining
postures are controlling the gear, using the mobile phone/rack, controlling the dashboard,
eating or drinking water, and taking things. With the case of no-handed driving excluded,
these five postures are mutually exclusive postures and they are less likely to occur simul-
taneously, which were also labeled with one-hot method. The five types of postures were
categorized as behavior posture sets and the softmax function was used as the output layer
activation function of this CNN sub-model.

Therefore, the original long label set of the 1 × 11 array was separated into three sub
label set, as shown in Equation (1):

Label = (Yhand, Yhead, Ysmoke, Yphone, Ybehaviour) (1)

where Yhand represents the hand posture label set, including two-hand driving, one-handed
driving, and no-handed driving, which belongs to one-hot label and uses the softmax
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activation function. Yhead, Ysmoke, and Yphone are the postures of not looking forward,
smoking, and phone calling, respectively. They all belong to the dichotomous label and
use the sigmoid activation function. Ybehaviour represents the label set of behavior postures,
including controlling the gear, using the mobile phone/rack, using the dashboard, eating
or drinking water and taking things, which also belongs to the one-hot label and uses the
softmax activation function.

In addition, the behavior posture label set Ybehaviour is different from the traditional
one-hot label. There is only one “1” tag in one-hot tag. Due to the mutual exclusion of
behavior postures, Ybehaviour only has at most one “1” label, however, there may exist the
situation where all labels are “0”, i.e., no behavior posture takes place at this posture set.
At this time, the CNN model whose output layer is the softmax activation function cannot
accurately recognize all the “0” labels, so it is necessary to construct a standard one-hot
label by means of the amplification column.

The Ybehaviour label set with M × 5 dimensions can be processed by the amplification
column. First, one must construct the augmented column matrix ζ with dimension M × 1,
and then search for the presence of the “1” label in the Ybehaviour label set in Mi. If it exists,
add “0” to the corresponding Mi amplification column matrix ζ. if it does not exist, add
“1” to the corresponding Mi amplification column matrix ζ. Finally, the Ybehaviour label
matrix and the amplification column matrix ζ are combined to form a standard one-hot
label matrix Y’behaviour with dimension (M, 6). The calculation process is as follows:

ζ(Mi) =

{
0, and 1 ∈ Ybehaviour(Mi)
1, and 1 /∈ Ybehaviour(Mi)

, i ∈ (0, M) (2)

Y′behaviour = (Ybehaviour, ζ) (3)

4.4. Driver Posture Recognition Based on a Cascaded CNN Model

Although the CNN model with five sub-models can enhance the accuracy of the
overall driver’s posture recognition model, it has some inevitable shortcomings such as
lower processing speed and more occupancy of the calculation resources.

To address the issues triggered by constructing sub-models of CNN separately, a
cascaded CNN model was proposed in this study. In this cascaded CNN model, the
recognition process was designed and optimized based on the compatibility and mutual
exclusion of different postures, as shown in Figure 9. For example, if the posture is
recognized as a two-hand driving of the hand posture set, this posture will be regarded as
contradicting five postures of the behavior posture set, so only four CNN sub-models (i.e.,
the hand posture set, not looking ahead, smoking and, calling the phone) will be passed
through by the input posture data before the model provides the final outcome. Also, if the
posture is recognized as no-handed driving, the cascaded CNN model will directly judge
it as an extremely dangerous posture and output the outcome, with no need to pass the
other sub-models, which can reduce the time and resource consumption and increase the
calculation efficiency of the model.
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5. Results and Discussion

In the daytime data set, 88,970 images were used as the training set and 28,440 images
were used as the test set. With regard to the night data set, 46,120 images were used as
the training set and 14,360 images were used as the test set. A cascaded CNN model
including five sub-models was established and to assess the performance of the current
model, accuracy and training error analyses were conducted based on the five sub-models.
Furthermore, recognition results of the overall model were discussed.

5.1. Sub-Model of Hand Posture Set

The hand posture set model can recognize the driver’s postures of two-hand driving,
one-hand driving and no-hand driving. The accuracy of the daytime model can achieve
100% on the training set after 10 iterations and the average training time of a single image
is 168.4 ms. The model training accuracy performance and training errors are shown in
Figure 10a. The recognition accuracy rate of the hand posture set model on the test set can
reach 99.3%, the test error is only 0.028 and the average test duration of a single image
is 91 ms.
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The accuracy of the night model can achieve 99.71% on the training set after
10 iterations and the average training time of a single image is 151.7 ms. The model
training accuracy rate performance and training error are shown in Figure 10b. The recog-
nition accuracy rate of the hand posture set model on the test set can reach 98.14%, the test
error is 0.054 and the average test duration of a single image is 82 ms.

5.2. Sub-Model of No Looking Ahead

The model of not looking ahead can identify whether the driver has a dangerous
posture of not looking ahead. After 10 iterations of the daytime model, 100% accuracy can
be achieved on the training set and the average training time of a single image is 169.6 ms.
The model training accuracy performance and training error are shown in Figure 11a. The
recognition accuracy rate of this sub model on the test set can reach 98.94%, the test error is
only 0.031 and the average test duration of a single image is 93 ms.
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The night model can achieve 100% accuracy on the training set after 10 iterations and
the average training time of a single image is 152.1 ms. The model training accuracy rate
performance and training error are shown in Figure 8b. The recognition accuracy rate of
this sub model on the test set can reach 99.78%, the test error is only 0.077 and the average
test duration of a single image is 80 ms.

5.3. Sub-Model of Smoking

The smoking sub-model can identify whether the driver has a dangerous posture
when smoking. Note that the daytime smoking sub-model reached 100% accuracy earlier
than 10 iterations on the training set and the average training time of a single image is
171.7 ms. The model training accuracy rate performance and training error are shown in
Figure 12a. The recognition accuracy of the smoking sub-model on the test set can reach
98.59%, the test error is 0.046 and the average test duration of a single image is 90 ms.
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The night model can also achieve 100% accuracy on the training set before 10 iterations
and the average training time of a single image is 152.8 ms. This indicates that the smoking
sub-models may be more time-saving. The model training accuracy rate performance and
training errors are shown in Figure 12b. The recognition accuracy of the smoking sub-model
on the test set can reach 98.6%, the test error is 0.047 and the average test duration of a
single image is 79 ms.

5.4. Sub-Model of Calling the Phone

The calling the phone sub-model can identify whether the driver has a dangerous
posture when making a phone call. Similar to the smoking sub-model, 100% accuracy can
be achieved earlier than 10 iterations on the training set and the average training time of
a single image is 168.9 ms for the daytime calling-the-phone model. The model training
accuracy performance and training error are shown in Figure 13a. The recognition accuracy
rate of the phone calling sub model on the test set can reach 99.3%, the test error is only
0.018 and the average test duration of a single image is 89 ms.
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The night model can achieve 100% accuracy on the training set before 10 iterations
and the average training time of a single image is 153.3 ms, also indicating the time-saving
characteristics. The model training accuracy performance and training errors are shown
in Figure 13b. The recognition accuracy of the phone calling sub model on the test set can
reach 98.6%, the test error is only 0.023 and the average test duration of a single image
is 81 ms.

5.5. Sub-Model of Behavior Posture Set

The behavior posture set model can identify five dangerous postures of controlling
the gear, using the mobile phone/rack, using the dashboard, eating or drinking water and
taking things. For the behavior–posture–set daytime model, 100% accuracy can be achieved
after the 5th iteration on the training set and the average training time of a single image
is 172.6 ms. The model training accuracy performance and training error are shown in
Figure 14a. The recognition accuracy rate of the behavior posture set sub-model on the test
set can reach 99.35%, the test error is only 0.017 and the average test duration of a single
image is 89 ms.
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The night model can achieve 100% accuracy on the training set after the sixth iteration
and the average training time of a single image is 152 ms. The model training accuracy
performance and training errors are shown in Figure 14b. The recognition accuracy rate of
the behavior posture set sub-model on the test set can reach 99.77%, the test error is only
0.014 and the average test duration of a single image is 81 ms.

5.6. Recognition Results of the Overall Model

The model performance of daytime data set is summarized in Table 4. It can be
illustrated that the daytime cascaded CNN model has advantages in recognition accuracy
and speed over the non-cascaded CNN model. Although the non-cascaded model has
already shown a high level of recognition accuracy up to 97.83%, the recognition accuracy
of the cascade model is higher, with an increase of 0.85%, reaching 98.68%. Besides, the
recognition speed of the cascaded model is 10.4% faster than that of the non-cascaded model.
Some scholars have found that the CNN model tends to have a satisfactory recognition
performance to deal with a highly demanding dataset [45,46], and this study has also
proved this.

Table 4. Comparison of cascaded models and non-cascaded model for daytime data sets.

Hand
Posture

Not Looking
Ahead Smoking Calling the

Phone
Behavior
Posture

Non-
Cascaded

Model

Cascaded
Models

Accuracy 99.3% 98.94% 98.59% 99.3% 99.35% 97.83% 98.68%
Speed 91 ms 93 ms 90 ms 89 ms 89 ms 452 ms 405 ms
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Table 5 presents the model performance of night data set. Similar to the daytime model,
the night cascaded CNN model has advantages in recognition accuracy and recognition
speed over the non-cascaded CNN model. Relative to the daytime cascaded CNN model,
the accuracy rate of daytime cascaded CNN model is marginally lower (97.83% versus
97.48%), while the speed shows an increasing tendency, with the running time decreasing
from 452 ms to 403 ms. A possible reason for the higher recognition speed of night model is
that compared to the daytime data set, the night data set is smaller in the sample size and
only needs to deal with the images with a single color channel. With regard to the lower
accuracy of the night model, it might be due to the smaller sample size. An alternative
explanation might be that the existing image capture technique at night is still immature,
which cannot present more unambiguous details of the night image and leads to a relatively
lower accuracy of the night model compared to its daytime model counterpart. However,
no matter whether the daytime model or the night model was being used, it was found that
the cascaded model presents better performance than the non-cascaded model in terms of
accuracy and speed.

Table 5. Comparison of cascaded models and non-cascaded model for night data sets.

Hand
Posture

Not Looking
Ahead Smoking Phone

Calling
Behavior
Posture

Non-
Cascaded

Model

Cascaded
Models

Accuracy 98.14% 99.78% 98.6% 98.6% 99.77% 97.48% 98.03%
Speed 82 ms 80 ms 79 ms 81 ms 81 ms 403 ms 362 ms

6. Conclusions

This study aimed to ameliorate the traffic safety from the perspective of driver’s
posture recognition and provide a more comprehensive methodological framework to
demonstrate the significance of enlarging the recognition objects, scenarios and types of
the existing driver’s posture recognition systems. Driver’s posture characteristics were
primarily analyzed to provide the basis of the subsequent modeling. Five CNN sub-models
for driver’s posture recognition were established for different posture categories and to
improve the efficiency of recognition, an overall multi-cascaded CNN framework was
proposed. To compare the recognition effect of different models and suggest the best model,
an image data set of commercial vehicle driver postures, including 117,410 daytime images
and 60,480 night images, was trained and test. The important findings and contributions
are as follows:

(1) The previous studies did not pay enough attention to driver’s posture characteristics
analysis while this paper found that driver’s postures have the characteristics of
continuity, diversity, superposition, similarity, transitional, and mutual influence
(compatible and exclusive). The analyses of these characteristics can not only facilitate
better understanding of driver behavior, but also aid in the improvement of the
algorithms of the real-time monitoring systems to enhance the recognition speed and
prevent the dangerous driving behavior;

(2) Compared to the non-cascaded models, both daytime and night cascaded models
show better performance in recognition accuracy and speed. Although the accuracy
of sub-models and non-cascaded models has reached the application requirements,
the accuracy of cascaded models performs better. It can be illustrated that the speed
of the cascaded models is about 10% higher than that of the non-cascaded models.
This finding can provide a new insight and aid in the establishment of the driver
real-time warning system, to include cascaded CNN models instead of non-cascaded
CNN models. Additionally, this finding may also be available for the improvement of
automatic driving technology;

(3) Night models appear to have worse accuracy and better speed relative to their day-
time model counterparts for both non-cascaded and cascaded models. Worse light
conditions at night and deficiency in the existing night image shot technique might be
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leading causes, indicating the necessity to improve the monitoring ability at night of
the current driver monitoring systems.

These findings could be used to develop policies and countermeasures to improve
driver safety. Furthermore, they can provide helpful information for the design of a driver
real-time monitoring and warning system, as well as an automatic driving system. It should
be noted that this research is not free of limitations. Future studies could be conducted to
further consider the dynamic changes of certain dangerous postures and evaluate different
danger levels. Additionally, more datasets could be established or opened with multiple
scenes to further develop and ameliorate the current model, such as distracted behaviors
that can result in reckless driving or unsafe speeds when the drivers are talking with
passengers or texting. Likewise, the combination of vehicle state parameters and driver’
postures can be implemented to establish a more comprehensive evaluation system.
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Appendix A

Table A1. Label set of driver’s posture.

Label Posture Description

[1 0 0 0 0 0 0 0 0 0 0] Normal driving with two hands
[1 0 0 1 0 0 0 0 0 0 0] Not looking ahead and driving with two hands
[1 0 0 0 1 0 0 0 0 0 0] Smoking and driving with two hands
[1 0 0 0 0 1 0 0 0 0 0] Calling the phone and driving with two hands
[1 0 0 0 1 1 0 0 0 0 0] Calling the phone and smoking and driving with two hands
[1 0 0 1 1 0 0 0 0 0 0] Not looking ahead and smoking and driving with two hands
[1 0 0 1 0 1 0 0 0 0 0] Calling the phone and not looking ahead and driving with two hands
[1 0 0 1 1 1 0 0 0 0 0] Calling the phone and not looking ahead and smoking and driving with two hands
[0 1 0 0 0 0 0 0 0 0 0] Normal driving with one hand
[0 1 0 0 0 0 1 0 0 0 0] Controlling the gear and driving with one hand
[0 1 0 0 0 0 0 1 0 0 0] Using the mobile phone/rack and driving with one hand
[0 1 0 0 0 0 0 0 1 0 0] Using the dashboard and driving with one hand
[0 1 0 0 0 0 0 0 0 1 0] Eating/Drinking water and driving with one hand
[0 1 0 0 0 0 0 0 0 0 1] Taking things and driving with one hand
[0 1 0 0 0 1 0 0 0 0 0] Calling the phone and driving with one hand
[0 1 0 0 0 1 1 0 0 0 0] Controlling the gear and calling the phone and driving with one hand
[0 1 0 0 0 1 0 1 0 0 0] Calling the phone and using the mobile phone/rack and driving with one hand
[0 1 0 0 0 1 0 0 1 0 0] Calling the phone and using the dashboard and driving with one hand
[0 1 0 0 0 1 0 0 0 1 0] Calling the phone and eating/drinking water and driving with one hand
[0 1 0 0 0 1 0 0 0 0 1] Calling the phone and taking things and driving with one hand
[0 1 0 0 1 0 0 0 0 0 0] Smoking and driving with one hand
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Table A1. Cont.

[0 1 0 0 1 0 1 0 0 0 0] Smoking and controlling the gear and driving with one hand
[0 1 0 0 1 0 0 1 0 0 0] Smoking and using the mobile phone/rack and driving with one hand
[0 1 0 0 1 0 0 0 1 0 0] Smoking and using the dashboard and driving with one hand
[0 1 0 0 1 0 0 0 0 0 1] Smoking and taking things and driving with one hand
[0 1 0 0 1 1 0 0 0 0 0] Smoking and calling the phone and driving with one hand
[0 1 0 0 1 1 1 0 0 0 0] Smoking and calling the phone and controlling the gear and driving with one hand
[0 1 0 0 1 1 0 1 0 0 0] Smoking and calling the phone and using the mobile phone/rack and driving with one hand
[0 1 0 0 1 1 0 0 1 0 0] Smoking and calling the phone and using the dashboard and driving with one hand
[0 1 0 0 1 1 0 0 0 0 1] Smoking and calling the phone and taking things and driving with one hand
[0 1 0 1 0 0 0 0 0 0 0] Not looking ahead and driving with one hand
[0 1 0 1 0 0 1 0 0 0 0] Not looking ahead and controlling the gear and driving with one hand
[0 1 0 1 0 0 0 1 0 0 0] Not looking ahead and
[0 1 0 1 0 0 0 0 1 0 0] Not looking ahead and using the mobile phone/rack and driving with one hand
[0 1 0 1 0 0 0 0 0 1 0] Not looking ahead and using the dashboard and driving with one hand
[0 1 0 1 0 0 0 0 0 0 1] Not looking ahead and taking things and driving with one hand
[0 1 0 1 0 1 0 0 0 0 0] Not looking ahead and calling the phone and driving with one hand
[0 1 0 1 0 1 1 0 0 0 0] Not looking ahead and controlling the gear and driving with one hand
[0 1 0 1 0 1 0 1 0 0 0] Not looking ahead and calling the phone and using the mobile phone/rack and driving with one hand
[0 1 0 1 0 1 0 0 1 0 0] Not looking ahead and calling the phone and using the dashboard and driving with one hand
[0 1 0 1 0 1 0 0 0 1 0] Not looking ahead and calling the phone and taking things and driving with one hand
[0 1 0 1 0 1 0 0 0 0 1] Not looking ahead and calling the phone and controlling the gear and driving with one hand
[0 1 0 1 1 0 0 0 0 0 0] Not looking ahead and smoking and controlling the gear and driving with one hand
[0 1 0 1 1 0 1 0 0 0 0] Not looking ahead and smoking and using the mobile phone/rack and driving with one hand
[0 1 0 1 1 0 0 1 0 0 0] Not looking ahead and smoking and using the dashboard and driving with one hand
[0 1 0 1 1 0 0 0 1 0 0] Not looking ahead and smoking and eating/drinking water and driving with one hand
[0 1 0 1 1 0 0 0 0 0 1] Not looking ahead and smoking and taking things and driving with one hand
[0 1 0 1 1 1 0 0 0 0 0] Not looking ahead and smoking and calling the phone and driving with one hand
[0 1 0 1 1 1 1 0 0 0 0] Not looking ahead and smoking and calling the phone and controlling the gear and driving with one hand

[0 1 0 1 1 1 0 1 0 0 0] Not looking ahead and smoking and calling the phone and using the mobile phone/rack and driving with
one hand

[0 1 0 1 1 1 0 0 1 0 0] Not looking ahead and smoking and calling the phone and using the dashboard and driving with one hand
[0 1 0 1 1 1 0 0 0 0 1] Not looking ahead and smoking and calling the phone and taking things and driving with one hand

[0 0 1 - - - - - - - -] Driving without hands (dangerous in every situation)
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