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Renal fibrosis represents a key pathophysiological process in patients with chronic
kidney diseases (CKD) and is typically associated with a poor prognosis. Renal
tubular epithelial cells (RTECs), in response to a host of pro-fibrogenic stimuli, can
trans-differentiate into myofibroblast-like cells and produce extracellular matrix proteins
to promote renal fibrosis. In the present study we investigated the role of histone
deacetylase 11 (HDAC11) in this process and the underlying mechanism. We report that
expression levels of HDAC11 were up-regulated in the kidneys in several different animal
models of renal fibrosis. HDAC11 was also up-regulated by treatment of Angiotensin
II (Ang II) in cultured RTECs. Consistently, pharmaceutical inhibition with a small-
molecule inhibitor of HDAC11 (quisinostat) attenuated unilateral ureteral obstruction
(UUO) induced renal fibrosis in mice. Similarly, HDAC11 inhibition by quisinostat or
HDAC11 depletion by siRNA blocked Ang II induced pro-fibrogenic response in cultured
RTECs. Mechanistically, HDAC11 interacted with activator protein 2 (AP-2α) to repress
the transcription of Kruppel-like factor 15 (KLF15). In accordance, KLF15 knockdown
antagonized the effect of HDAC11 inhibition or depletion and enabled Ang II to promote
fibrogenesis in RTECs. Therefore, we data unveil a novel AP-2α-HDAC11-KLF15 axis
that contributes to renal fibrosis.

Keywords: renal fibrosis, renal tubular epithelial cell, transcriptional regulation, epigenetics, histone deacetylase

INTRODUCTION

Chronic kidney disease (CKD) is defined as progressive loss of key renal functions owing to a host
of etiological factors including hypertension and diabetes (Coresh, 2017). For a large fraction of
patients diagnosed with CKD, a transition to end-stage renal disease (ESRD) and renal failure is
inevitable. Without effective long-term renal replacement therapy, prognosis for these patients is
poor and mortality rate is high (Liu, 2013). Regardless of its etiology, ESRD is invariably preceded
by renal fibrosis, characterized by accumulation of extracellular matrix (ECM) proteins in the renal
interstitia, inflammatory infiltrates, proliferation and migration of myofibroblasts, and disruption
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of normal renal micro-architecture (Zeisberg and Neilson, 2010).
Strong evidence suggests that there is a correlation between the
severities of renal fibrosis and the outcome of ESRD (Nishitani
et al., 2005). Thus, renal fibrosis can be considered as a common
end-point for most kidney diseases (Gewin, 2018).

Investigations in the past decade have demonstrated that
activated myofibroblasts are the unequivocal effector cell type
and driver of renal fibrosis (Falke et al., 2015). Compared
to quiescent fibroblasts, myofibroblasts possess a muscle-
like contractile phenotype and display much augmented
proliferative and migratory ability. There remains great
controversy with regard to the origin of myofibroblasts in
the fibrotic kidneys. For instance, Humphreys et al. have
shown, using the FOXD1-Cre driven tracing mice, that
almost 100% of myofibroblasts are derived from pericytes
in the unilateral ureteral obstruction (UUO) model and
in the ischemia-reperfusion injury model of renal fibrosis
(Humphreys et al., 2010). Zeisberg et al. (2007) have shown
that up to 35% of myofibroblasts in the kidneys originate
from endothelial cells whereas LeBleu et al. have reported
that endothelial cells may account for no more than 10%
of all myofibroblasts in the kidneys (Zeisberg et al., 2007;
LeBleu et al., 2013). This apparent discrepancy stems from
the different lineage-tracing tools that have been used in
different studies. The evasiveness of “true” myofibroblast
identities in vivo notwithstanding, many cell types, including
renal tubular epithelial cells, fibroblast cells, and endothelial
cells, can be induced to adopt a myofibroblast-like phenotype
in vitro by transforming growth factor (TGF-β), platelet
derived growth factor (PDGF-BB), angiotensin II (Ang II),
and high glucose (Edeling et al., 2016). Accompanying the
transition to myofibroblasts, profound changes in cellular
transcriptome is taking place. The underlying epigenetic
mechanism, however, is not clear.

The epigenetic machinery plays a key role in regulating
mammalian cell transcription. It is generally considered that
transcription status can be annotated by different histone
modifications. Actively transcribed chromatin is abounded by
acetylated histones whereas transcriptionally silenced chromatin
is demarcated by low levels of acetylated histones and high
levels of methylated H3K9 and H3K27 (Jenuwein and Allis,
2001). Histone acetylation and deacetylation are catalyzed by
acetyltransferases and deacetylases, respectively. Traditionally,
histone deacetylases (HDACs) fall into one of the four major
categories: Class I HDACs, which include HDAC1, HDAC2,
HDAC3, and HDAC8; Class II HDACs, which include HDAC4,
HDAC5, HDAC6, HDAC7, HDAC9, and HDAC10; Class III
HDACs, which include the sirtuin family of NAD+-dependent
deacetylases; and Class IV HDAC, which contains a sole member
HDAC11 (Seto and Yoshida, 2014). Whereas previous studies
have demonstrated a role for class I HDACs (Liu et al., 2013;
Choi et al., 2016), class II HDACs (Xiong et al., 2019), and
class III HDACs (Morigi et al., 2018) in renal fibrosis, little
attention has been paid to HDAC11 in this process. In the
present study we investigated the role of HDAC11 in renal
fibrosis. We report that HDAC11 expression is up-regulated
in the fibrotic kidneys in mice and in Ang II-treated tubular

epithelial cells in vitro. HDAC11 mediates Ang II induced pro-
fibrogenic response in tubular epithelial cells by interacting with
AP-2α to repress the transcription of KLF15. Therefore, targeting
this AP-2α -HDAC11-KLF15 axis may yield novel therapeutic
solutions against renal fibrosis.

MATERIALS AND METHODS

Animals
All animal experiments were review and approved by the
Intramural Committee on Ethical Conduct of Animal
Experiments. To induce renal fibrosis, the unilateral ureteral
obstruction (UUO) procedure was performed in the mice.
Briefly, a flank incision was made and the left ureter was ligated
with silk suture at two points and cut between the ligatures.
After the surgery, the animals were injected peritoneally with
quisinostat (100 mg/kg, Selleck, Cat# S1096) or vehicle twice a
week until the day of sacrifice. The mice were sacrificed 14 days
after the surgery. Alternatively, the mice were fed a high-fat
diet (HFD, D12492, Research Diets) for 16 weeks as previously
described (Xu et al., 2015). In the third model of renal fibrosis,
the mice were implanted subcutaneously a minipump (Alzet
2004) that chronically released Ang II (1 µg/kg/min) for 4 weeks.

Histology
Histological analyses were performed essentially as described (Liu
et al., 2018; Zhang et al., 2018b). Paraffin sections were stained
with hematoxylin and eosin (Sigma), picrosirius red (Sigma), or
Masson’s trichrome (Sigma) according to standard procedures.
Pictures were taken using an Olympus IX-70 microscope.
Quantifications were performed with Image Pro.

Cell Culture, Plasmids, Transient
Transfection, and Reporter Assay
Immortalized human renal tubular epithelial cells (HK-2, ATCC)
and HEK293 cells were maintained in DMEM supplemented
with 10% fetal bovine serum (FBS, Hyclone). Primary tubular
epithelial cells (Xu et al., 2015), primary podocytes (Murakami
et al., 2010), and primary renal fibroblast cells (Kunzel et al.,
2019)were isolated as previously described. HDAC11 expression
plasmids (Watanabe et al., 2014), HDAC11 promoter-luciferase
constructs (Voelter-Mahlknecht et al., 2005), and KLF15
promoter-luciferase constructs (Shao et al., 2018) have been
previously described. Small interfering RNAs were purchased
from Dhamarcon. Transient transfections were performed with
Lipofectamine 2000 (Invitrogen). Cells were harvested 48 h
after transfection and reporter activity was measured using
a luciferase reporter assay system (Promega) as previously
described (Yang et al., 2018).

Protein Extraction and Western Blot
Before harvesting, cells were washed twice with ice-cold PBS
buffer. Cell pellet was obtained by spinning in a refrigerated
centrifuge at 2,500 rpm for 10 min. Supernatant was discarded
and cells was lysed in ice-cold RIPA buffer (1xPBS, 0.1%
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SDS, 1% NP-40, 0.5% sodium deoxycholate) supplemented
with 100 µg/ml PMSF plus one protease inhibitor tablet
(Roche, Mannheim, Germany) per 10 ml RIPA buffer as
previously described (Li et al., 2018d; Yang et al., 2019a,b;
Zhang et al., 2019). Typically, 50–100 µg of proteins were
loaded and separated by 8% PAGE-SDS gel with all-blue protein
markers (Bio-Rad). Proteins were transferred to nitrocellulose
membranes (Bio-Rad) in a Mini-Trans-Blot Cell (Bio-Rad).
The membranes were blocked with 5% fat-free milk powder
in Tris-buffered saline at room temperature for half an hour
and then incubated with the following primary anybodies at
4◦C overnight: anti-CTGF (Proteintech, 23936-1), anti-HDAC11
(Abcam, ab166907), anti-α-SMA (Sigma, A5228), anti-KLF15
(Abcam, ab2647), anti-AP-2α (Abcam, ab52222), and anti-β-
actin (Sigma, A2228) antibodies.

RNA Isolation and Real-Time PCR
RNA was extracted with a commercial RNAprep purification
kit (Tiangen) as previously described (Shao et al., 2019;
Weng et al., 2019). First-strand synthesis was carried
out using a HiScript III RT SuperMix (Vazyme). Real-
time PCR reactions were performed on an ABI Prism
StepOne Plus system with a commercial Sybrgreen kit
(Vazyme) using the following primers: mouse Hdac11, 5′-
TTACAACCGCCACATCTACC-3′ and 5′-GACATTCCTC TC
CA CCTTCT C-3′; mouse Acta2, 5′-CTGAGCGTGGCTATT
CCTTC-3′ and reverse 5′-CTTCTGCATCCTGTCAGCAA-3′;
mouse Col1a1, 5′-GACGCCATCAAGGTCTACTG-3′ and 5′-AC
GGGAATCCA-TCGGTCA-3′; mouse Col1a2, 5′-GCCACCAT
TGATAGTCTCTCC-3′ and 5′-CACCCCAGCGAAGAACT
CATA-3′; mouse Col3a1, 5′-GGAACCTGGTTTCTTCTCACC-
3′ and 5′-AGGACTGACCAAGGTGGCT-3′; mouse Tgfb, 5′-GG
AGAGCCCTGGATACCAAC-3′ and 5′-CAACCCAGGTCCT
TCCTAAA-3′; mouse Klf15, 5′-CCCAATGCCGCCAAACC
TAT-3′ and 5′-GAGGTGGCTGCTCTTGGTGTACATC-3′;
mouse Ccl2, 5′-GAAGGAATGGGTCCAGACAT-3′ and 5′-ACG
GGTCAACTTCACATTCA-3′; mouse Il-1b, 5′-GCACTACAGG
CTCCGAGATGAAC-3′ and 5′-TTGTCGTTGCTTGGTTC
TCCTTGT-3′; mouse Il-6, 5′-CCAGCTATGAACTCCTTCTC-3′
and 5′-GCTTGTTCCTCACATCTCTC-3′; human HDAC11,
5′-ACCCAGACAGGAGGAACCATA-3′ and 5′-TGATGTCC
GCATAGGCACAG-3′; human COL1A1, 5′-AGGCGAACA
GGGCGACAGAG-3′ and 5′-GGCCAGGGAGACCGTTGAGT-
3′; human ACTA2, 5′-CATCCTCCCTTGAGAAGAGTTA-3′
and 5′-TACATAGTGGTGCCCCCTGATA-3′; human CTGF,
5′-GTTTGGCCCAGACCCAACT-3′ and 5′-GGAACA
GGCGCTCCACTCT-3′; human KLF15, 5′-AGCAAGGACTTG
GATGCCTG-3′ and 5′-AGGGCAGGTTCAAGTTGGAG-3′.

Chromatin Immunoprecipitation
Chromatin Immunoprecipitation (ChIP) assays were performed
essentially as described before (Fan et al., 2017, 2019; Li et al.,
2017, 2018a,b,c,e, 2019; Yu et al., 2017, 2018; Zeng et al., 2018;
Zhang et al., 2018a; Kong et al., 2019a,b; Li and Xu, 2019; Liu
et al., 2019a,b). In brief, chromatins were cross-linked with
1% formaldehyde for 15 min at room temperatures. Cells were
incubated in lysis buffer (150 mM NaCl, 25 mM Tris pH 7.5,

1% Triton X-100, 0.1% SDS, 0.5% deoxycholate) supplemented
with protease inhibitor tablet and PMSF. DNA was fragmented
into ∼500 bp pieces using a Diagenode Bioruptor sonicator. For
each ChIP reaction, 100 µg of protein were incubated at 4◦C
overnight with 2 µg of the following antibodies: anti-HDAC11
(Abcam, ab166907), anti-AP-2α (Abcam, ab52222), anti-acetyl
H3 (Millipore, 06-599), and anti-acetyl H4 (Millipore, 06-598).
For Re-ChIP, immune complexes were eluted with the elution
buffer (1% SDS, 100 mM NaCO3), diluted with the Re-ChIP
buffer (1% Triton X-100, 2 mM EDTA, 150 mM NaCl, 20 mM
Tris pH 8.1), and incubated with a second antibody of interest.
Precipitated DNA was amplified with the following primers:
KLF15 promoter #1, 5′-AGCGAGCTGCGGGCGGGCT-3′ and
5′-ACTCTCGGTCCGGCCGGC-3′; KLF15 promoter #2, 5′-AA
GCAAGGAGGTGGCT-3′ and 5′-AAGGCTCGCAGGAGGCT-
3′; KLF15 promoter #3, 5′-AAACCTCCTTAGTCCTG-3′
and 5′-AGTGTCAGATAAATCACTTG-3′; KLF15 promoter #4,
5′-AGCACCGTCAGCCCACGTG-3′ and 5′-AGTGTCAGATAA
ATCACTTG-3′; KLF15 promoter #5, 5′-AGACCTGCACT
GAGAC-3′ and 5′-AGAGGCTTTCTATTC-3′; GAPDH
promoter, 5′-GGGTTCCTATAAATACGGACTGC-3′ and
5′-CTGGCACTGCACAAGAAGA-3′.

Immunofluorescence Staining
For immunofluorescence staining, paraffin sections were
permeabilized with 0.1% Triton X-100 in PBS for 10 min and
then blocked with 5% BSA for 20 min at room temperature
followed by incubation with anti-CD3 (BD Biosciences, 1:500)
or anti-CD45 (BD Biosciences, 1:500) overnight. The nuclei were
counterstained with DAPI (Sigma). 3 slides were stained from
each individual mouse and ∼5 fields were counted per slide. The
data are presented as the relative number of positive cells/field.

Statistical Analysis
One-way ANOVA with post hoc Scheff’e analyses were performed
by SPSS software (IBM SPSS v18.0, Chicago, IL, United States). P
values less than 0.05 were considered statistically significant.

RESULTS

HDAC11 Is Up-Regulated by
Pro-fibrogenic Stimuli in vivo and in vitro
We first made an attempt to establish a relationship between
the expression levels of HDAC11 with renal fibrosis in both
animal models and cell models. In the first model, C57/BL6
mice were subjected to the unilateral ureteral obstruction (UUO)
procedure. Compared to the sham mice, the UUO mice displayed
up-regulation of HDAC11 mRNA paralleling elevation of α-
SMA, which correlates with the maturation of myofibroblasts,
and fibronectin, a component of the extracellular matrix, in the
kidneys (Figures 1A,B). In the second model, C57/BL6 mice were
fed with a high-fat diet for 16 weeks to induce renal fibrosis.
Quantitative PCR and Western blotting analyses revealed that
HDAC11 levels were much higher in the HFD-fed kidneys than
in the control-fed kidneys (Figures 1C,D). In the third model,
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FIGURE 1 | HDAC11 is up-regulated by pro-fibrogenic stimuli in vivo and in vitro. (A,B) C57/BL6 mice were subjected to the UUO procedure or the sham
procedure. The mice were sacrificed 2 weeks after the surgery and renal HDAC11 expression was examined by qPCR and Western blot analysis. N = 6 mice for
each group. (C,D) C57/BL6 mice were fed a high-fat diet (HFD) or a control diet for 16 weeks. Renal HDAC11 expression was examined by qPCR and Western blot
analysis. N = 6 mice for each group. (E,F) C57/BL6 mice were implanted with an Ang II minipump as described in section “Materials and Methods.” Renal HDAC11
expression was examined by qPCR and Western blot analysis. N = 6 mice for each group. (G,H) HK-2 cells were treated with or without Ang II (1 µM) and harvested
at indicated time points. HDAC11 expression was examined by qPCR and Western blot analysis.
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FIGURE 2 | Inhibition of HDAC11 by quisinostat attenuates renal fibrosis in mice. Renal fibrosis was induced in C57/BL6 mice by UUO. After the surgery, the mice
were injected with quisinostat or vehicle as described in section “Materials and Methods.” (A–E) Expression levels of Col1a1 (A), Col1a1 (B), Col3a1 (C), Acta2 (D),
and Tgfb (E) were examined by qPCR. (F,G) Paraffin sections were stained with picrosirius red and Masson’s trichrome. (H) Hydroxylproline levels. (I) Plasma BUN
levels. (J) Plasma creatinine levels. N = 7∼9 mice for each group.
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FIGURE 3 | HDAC11 mediates Ang II induced pro-fibrogenic response in HK-2 cells. (A,B) HK-2 cells were transfected with small interfering RNAs targeting
HDAC11 or scrambled siRNA (SCR) followed by treatment with Ang II (1 µM). Expression levels were examined by qPCR and Western blot analysis. (C,D) HK-2 cells
were treated with Ang II (1 µM) in the presence or absence of quisinostat (200 nM, 500 nM). Expression levels were examined by qPCR and Western blot analysis.
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FIGURE 4 | HDAC11 is essential for Ang II induced KLF15 repression. (A,B) Renal fibrosis was induced in C57/BL6 mice by UUO. After the surgery, the mice were
injected with quisinostat or vehicle as described in section “Materials and Methods.” Renal KLF15 expression was examined by qPCR and Western blot analysis.
(C,D) HK-2 cells were transfected with small interfering RNAs targeting HDAC11 or scrambled sIRNA (SCR) followed by treatment with Ang II (1 µM). KLF15
expression was examined by qPCR and Western blot analysis. (E,F) HK-2 cells were treated with Ang II (1 µM) in the presence or absence of quisinostat (200 nM,
500 nM). KLF15 expression was examined by qPCR and Western blot analysis.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 April 2020 | Volume 8 | Article 235

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00235 April 15, 2020 Time: 19:7 # 8

Mao et al. HDAC11 Regulates KLF15 Transcription

FIGURE 5 | HDAC11 interacts with AP-2α to repress KLF15 transcription. (A) HK-2 cells were treated with Ang II (1 µM). The cells were harvested at indicated
time points and ChIP assays were performed with an anti-HDAC11 antibody or IgG. (B,C) HK-2 cells were transfected with siRNA targeting AP-2α or SCR followed by

(Continued)
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FIGURE 5 | Continued
treatment with Ang II (1 µM) for 48 h. ChIP assays were performed with an anti-HDAC11 antibody. (D) HK-2 cells were treated with Ang II (1 µM) for 48 h. Nuclear
proteins were extracted and immunoprecipitation was performed with indicated antibodies. (E) HK-2 cells were treated with or without Ang II (1 µM) for 48 h.
Re-ChIP assay was performed with indicated antibodies. (F) Wild type or mutant KLF15 promoter-luciferase construct was transfected into HK-2 cells with or
without HDAC11. Luciferase activities were normalized by GFP fluorescence and protein concentration.

an Ang II-infusion minipump was implanted subcutaneously in
C57/BL6 mice for 4 weeks to induce renal fibrosis. Again, it was
observed that HDAC11 expression levels were augmented in the
Ang II-infused fibrotic kidneys as opposed to the saline-infused
kidneys (Figures 1E,F). We also determined whether HDAC11
up-regulation in the fibrotic kidneys occurred universally or only
in specific cell compartments. To this end, primary renal tubular
epithelial cells, podocytes, and fibroblasts were isolated from
the UUO mice or the sham mice. Of interest, HDAC11 was
only up-regulated in the tubular epithelial cells isolated from the
UUO mice compared to the sham mice but not the podocytes
or the fibroblast cells (Supplementary Figure S1). Therefore we
focused on the tubular epithelial cells to investigate the role of
HDAC11 hereafter.

Angiotensin II (Ang II) has been reported to play a key
role promoting renal fibrosis in model animals (Chevalier, 2006;
Pandey et al., 2016; Tikoo et al., 2016; Xu et al., 2017). Next,
cultured human renal tubular epithelial cells (HK-2) were treated
with Ang II. HDAC11 was gradually up-regulated by Ang II
stimulation with a similar kinetics as α-SMA: there was a small
increase in HDAC11 expression 24 h after the addition of Ang
II; HDAC11 expression continued to rise at 48h and declined
slightly at 72 h (Figures 1G,H). In order to determine whether
Ang II could directly stimulate HDAC11 transcription, a human
HDAC11 promoter-luciferase construct was transfected into HK-
2 cells. Ang II treatment significantly up-regulated the HDAC11
promoter activity (Supplementary Figure S2); notably, mutation
of a conserved NF-κB site site within the HDAC11 promoter
abrogated induction by Ang II indicating that NF-κB could
potentially mediate the effect of Ang II treatment on HDAC11
transcription. Combined, these data suggest that there might be
a positive correlation between HDAC11 and renal fibrosis both
in vivo and in vitro.

Inhibition of HDAC11 by Quisinostat
Attenuates Renal Fibrosis in Mice
Based on the observation that HDAC11 was up-regulated
in the fibrotic kidneys, we sought to evaluate the effect of
pharmaceutical inhibition of HDAC11 on renal fibrosis in
the UUO model. To this end, a small-molecule HDAC11
inhibitor quisinostat (Zhou et al., 2017) was administered via
peritoneal injection twice a week after the UUO procedure.
Quantitative PCR showed that HDAC11 inhibition by quisinostat
suppressed the induction of pro-fibrogenic genes such as α-
SMA (Acta2, Figure 2A), collagen type I (Col1a1/Col1a2,
Figures 2B,C), collagen type III (Col1a3, Figure 2D), and
transforming growth factor (Tgfb, Figure 2E) in the kidneys.
Picrosirius red staining (Figure 2F) and Masson’s trichrome
staining (Figure 2G) confirmed that renal fibrosis was less
extensive in the mice injected with quisinostat than the mice

injected with vehicle. Quantification of hydroxylproline levels,
as a measurement of total collagen synthesis, in the kidneys
showed that administration of quisinostat attenuated renal
fibrosis (Figure 2H). Of note, HDAC11 inhibition did not alter
UUO-induced impairment of glomerular filtration as evidenced
by comparable plasma BUN levels (Figure 2I) and creatinine
levels (Figure 2J). We also observed that renal inflammation,
as measured by infiltration of CD3+ lymphocytes and CD45+
leukocytes as well as expression levels of pro-inflammatory
mediators in the kidneys, was significantly dampened by
quisinostat administration (Supplementary Figure S3).

HDAC11 Mediates Ang II Induced
Pro-fibrogenic Response in HK-2 Cells
We next examined the effect of HDAC11 deletion or inhibition
on Ang II induced pro-fibrogenic response in HK-2 cells.
Exposure of HK-2 cells markedly stimulated the expression
of collagen type I, α-SMA, and CTGF as expected; HDAC11
knockdown by two separate pairs of siRNAs abrogated
the induction of these pro-fibrogenic genes (Figures 3A,B).
Alternatively, co-treatment with quisinostat, the HDAC11
inhibitor, suppressed Ang II-induced pro-fibrogenic response in
a dose-dependent manner (Figures 3C,D).

HDAC11 Is Essential for Ang II Induced
KLF15 Repression
Kruppel-like factor 15 (KLF15) is a transcription factor
that has been shown to suppress UUO (Gu et al., 2017a)
and Ang II (Gu et al., 2017b) induced renal fibrosis in
mice. Of note, KLF15 expression was down-regulated in
the UUO kidneys compared to the sham kidneys, which
was alleviated by quisinostat administration (Figures 4A,B).
We then hypothesized that HDAC11 might mediate Ang II
induced repression of KLF15 in RTECs. Ang II treatment led
to a reduction of KLF15 mRNA (Figure 4C) and protein
(Figure 4D) levels; HDAC11 knockdown largely normalized
KLF15 expression. Similarly, HDAC11 inhibition by quisinostat
dose-dependently antagonized repression of KLF15 expression
by Ang II treatment (Figures 4E,F).

To determine the region within the KLF15 promoter to
which HDAC11 might bind, ChIP assays were performed with
an anti-HDAC11 antibody or a control IgG. Precipitated DNA
was amplified by primers that span ∼1.5 kb of the proximal
KLF15 promoter. As shown in Figure 5A, Ang II treatment
specifically stimulated the recruitment of HDAC11 to a region
within the proximal KLF15 promoter (−152/−416) that contains
a binding site for the transcriptional repressor AP-2α. Small
interfering RNA targeting AP-2a was used to deplete endogenous
AP-2α to test the possibility that AP-2α might be responsible for
recruiting HDAC11 to the KLF15 promoter (Figure 5B). ChIP
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FIGURE 6 | HDAC11 promotes pro-fibrogenic response through KLF15 in HK-2 cells. (A) HK-2 cells were transfected with small interfering RNAs targeting HDAC11
or scrambled sIRNA (SCR) followed by treatment with Ang II (1 µM). ChIP assays were performed with anti-acetyl H3 and anti-acetyl H4 antibodies. (B) HK-2
cells were treated with Ang II (1 µM) in the presence or absence of quisinostat (500 nM). ChIP assays were performed with anti-acetyl H3 and anti-acetyl H4 antibodies.

(Continued)
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FIGURE 6 | Continued
(C,D) HK-2 cells were transfected with small interfering RNAs targeting HDAC11, KLF15, or scrambled siRNA (SCR) followed by treatment with Ang II (1 µM).
Expression levels were examined by qPCR and Western blot analysis. (E,F) HK-2 cells were transfected with small interfering RNAs targeting KLF15, or scrambled
siRNA (SCR) followed by treatment with Ang II (1 µM) and/or quisinostat (500 nM). Expression levels were examined by qPCR and Western blot analysis. (G) A
schematic model.

assays revealed that Ang II treatment significantly augmented
the occupancies of both AP-2α and HDAC11 on the KLF15
promoter; AP-2α knockdown, however, abolished the binding
of both (Figure 5C). Additional experiments were performed
to confirm the interaction between HDAC11 and AP-2α. An
anti-AP-2α antibody simultaneously precipitated both AP-2α

and HDAC11 from nuclear lysates extracted from HK-2 cells,
suggesting that AP-2α and HDAC11 may form a complex
(Figure 5D). Further, Re-ChIP assay showed that Ang II
treatment strongly enhanced the interaction between AP-2α and
HDAC11 on the KLF15 promoter (Figure 5E). Functionally,
over-expression of HDAC11 dose-dependently repressed the
KLF15 promoter activity, which was blunted by the mutation of
the AP-2α site (Figure 5F). Together, these data seem to support
a role for the AP-2α-HDAC11 complex in mediating Ang II
induced KLF15 repression in tubular epithelial cells.

HDAC11 Promotes Pro-fibrogenic
Response Through KLF15 in HK-2 Cells
Histone deacetylase 11 is an atypical (class IV) histone
deacetylase. We examined the effect of HDAC1
depletion/inhibition on hisone acetylation surrounding the
KLF15 promoter. When HK-2 cells were exposed to Ang
II, there was a simultaneous loss of acetyl H3 and acetyl
H4 from the KLF15 promoter, but not from the GAPDH
promoter, consistent with repression of KLF15 transcription
(Figures 6A,B). HDAC11 depletion by siRNA (Figure 6A)
or HDAC11 inhibition by quisinostat (Figure 6B) largely
restored histone acetylation surrounding the KLF15 promoter,
indicating that HDAC11 likely contributes to KLF15 repression
by modulating histone acetylation levels. We then asked whether
the ability of HDAC11 to promote Ang II induced pro-fibrogenic
response relies on KLF15. As shown in Figures 6C,D, whereas
HDAC11 knockdown suppressed induction of pro-fibrogenic
gene expression by Ang II, simultaneous depletion of HDAC11
and KLF15 restored the pro-fibrogenic response induced by
Ang II. Similarly, the loss of KLF15 antagonized the effect
of quisinostat and enabled Ang II to promote fibrogenesis in
HK-2 cells (Figures 6E,F). We therefore conclude that KLF15
may be the primary target of HDAC11 during Ang II induced
pro-fibrogenic response in tubular epithelial cells.

DISCUSSION

Epigenetic regulation of renal fibrosis is one of the most
actively investigated areas in deciphering the pathogenesis of
and finding the solutions for end-stage renal diseases (Tampe
and Zeisberg, 2014; Kato and Natarajan, 2019). Here we report
that the histone deacetylase HDAC11 promotes renal fibrosis

by epigenetically repressing the transcription of KLF15, an
anti-fibrogenic factor. Inhibition of HDAC11 with a small-
molecule compound quisinostat attenuates UUO-induced renal
fibrosis in mice. Therefore, our data provide the proof-of-
concept for targeting HDAC11 as a potential therapeutic solution
against renal fibrosis. However, there are a few caveats that
deserve further attention regarding the current working model
(Figure 6G). First, we focused our investigation on renal tubular
epithelial cells. It has been reported that other cell types,
including fibroblasts, endothelial cells, and myeloid cells, can
contribute to renal fibrosis (Zeisberg and Neilson, 2010; LeBleu
et al., 2013; Mack and Yanagita, 2015); relatively little is known
regarding the role of HDAC11 in these cells. HDAC11 plays
a regulatory role in myeloid cells (Yanginlar and Logie, 2018).
For instance, Wang et al. (2011) have previously reported that
HDAC11 represses the transcription of IL-10 in macrophages.
Administration of IL-10, coincidently, can suppress renal fibrosis
in rats subjected to 5/6 nephrectomy (Mu et al., 2005). In
addition, HDAC11 can modulate the function of myeloid
derived suppressor cells (MDSCs), a heterogeneous population
of immune cells specialized in the suppression of T lymphocyte
function (Sahakian et al., 2015). Hsieh et al. (2018) have shown
that administration of MDSCs ameliorates renal fibrosis in
diabetic mice. These observations collectively appear to suggest
that HDAC11 may contribute to renal fibrosis by regulating the
immune microenvironment in the kidneys. Second, HDACs, in
addition to removing the acetyl group from histones, can also
de-acetylate non-histone proteins. The class III HDAC SIRT1
mitigates renal fibrosis, in part, by deacetylating and deactivating
SMAD3, a key transcription factor involved in fibrogenesis (Li
et al., 2010). HDAC1 and HDAC2 can promote the deacetylation
of STAT1, which prevents its binding to and inhibition of NF-
κB allowing the latter to stimulate a pro-fibrogenic transcription
program in mesangial cells (Kumar et al., 2017). The acetylation
status and thus activity of STAT3, a pro-fibrogenic transcription
factor, can also be modulated by HDACs during renal fibrosis (Ni
et al., 2014). Since specific non-histone substrates for HDAC11
have yet to be identified, profiling the HDAC11 interactome in
the kidneys may provide novel insight into its mode of action in
the context of renal fibrosis.

There is growing body of evidence that supports an anti-
fibrotic role of KLF15 in the kidneys. Mei and colleagues
were among the first to report that KLF15 levels were
decreased in the kidneys of rats in a model of chronic
renal disease (CKD) and that KLF15 deletion sensitized the
mice to the development of renal fibrosis (Gao et al., 2011;
Gu et al., 2017a). Mechanistically, KLF15 may regulate renal
fibrosis by suppressing the ERK/MAPK, the JNK/MAPK, and
the Wnt/β-catenin pathways (Gao et al., 2013; Gu et al.,
2017a). More recently, Lu et al. have shown that KLF15
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may regulate renal fibrosis by modulating activity of the TGF-β
downstream mediators SMAD2/3 via its trans-activation domain
(TAD) (Lu et al., 2019). Although KLF15 levels can be down-
regulated by a host of pro-fibrotic stimuli in the kidneys the
underlying mechanism remains obscure. We show here that AP-
2α recruits HDAC11 to repress KLF15 transcription in tubular
epithelial cells. Although a vast majority of the studies conducted
so far have portrayed AP-2α as a regulator of lineage specification
during embryogenesis and cancer development and progression
in adults (Eckert et al., 2005; Kolat et al., 2019), there is indication
that AP-2α may play a key role in cellular fibrogenic response.
AP-2α can promote epithelial-mesenchymal transition (EMT),
a process critical to tissue fibrosis, by up-regulating TGF-β
expression (Zhang et al., 2017) and by forming a complex with
ZEB1/2, the E-box binding transcriptional regulators of EMT
(Dimitrova et al., 2017). Ross et al. (2019) have recently reported
that deletion of TFAP2A (the gene encoding AP-2α) significantly
attenuates the TGF-β induced maturation of myofibroblasts
although the underlying mechanism is unclear. Traditionally,
transcription factors are notorious to target in drug development.
Recent successes in “drugging” such transcription factors as p53
(Khoo et al., 2014) and c-Myc (Dang et al., 2017) may shed some
light on this issue should further evidence present AP-2α and/or
KLF15 as a desirable target in the intervention of renal fibrosis.

There are several limitations of the present study that
necessitate cautious interpretation of the data within. First, we
relied exclusively on quisinostat to evaluate the effect of HDAC11
on renal fibrosis in vivo. Quisinostat is not a strictly specific
HDAC11 inhibitor because it can, with equivalent potency,
target several other HDACs that have been demonstrated to
play regulatory roles in renal fibrosis (Arts et al., 2009).
Therefore, it remains uncertain whether the anti-fibrotic effects of
quisinostat administration are achieved by HDAC11 inhibition.
Future studies employing tissue-specific HDAC11 knockout
mice (Bagchi et al., 2018) will hopefully provide solid genetic
evidence to ascertain the role of HDAC11 in renal fibrosis.
Second, the in vitro data were based on a single cell model
(Ang II treated human tubular epithelial cells), which makes
it difficult to reconcile them with the in vivo data especially
in the light of the recent finding that tubular epithelial cells
derived myofibroblasts only constitute a small fraction of the
overall population of myofibroblasts in the fibrotic kidneys in
mice (LeBleu et al., 2013). Therefore the issue as to whether

HDAC11-driven synthesis of pro-fibrogenic molecules in tubular
epithelial cells in response to Ang II treatment plays a significant
role in the pathogenesis of renal fibrosis in vivo needs to be
revisited in the future.

In summary, our data suggest that an AP-2α-HDAC11-KLF15
axis is involved in the pathogenesis of renal fibrosis. Small-
molecule inhibitors that target this axis may be considered
as a potential therapeutic strategy for the treatment of end-
stage renal diseases.
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