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Abstract: Using solar energy to remove antibiotics from aqueous environments via photocatalysis
is highly desirable. In this work, a novel type-II heterojunction photocatalyst, MgSn(OH)6/SnO2,

was successfully prepared via a facile one-pot in situ hydrothermal method at 220 ◦C for 24 h.
The obtained heterojunctions were characterized via powder X-ray diffraction, Fourier-transform
infrared spectroscopy, transmission electron microscopy, and ultraviolet-visible diffuse reflectance
spectroscopy. The photocatalytic performance was evaluated for photodegradation of tetracycline
solution under ultraviolet irradiation. The initial concentration of tetracycline solution was set
to be 20 mg/L. The prepared heterojunctions exhibited superior photocatalytic activity compared
with the parent MgSn(OH)6 and SnO2 compounds. Among them, the obtained MgSn(OH)6/SnO2

heterojunction with MgCl2·6H2O:SnCl4·5H2O = 4:5.2 (mmol) displayed the highest photocatalytic
performance and the photodegradation efficiency conversion of 91% could be reached after 60 min
under ultraviolet irradiation. The prepared heterojunction maintained its performance after four
successive cycles of use. Active species trapping experiments demonstrated that holes were
the dominant active species. Hydroxyl radicals and superoxide ions had minor effects on the
photocatalytic oxidation of tetracycline. Photoelectrochemical measurements were used to investigate
the photocatalytic mechanism. The enhancement of photocatalytic activity could be assigned to the
formation of a type-II junction photocatalytic system, which was beneficial for efficient transfer and
separation of photogenerated electrons and holes. This research provides an in situ growth strategy
for the design of highly efficient photocatalysts for environmental restoration.

Keywords: perovskite-type hydroxide; photocatalysis; tetracycline; photoelectrochemistry;
type-II heterojunction

1. Introduction

Pharmaceutical residues in wastewater are a severe threat to the ecological environment. Misuse
and overuse of antibiotics can lead to high antibiotic resistance and multi-resistant strains of
microorganisms [1–4]. As a broad-spectrum antibiotic, tetracycline (TC) is widely used for disease
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treatment in humans, and it is frequently detected in various bodies of water owing to its high
solubility. Removal of TC from wastewater is important. Semiconductor-based photocatalysis,
an advanced oxidation method, is the most promising technique for harvesting solar energy to
alleviate environmental problems [5,6]. The discovery and design of photocatalysts that are stable,
efficient, inexpensive, and ecofriendly is of importance [7,8]. Among the numerous photocatalytic
materials, perovskite-based materials have excellent stability, crystalline structures with high symmetry,
and diverse chemical and physical properties [9,10].

Recently, a perovskite-type hydroxide, MSn(OH)6 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn, Sr, or Ba),
was prepared via the hydrothermal method and showed excellent potential as a photocatalyst for
environmental remediation [11,12]. In the crystalline structure of this compound, the metal ions
are octahedrally coordinated with OH to form M(OH)6 and Sn(OH)6 polyhedra that connect with
each other by sharing O atoms to build the whole crystalline structure. Because they have different
Shannon radii, these hydroxides exhibit multiple crystalline symmetries. Compounds containing
Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn, or Cd adopt the rock salt ReO3 structure with cubic or tetragonal
symmetry [13–16]. In contrast, those containing Sr or Ba exhibit a distorted perovskite structure in the
monoclinic family with the space group P21/n [14]. The wide variety of compositions and constituent
elements in these hydroxide perovskites offers plenty of room to study their photocatalytic performance.
Considerable effort has been devoted to study their applications in environmental and energy catalysis
research. Nanocubes of CaSn(OH)6 and CuSn(OH)6 with a d10-d10 electronic configuration exhibit
high degradation rates for methylene blue [17–19]. The CoSn(OH)6 catalyst has high activity and
selectivity for the photoreduction of CO2 to CO [20]. MgSn(OH)6 and ZnSn(OH)6 could be applied to
degradation of gaseous C6H6 and reforming of ethanol to H2 and CH4 [11,21]. These studies have
shown that hydroxide perovskites have excellent potential for photocatalysis. However, few studies
have investigated the ability of this family of compounds to remove antibiotics in photocatalysis.

Generally, single photocatalysts have some drawbacks, such as the rapid recombination of
photogenerated electrons and holes and relatively small reactive sites, which will limit their
practical application [22]. Construction of heterostructures is an effective method to overcome
these shortcomings and numerous reports have demonstrated that the interface formed between two
different semiconductors could accelerate carrier transfer, and the recombination rate of the spatially
separated photogenerated carriers can be reduced, resulting in greatly improved photocatalytic
performance [23–26]. A high-quality heterojunction with a good lattice match is highly desired,
and could be fabricated by co-sharing of one or several of the same atoms between the formed coherent
or semi-coherent interface.

In this work, SnO2 was investigated for coupling with MgSn(OH)6 because of its chemical stability,
low exciton energy, and outstanding conductivity. The simulated electron and hole mobilities along
the x-direction were reported to be ~2966 and 66 cm2/Vs, respectively. Because of the large difference
in transport behavior, SnO2 has been widely used as an efficient photocatalyst [27]. Furthermore,
at the atomic level, an intimately contacted interface by co-sharing of the Sn atoms would be expected
and can be fabricated via a one-pot in situ hydrothermal treatment between MgSn(OH)6 and SnO2.
The observed SnO2 nanoparticles were loaded tightly on the surface of the MgSn(OH)6 nanocubes. As a
result, photoinduced carriers in the heterojunction were effectively separated and the photocatalytic
activity was remarkably improved for degradation of a TC solution under ultraviolet (UV) irradiation.
Finally, a possible photocatalytic mechanism for the type-II heterojunction is proposed and discussed.

2. Materials and Methods

2.1. Synthesis of SnO2, MgSn(OH)6, and MgSn(OH)6/SnO2 Heterojunctions

The following materials were applied for this experiment: MgCl2·6H2O (Aladdin, 98%, Shanghai,
China), SnCl4·5H2O (Aladdin, 99%, Shanghai, China), tetracycline (Adamas-beta, 97%+, Shanghai,
China), NaOH (Aladdin, 96%, Shanghai, China), ethyl alcohol (Aladdin, 99.7%, Shanghai, China),
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2-propanol (IPA) (Aladdin, 99.7%, Shanghai, China), disodium ethylenediaminetetraacetic acid (EDTA)
(Aladdin, 99.5%, Shanghai, China), and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) (Aladdin, 98%,
Shanghai, China). All of the above chemicals were directly utilized without any further purification.

To obtain pure phase SnO2 (SO), 4 mmol SnCl4·5H2O was dissolved in 15 mL of water. Then,
4 mL NaOH (0.5 g/mL) was added to adjust pH to ~7 and the mixture was further stirred for 5 min.
Next, the mixture was transferred into a 25-mL Teflon-lined steel autoclave and hydrothermally heated
at 220 ◦C for 24 h.

For preparation of pure MgSn(OH)6 (MSOH), 4 mmol MgCl2·6H2O, 4 mmol SnCl4·5H2O,
and 12 mL NaOH (0.5 g/mL) were added to 15 mL of deionized water to adjust pH to ~11 and
magnetically stirred for further 10 min. The obtained slurry was hydrothermally treated at 220 ◦C for
24 h in a Teflon-lined steel autoclave.

Heterojunctions of MgSn(OH)6/SnO2 with different mass fractions were prepared by an in
situ hydrothermal formation strategy. The mass fraction of SnO2/MgSn(OH)6 was adjusted to
10%, 20%, 30%, or 40% by controlling the amount of SnCl4·5H2O added, and the obtained
products were labeled as MSOH-SO-1 (SnCl4·5H2O/MgCl2·6H2O = 4.4/4 mmol), MSOH-SO-2
(SnCl4·5H2O/MgCl2·6H2O = 4.8/4 mmol), MSOH-SO-3 (SnCl4·5H2O/MgCl2·6H2O = 5.2/4 mmol),
and MSOH-SO-4 (SnCl4·5H2O/MgCl2·6H2O = 5.6/4 mmol), respectively. Taking MSOH-SO-3 as an
example, 4 mmol MgCl2·6H2O and 5.2 mmol SnCl4·5H2O were dispersed in 15 mL of deionized water,
followed by addition of were 4 mL NaOH (0.5 g/mL) to adjust pH to ~8. The mixture was further
magnetically stirred at room temperature for 30 min and then put into a 25-mL Teflon-lined steel
autoclave and kept in an oven at 220 ◦C for 24 h.

All the products were washed with distilled water several times and then dried at 70 ◦C for 10 h.

2.2. Characterization

Powder X-ray diffraction (PXRD) was performed on a PANalytical X’pert powder diffractometer
equipped with a PIXcel detector and using Cu Kα radiation (40 kV and 40 mA). A scan step width of
0.01◦ and a scan rate of 0.1◦ s−1 were applied to record patterns in the 2θ range of 6◦–90◦. Transmission
electron microscopy (TEM), high-angle annular dark field imaging (HAADF), and energy-dispersive
X-ray spectrometry of the MgSn(OH)6/SnO2 heterojunctions were performed using a Talos F200S G2
microscope to investigate the microstructures of the samples. Ultraviolet-Visible diffuse reflectance
spectroscopy (UV–Vis DRS) data were collected at room temperature using a powder sample with
BaSO4 as a standard on a Shimadzu UV-3150 spectrophotometer over the spectral range of 200–800 nm.
Fourier transform infrared (FT-IR) spectra were collected using a Nicolet 360 spectrometer with a
2 cm–1 resolution in the range of 500–4000 cm−1. The photocatalysts were fixed within a pressed KBr
pellet. For instance, 1 mg heterojunction MSOH-SO-3 within 100 mg KBr were pressed at 15 MPa for
15 min, forming 13 mm pellets. Total dissolved organic carbon (TOC) was determined via a TOC
analyzer (SHIMADZU, TOC-L CPB). The BET specific surface areas were investigated by means of
N2 adsorption-desorption at 77 K using a Quantachrome QuadraWin and the specific surface areas
were determined according to the BET method in the relative pressure range p/p0 = 0.069~0.249.
Electrochemical measurements were conducted on a CHI 660E workstation. A Pt plate, calomel
electrode, and MSOH-SO-3 coated on indium tin oxide (ITO) were used as the counter electrode,
reference electrode, and working electrode, respectively, in a three-electrode cell. For a typical
preparation of working electrode, 10 mg of catalyst samples were dispersed in 500 µL of water/ethanol
(240/250) mixed solvent containing 10 µL of 5 wt % Nafion and sonicated for 30 min. Then, a certain
amount of the catalyst ink was loaded onto an ITO electrode. Electrochemical impedance spectroscopy
(EIS) was carried out using an alternating voltage with an amplitude of 5 mV over the frequency
range of 105 Hz to 0.1 Hz and an open circuit voltage in 0.5 M Na2SO4. For analysis of the transient
photocurrent responses, a 175 W high-pressure Hg lamp and Na2SO4 were used as the light source and
electrolyte, respectively. Mott–Schottky curves were measured in a Na2SO4 solution with an amplitude
perturbation of 5 mV and frequency of 1000 Hz.
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2.3. Photocatalytic Activity Measurements

The photocatalytic activities of the products were evaluated for degradation of a TC solution.
The light source was an external 175 W high-pressure mercury lamp with a primary wavelength of
365 nm. The lamp was positioned 9 cm above the reaction vessel and the light intensity on the surface
of the suspension was approximately 11 mW/cm2. The reactant solution was maintained at room
temperature using a stream of cool water during the photocatalytic reaction. Before irradiation, the
photocatalyst powder (30 mg) and TC solution (20 mg L−1, 100 mL) were fully stirred in the dark for
1 h to establish the adsorption–desorption equilibrium and the pH was measured to be ~5.5. Then,
the solution was exposed to the light. Aliquots (5 mL) of the suspension was taken at set intervals
(20 min) and separated by centrifugation. Then, the concentration of the TC solution was determined
by UV–Vis spectrometry at 355 nm and the process of photocatalytic performance was carried out
within 60 min. Considering the small loss of the catalysts in the recycling process, several batches of
repeated experiments for each cycle were performed. Then, the catalysts were collected and mixed to
maintain the weight of 30 mg for each test. The degradation rate could be calculated by the formula

Photodegadation (%) = 1− C/C0 (1)

where C0 was the absorbance of the initial solution and C was the absorbance of solution at a
given time after the photocatalytic reaction. Trapping experiments of the active species were carried
out using 30 mg of MSOH-SO-3 and 100 mL of TC solution (20 mg/L). The reactive intermediate
participating in the degradation process was identified by using different sacrificial agents. Such as,
10 mL of 2-propanol (IPA), 0.1 mmol disodium ethylenediaminetetraacetic acid (EDTA), and 0.1 mmol
2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) were added sequentially to trap ·OH, h+, and ·O2

−

radicals, respectively. TOC analysis was carried out at every 20 min to check the degree of mineralization
over heterojunction MSOH-SO-3 under UV light irradiation.

3. Results and Discussion

Photocatalysts synthesized from SnO2, MgSn(OH)6, and the MSOH-SO heterojunction were
characterized by PXRD (Figure 1). Peaks at 19.7◦, 22.8◦, 32.5◦, and 52.6◦ matched well with the
crystalline planes (111), (200), (220), and (420), respectively, that belong to the cubic phase MgSn(OH)6

(JCPDS 074-0366). Major diffraction peaks at 26.7◦ (110 plane), 33.8◦ (101 plane), and 51.7◦ (211 plane)
were indexed to the SnO2 phase (JCPDS 021-1250). Notably, the peak intensity of SnO2 gradually
strengthened with increasing SnCl4·5H2O concentration, indicating that the amount of SnO2 loaded on
MgSn(OH)6 increased. The structures of these photocatalysts were confirmed by FT-IR spectroscopy.
Specifically, for SnO2, a broad peak located at ~618 cm−1 was attributed to the antisymmetric vibrational
mode of Sn-O-Sn [28]. For MgSn(OH)6, absorption peaks in the range 3000–3500 cm−1 were ascribed
to O–H stretching vibration modes and lattice modes at 1175 cm−1 corresponded to the O–H bending
vibrations. Peaks in the range of 500–1000 cm−1 were attributed to the Mg–O and Sn–O bond stretching
vibration modes [29]. All of the main characteristic peaks of MgSn(OH)6 and SnO2 were observed
in MSOH-SO. On the basis of the PXRD and FT-IR observations, we concluded that both SnO2 and
MgSn(OH)6 existed in the heterojunctions.
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Figure 1. (a) XRD patterns with miller indices of several strongest peaks; (b) FT-IR spectra of SnO2,
MgSn(OH)6, and MSOH-SO-3 heterojunction.

The typical interface structure of the synthesized heterojunction MSOH-OH-3 was further
characterized by HAADF–TEM observation. The MgSn(OH)6 nanocubes were combined with
randomly oriented nanoparticles of SnO2 (Figure 2a). Furthermore, well-ordered lattice fringes
with a lattice spacing 0.38 nm could be ascribed to the (200) plane of MgSn(OH)6. The interplanar
distances of 0.32 nm and 0.25 nm could be assigned to the (110) and (101) planes of the SnO2

nanoparticles, respectively. Elemental mapping via HAADF–energy-dispersive X-ray spectroscopy
(Figure 2b) confirmed the uniform distributions of Mg, Sn, and O elements in the MSOH-SO-3
heterojunction. The contents of Sn and O elements were much higher than that of Mg, which showed
that a heterojunction formed between MgSn(OH)6 and SnO2 (Figure S1). All of the above observations
demonstrated that there was close contact at the interface of the synthesized heterojunction, which
might be favorable for promoting the separation of photogenerated carriers at the interface during the
photocatalytic reaction. Besides, we also measured the BET specific surface areas of the as-synthesized
samples, heterojunction MSOH-SO-3, SO, and MSOH. As presented in Figure S2, the results showed
that the calculated specific surface areas of sample MSOH-SO-3 and SO were 114.2 m2/g and 81.7 m2/g,
respectively. However, the obtained specific surface area of MSOH was too small to ignore.
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Figure 2. (a) HRTEM image; (b) HAADF and EDX spectrum of the MSOH-SO-3 heterojunction.

To investigate the optical absorption properties and forbidden band gap of the synthesized
photocatalysts, the UV–Vis DRS spectra of MgSn(OH)6, MSOH-SO-3, and SnO2 were recorded (Figure 3).
All the photocatalysts showed an obvious absorption edge in the UV region. The absorption edges for
MgSn(OH)6 and SnO2 were at approximately 303 nm and 343 nm, respectively. The corresponding
band gaps estimated from the curve of (αhν)2 versus the photon energy (hν) were 4.09 eV (Figure 3b)
and 3.61 eV (Figure 3d), respectively. The MSOH-SO-3 heterojunction exhibited a blue shift compared
with SnO2 (Figure 3c), which would facilitate the separation of photoinduced carriers and improve the
photocatalytic performance.
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The photocatalytic activities of the prepared catalysts were evaluated for photodegradation of a TC
solution under UV irradiation (Figure 4). Blank experiments showed that UV light had little effect on
photodegradation of the TC solution (Figure 4a). The degradation rates of pure SnO2 and MgSn(OH)6

were 44% and 34%, respectively. However, when SnO2 was combined with MgSn(OH)6 to form a
heterojunction, the photocatalytic activity was enhanced. Among the heterojunctions, MSOH-SO-3
exhibited the best photocatalytic ability and the photodegradation rate reached nearly 91% in 60 min,
which was much larger than that of state-of-art UV light responsive ZnO [30]. The corresponding
changes in the characteristic absorption of the TC solution are shown in Figure S3. The behavior of the
photocatalytic reaction was described well by a pseudo-first order model [31–33]

− ln
C
C0

= kt, (2)

where c0 and c are the TC concentrations in solution at time 0 and t, respectively; and k is the fitted
kinetic rate constant. A linear relationship was observed between ln C0

C and t (Figure 4b), which revealed
that the synthesized catalysts for photodegradation of TC obeyed the model perfectly. The fitted rate
constants of MgSn(OH)6 and SnO2 were 0.006 min−1 and 0.009 min−1, respectively (Figure 4c). The k
values of the heterojunctions were all higher than those of the parent compounds, and the corresponding
rate constants of MSOH-SO-1, MSOH-SO-2, MSOH-3, and MSOH-SO-4 were 0.018 min−1, 0.024 min−1,
0.030 min−1, and 0.028 min−1, respectively. Among the heterojunctions, MSOH-SO-3 had the highest k,
which was approximately five times that of MgSn(OH)6 and 3.3 times that of SnO2. The photocatalytic
activity was further evidence of successful preparation of the heterojunctions and an efficient synergistic
effect at the interface. The total organic carbon (TOC) performance was also performed to check
mineralization ability over heterojunction MSOH-SO-3. As indicated in Figure S4, after 60 min
irradiation, the TOC removal efficiency of mineralizing TC molecule could reach 35%.

To evaluate its practicality as a photocatalyst, the stability of MSOH-SO-3 was assessed in four
successive cycles of reuse in photocatalytic experiments. The photocatalytic performance showed no
obvious loss after four cycles (Figure 4d) and the observed PXRD patterns remained the same (Figure S5).
Statistically, the standard deviations of kinetic rate constants of the four cycling performance is 0.00299.
These results show that the MSOH-SO-3 heterojunction is a stable and reusable photocatalyst for the
degradation of TC under UV irradiation.
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The photocurrent response and EIS showed a close association between the migration, transfer, and
recombination of photoinduced electron–hole pairs in the photocatalysts. The photocurrent intensities
of MgSn(OH)6, SnO2, and MSOH-SO-3 were measured for four cycles of intermittent (on–off) UV
irradiation (Figure 5a). The photocurrent intensities of MgSn(OH)6 were lower than 0.4 µA/cm2,
whereas the photocurrent intensities of SnO2 were lower than 0.7 µA/cm2. After the coupling of SnO2

with MgSn(OH)6, a clear enhancement of the photocurrent response was observed, which suggested
that the electric field at the interface of the heterojunction could accelerate the movement of carriers
and greatly promote separation of the photoinduced electrons and holes. Additionally, EIS was
conducted to understand the carrier transfer resistance using the arc radius [34]. Nyquist plots with
smaller arc radii indicate a low impedance and a high carrier transfer efficiency. MSOH-SO-3 had the
smallest arc radius compared with the parent compounds MgSn(OH)6 and SnO2 (Figure 5b). The low
electron transfer resistance of MSOH-SO-3 confirmed successful fabrication of the MgSn(OH)6/SnO2

heterojunction, which could effectively improve the efficiency of electron–hole pair separation and
increase the photocurrent intensity and photodegradation activity.
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Trapping experiments of the reactive species during the photocatalytic process were performed
to investigate the photocatalytic mechanism. For this, MSOH-SO-3. EDTA, TEMPO, and IPA were
applied separately as scavengers to determine the concentrations of h+, ·O2

−, and ·OH, respectively.
Introduction of TEMPO and IPA in the photocatalytic process had little effect on the degradation of the
TC solution (Figure 6), indicating that ·O2

− and ·OH play minor roles in the photodegradation process.
In contrast, following the addition of EDTA, a dramatic inhibition of the photocatalytic efficiency was
observed and the degradation rate decreased rapidly to 27%. Thus, it could be inferred that h+ was an
active participant in photodegradation of TC with the MSOH-SO-3 heterojunction.
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The band edge positions of MgSn(OH)6 and SnO2 were determined using the Mott–Schottky
technique. Generally, the quasi Fermi level (flat band potential V f b) can be obtained from the x-intercept
of a Mott–Schottky plot ( 1

C2 = 0) as a function of the applied potential according to the following
formula [35,36]

1
C2 =

(
2

εrε0Nde

)
×

(
V −V f b −

κBT
e

)
, (3)

where C is the space charge capacitance; εr and ε0 are the dielectric constant of the semiconductor
and permittivity in vacuum, respectively; e is the electronic charge; Nd is the carrier density; and V,
V f b, κB, and T are the applied voltage, flat-band potential, Boltzmann constant, and temperature,
respectively. The flat band potential V f b was set to 0.1 V below the conduction band (CB) minimum
or above the valence band (VB) maximum for n-type and p-type semiconductors, respectively [37].
The Mott–Schottky plots of MgSn(OH)6 and SnO2 (Figure 7a,b) had positive slopes, which indicated
that they were n-type semiconductors. The estimated V f b of MgSn(OH)6 and SnO2 were −1.155 V and
−0.655 V versus the saturated calomel electrode (SCE), respectively, and could be calibrated to normal
hydrogen electrode potentials as [38,39]

VRHE = VSCE + 0.059pH + V0
SCE, (4)

where VRHE is the calibrated potential versus the reversible hydrogen electrode(RHE), V0
SCE is 0.245 V,

and VSCE is obtained from experimental values. Thus, the V f b of MgSn(OH)6 and SnO2 were −0.505
and −0.005 V, respectively, versus RHE after calibration. Therefore, the calibrated CB minima of
MgSn(OH)6 and SnO2 were −0.605 and −0.105 V, respectively. According to the optical band gaps
from the UV–Vis DRS curves, the valence band maxima of MgSn(OH)6 and SnO2 were 3.485 and
3.505 V, respectively.
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In light of the above experimental results and analysis, a possible photocatalytic mechanism
for TC degradation using the MSOH-SO-3 heterojunction is proposed in Figure 8. According to the
calculated band position, MgSn(OH)6 and SnO2 exhibited type-II band alignment, and an energy bias
was naturally generated at the contact interfaces between the two compounds. This facilitated the
separation and transfer of photoinduced carriers. Under UV irradiation, both MgSn(OH)6 and SnO2

could be excited to produce electrons and holes. The excited electrons on the CB of MgSn(OH)6 and
LOMO level of TC molecule tended to flow down to the CB of SnO2 across the interface. Meanwhile,
the remaining holes on the VB of SnO2 moved to the VB of MgSn(OH)6 and HOMO level of TC
molecule. This transfer mechanism greatly prolonged the relaxation time of the photoinduced carriers,
which agreed with the photoelectrochemical measurement results. The accumulated electrons in the
CB position of SnO2 were more positive than O2/·O2

−, thus ·O2
− would theoretically not participate

in the photocatalytic reaction. By contrast, the accumulated holes h+ in MgSn(OH)6 could capture
OH− to generate ·OH thermodynamically. However, there was no large decrease in the degradation of
the TC solution in the presence of IPA according to our reactive species trapping experiments. These
results indicated that the produced ·OH would not be favorable for the oxidation of TC, as reported
earlier [40]. Thus, the h+ present in the VB of MgSn(OH)6 could directly oxidize the TC solution to the
corresponding degradation products. Therefore, formation of the type-II heterojunction that accelerated
the carrier separation could be considered as the primary factor for the enhanced photocatalytic activity
towards the TC degradation.
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4. Conclusions

In summary, a series of novel MSOH-SO heterojunction photocatalysts containing n-type
MgSn(OH)6 and n-type SnO2 were successfully prepared via a facile one-pot in situ method.
The heterojunction MSOH-SO-3 exhibited outstanding photodegradation activity for TC solution
and the maximum photodegradation rate was 91% after UV irradiation within 60 min. This rate
was approximately 5 times that of MgSn(OH)6 and 3.3 times that of SnO2. The enhancement of the
photocatalytic performance could be attributed to the successful preparation of a type-II heterojunction
between MgSn(OH)6 and SnO2, which greatly enhanced the efficient separation of photoinduced
carriers based on the structural analysis, photoelectrochemical measurement and reactive species
detecting experiments. The photoinduced h+ radicals played a dominant role in the photocatalytic
degradation of a TC solution over the MSOH-SO-3 heterojunction photocatalyst. This research might
provide a facile way for construction highly efficient heterojunction photocatalysts.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/1/53/s1,
Figure S1: elemental mapping of heterojunction MSOH-SO-3; Figure S2: The specific surface area determination
performed by BET measurement with N2 adsorption-desorption. (a) Heterojunction MSOH-SO-3 (b) SnO2 (SO);
Figure S3: UV-visible absorption of TC as a function of irradiation time over the heterojunction MSOH-SO-3;
Figure S4: The TOC degradation of TC solution under different UV-light irradiation. (TOC0: initial TOC value;
TOCt: TOC value at photodegradation time t); Figure S5: XRD patterns of sample MSOH-SO-3 of cycling runs on
the photocatalytic reaction of degrading TC solution.
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