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Abstract
Apples are rich sources of selectedmicronutrients (e.g., iron, zinc, vitaminsC and
E) and polyphenols (e.g., procyanidins, phloridzin, 5′-caffeoylquinic acid) that
can help in mitigating micronutrient deficiencies (MNDs) and chronic diseases.
This review provides an up-to-date overview of the significant bioactive com-
pounds in apples together with their reported pharmacological actions against
chronic diseases such as diabetes, cancer, and cardiovascular diseases. For con-
sumers to fully gain these health benefits, it is important to ensure an all-year-
round supply of highly nutritious and good-quality apples. Therefore, after har-
vest, the physicochemical and nutritional quality attributes of apples are main-
tained by applying various postharvest treatments and hurdle techniques. The
impact of these postharvest practices on the safety of apples during storage is
also highlighted. This review emphasizes that advancements in postharvestman-
agement strategies that extend the storage life of apples should be optimized to
better preserve the bioactive components crucial to daily dietary needs and this
can help improve the overall health of consumers.
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1 INTRODUCTION

The consumption of apple (Malus domestica Borkh. Fam-
ily: Rosaceae), which is one of the most grown fruits glob-
ally, has been encouraged since time immemorial due
to the sheer abundance of nutrients and bioactive com-
pounds present therein. The beneficial components in
apples vary in the type and amount that can be found
within the cultivars or varieties from different countries,
regions, or continents; and differ in the composition in
parts (fruit, flesh, peel, leaf, seed, or root) (Kalinowska
et al., 2014). The availability of these nutrients and bioac-
tives in apple makes it one of the most sought-after fruits
globally, with useful applications in the production of
juices, beverages, wines, ciders, vinegar, and other food
products of immense commercial value. The apple indus-
try is estimated at be worth $10 billion globally (Candraw-
inata et al., 2013).
This huge global demand for the apple fruit has sparked

interest in discovering newer ways of establishing con-
stant supply with most of the research focus placed on
extending shelf-life, possibly, at the expense of its nutri-
tive values. For example, over 65,700 articles on apples
have been published in the past 50 years and indexed
on the largest-known, peer-reviewed scientific database—
Scopus R©. Using the keywords; “postharvest” AND “treat-
ment” AND “storage” AND “apples” during the literature
search, the number of research outputs retrieved was 470
(Figure 1, viewed 14May 2021). These articles explored and
developed postharvest strategies for the storage of apples.
Most of these articles (88.7%) were published in the last
two decades, and out of the total, only 2.7%, 1.6%, and
1.2% within this subject area accounted for apple studies
linked to medicine, veterinary, and nursing, respectively.
Exceptional progress has been made in the development
of postharvest tools at a commercial scale to maintain the
freshness and safety of apples and other fresh produce
(Mahajan et al., 2014). While the advances in this area of
apple research are commendable and must be sustained,
these are often applied in combination with appropriate
storage management strategies to extend storage or shelf-
life with often a limited focus on bioactive components of
apples.
Micronutrient deficiencies (MNDs) “hidden hunger” is

a major global challenge with an enormous impact on
the health of the most vulnerable within the population.
There is a heightened global consumer consciousness of
the full benefits of dietary interventions of fruit and veg-
etables on human health and the impact of hidden hunger.
Therefore, this article presents an overview of the bioactive
compounds of apples and their pharmacological effects
on chronic diseases. In addition, the article assessed the
recent postharvest technological advances in the preserva-

tion of apples that are crucial in maintaining fruit qual-
ity during long-term storage. Furthermore, this review
presents future direction in apple research to ensure that
the medicinal values can be fully harnessed and “an apple
a day can truly keep the doctor away.”

2 BIOACTIVE COMPOUNDS IN
APPLES

Essential or bioactive compounds in apples include
macronutrients, vitamins, minerals, elements, flavanols,
hydroxycinnamic acids, flavonols, dihydrochalcones,
anthocyanins, and others. Numerous studies over the last
three decades have shown that these compounds in apples
exhibit significant biological effects on improving human
health. Thus, the subsequent subsections discuss the role
played by each of these compounds on consumer health.

2.1 Nutrients

The nutrients in apples include macronutrients (e.g., sug-
ars, fibers, pectin, fat, protein), organic acids (e.g., malic
acid), vitamins (e.g., C, E, B6), minerals (e.g., potas-
sium, calcium, nitrogen, magnesium), and trace elements
(e.g., zinc, iron, copper, manganese) (Skinner et al., 2018).
These not only supply energy but also participate in many
important processes in the body such as growth, bone
health, immune functions, and so on. For example, malic,
citric, and tartaric acids help the liver in the digestion
processes in the body (Pal et al., 2020). The content and
distribution of the sugars (mainly fructose and sucrose),
together with the organic acids, are primarily responsible
for the fruit’s taste and appeal to consumers and possibly
account for the major cultivar to cultivar or variety to vari-
ety differences (Ma et al., 2015). In terms of the dietary fiber
content in apples, the fresh whole fruit was found to be
composed of approximately between 2% and 3% total fiber.
The insoluble fiber represents about 70%while the remain-
der is soluble, largely pectin (Li et al., 2002; Skinner et al.,
2018). Diets rich in high fiber have been shown to con-
fer immense health benefits such as gastrointestinal tract
wellbeing and reduced mortality from cancers and cardio-
vascular diseases (Kim & Je, 2016; Myhrstad et al., 2020).
The vitamins and minerals in apples also provide essen-

tial micronutrients that aid the normal functions of biolog-
ical and biochemical reactions in the body. For example,
vitamins C and E in apples contribute to the total antiox-
idant potential widely attributed to the fruit by donating
single hydrogen equivalents to free radicals rendering
them stable and leading to their eventual detoxification.
The vitamins also participate in the conversion of the
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F IGURE 1 Summary of scopus search on the number of publications linked to “Postharvest treatment and storage of apples” based on
the analysis of 470 documents. Source: Scopus, 2021

oxidized forms of other antioxidants back to their active
reduced states (Garcia-Closas et al., 2004;Njus et al., 2020).
Potassium and calciumminerals usually present in quanti-
ties of about 1.05–1.09 and 0.05–0.06 mg/g, respectively, in
fresh apples are essential in promoting bonehealth and can
reduce the risk of developing osteoporosis (Skinner et al.,
2018; Yaegashi et al., 2008). Besides, the accumulation of
calcium in apples also helps in the firming of the fruit and
protection of its cell wall from fungal infections (Aghdam
et al., 2012). The importance of the trace mineral, zinc, in
normal body growth, development, immune system, and
as a cofactor for many enzyme-catalyzed metabolic reac-
tions has been well reviewed in the literature (Roohani
et al., 2013). With zinc deficiency still prevalent in chil-
dren in low-middle-income countries (Gupta et al., 2020),
the daily consumption of apples that contain about 3.6–
4.4 µg zinc per 100 g fresh whole apple or 1400 µg zinc
per 100 g apple pomace (Skinner et al., 2018) can go a long
way in mitigating the deficiency. It was recently reported
that the concentration of zinc in wild apples may be more
than twice that obtained in cultivated apples indicating the
impact of selection on zinc accumulation in the domesti-
cation process (Liao et al., 2017).

2.2 Polyphenols

Apples contain a variety of compounds with health-
promoting attributes but those belonging to the polyphe-
nol class of phytochemicals are predominant and are par-
ticularly known for conferring antioxidant quality to the
fruit. The polyphenol composition in the different parts
of some common apple cultivars and antioxidant values
are summarized in Table 1. Polyphenols, with thousands

of member compounds, represent one of the most diverse
groups of compounds. The basic polyphenols are struc-
turally composed of phenols that are attached to carbon
backbones (C1-C6 to C3–C6 and C6-C3–C6) or nitrogen.
Some other polyphenol chemical structures are referred to
as atypical since they exhibit complexity in their structures
and thus are intricate to be assigned to a single class (Tsao,
2010).
In apples, polyphenol subclasses—flavanols, hydrox-

ycinnamic acids, flavonols, dihydrochalcones, and antho-
cyanins are notable (Kschonsek et al., 2018; Rana &
Bhushan, 2016; Wojdylo et al., 2008). These chemical
structures (Figure 2) have been related to the mul-
tifaceted bioactivities of apples in many studies. Fla-
vanol monomers (e.g., catechin and epicatechin) and
oligomers—proanthocyanidins (e.g., procyanidins A and
B)—are flavonoid polyphenols with the C6–C3–C6 struc-
tural motif and have their C3 heterocyclic (O-containing)
ring hydroxylated (Strat et al., 2016). In whole apples,
the total flavanol concentration ranged from 24 to
105 mg/100 g, consisting majorly of about ≈1.3 mg/100 g
catechin, 7.5–8.7 mg/100 g epicatechin, 11–14.6 mg/100 g
procyanidin dimer, and 84.8 mg/100 g proanthocyanidin
polymers (Bondonno et al., 2017).
Furthermore, phenolic acids in apples are mainly rep-

resented in the form of hydroxycinnamic acids and the
low-occurring hydroxylbenzoic acids such as gentisic and
syringic acid. Hydroxycinnamic acids are so-named due
to their derivation from cinnamic acid and are often
esterified to quinic acids or glucose in foods (Kumar &
Goel, 2019). Notable examples include 5-caffeoylquinic
acid, 4-p-coumaroylquinic acid, and 5-p-coumaroylquinic
acid which are present in approximately 13.4, 2.3, and
1.1mg/100 g ratio, respectively, in whole apples (Bondonno
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TABLE 1 Total polyphenol concentrations and antioxidant values of some common apple cultivars
#Total polyphenol concentration (mg GAE/100 g) *Antioxidant activity (mmol /100 g)

Apple
cultivars Peel Flesh/pulp Seed

†Whole
fruit ORAC: TE

FRAP: Vit.
C E TEAC: TE Referenc

‘Granny
Smith’

303.8 ± 5.9 31.2 ± 1.0 NA 120.0 ± 1.4 3.4 ± 0.7 0.9 ± 0.0 0.5 ± 0.0 (Drogoudi &
Pantelidis, 2011;
Fu et al., 2011;
Rautenbach &
Venter, 2010;
Ruiz-Torralba et al.,
2018)

‘Starking’ 6511.0 ±
360.0

720.0 ± 80.0 760.0 ± 87.0 NA 3.5 ± 0.7 0.7 ± 0.0 33.2 ± 1.1 b (Almeida et al., 2017;
Rautenbach &
Venter, 2010;
Valavanidis et al.,
2009; Xu et al., 2016)

‘Golden
Delicious’

304.7 ± 3.7 128.3 ± 4.5 622.0 ± 0.5 197 ± 4.9 2.5 ± 0.9 0.6 ± 0.0 0.5 ± 0.0 (Fu et al., 2011;
Kschonsek et al.,
2018; Rautenbach &
Venter, 2010;
Ruiz-Torralba et al.,
2018; Senica et al.,
2019; Vieira et al.,
2011)

‘Jonagold’ 416.9 ± 37.8 12.0 ± 1.0 NA 867.7 ± 105.5 11.2 ± 1.9 0.5 ± 0.0 12.4 ± 1.3 (Groth et al., 2020;
Kschonsek et al.,
2018; Valavanidis
et al., 2009; Wojdylo
et al., 2008)

‘Fuji’ 499.2 ± 5.5 137.5 ± 3.6 820.0 ± 99.5 114.7 ± 0.0 NA NA 35.7 ± 1.6 b (Vieira et al., 2011;
Wojdylo et al., 2008;
Xu et al., 2016)

‘Red
delicious’

1187.0 ± 82.0 189.0 ± 0.3 NA 149.5 ± 9.1 3.9 ± 0.6 0.9 ± 0.0 0.5 ± 0.0 (Fu et al., 2011;
Henríquez et al.,
2010; Rautenbach &
Venter, 2010;
Ruiz-Torralba et al.,
2018)

‘Pink Lady’ 580.0 ± 20.5 120.0 ± 0.5 NA 183.0 ± 0.7 22.2 ± 3.0 a NA NA (Henríquez et al.,
2010; Li et al., 2020)

Note: Data are expressed as means (N = 3-6) ± standard deviation or standard error;
Abbreviations: GAE – Gallic acid equivalents; TE – Trolox equivalents; Vit – Vitamin; NA – Not available.
#Total polyphenol concentration was carried out on apple samples using the Folin–Ciocalteu method but different extraction protocols may have been employed.
*Antioxidant activity was conducted using the whole apple fruit extracts except when stated otherwise.
†(flesh + peel).
Symbols a and b refer to when pomace and seed apple samples, respectively, were used for the analysis.

et al., 2017). Quercetin and its glycosides are the pri-
mary flavonols found in apples occurring in about 3.7–
3.9 mg/100 g edible portion amounts and are typical of the
3-hydroxyflavone structural backbone (D’Andrea, 2015).
Quercetin glycoside, rutin, containing the disaccharide
rutinose, is one of the most studied and pharmacologically
active in apples (Latos-Brozio & Masek, 2019).
Dihydrochalcones (notably, phloretin and phloridzin)

structurally comprise the C6–C3–C6 backbone bicyclic

flavonoids but without the heterocyclic C ring and the α–β
double bond (Calliste et al., 2001). Phloretin and phloridzin
are present in whole apple fruit at a concentration of 2.6
and 2.7 mg/100 g, respectively, with the latter often used
as a marker to distinguish apples from other adulterants
since it ismostly unique to the Rosaceae family (Bondonno
et al., 2017). The presence of the dihydroxyacetophenone
pharmacophore in phloretin also confers potent antiox-
idant qualities (Rana & Bhushan, 2016). Anthocyanins
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F IGURE 2 Chemical structures of polyphenols related to the multifaceted bioactivities of apples in many studies. Sources: Wojdylo et al.
(2008), Rana and Bhushan (2016), and Kschonsek et al. (2018)

structures contain the anthocyanidin core bound to several
glycosidic moieties at the C3, C5, or C7 positions. They are
derivatives of 2-phenylbenzopyrylium salts but with many
attached hydroxyl and methoxy groups (Smeriglio et al.,
2016) andmay be responsible for the bright colors (red, pur-
ple) of apples. The peels of red-fleshed apple varieties were
reported to contain total anthocyanin content measured
as cyanidin 3-glucoside equivalents (29.5–175.8 mg/100 g
fresh weight) that is more than the white-fleshed varieties
(1.4–30 mg/100 g fresh weight) and may also account for
the higher antioxidant capacity values obtained in the
study (Wang et al., 2015).

3 PHARMACOLOGICAL EFFECTS OF
APPLE CONSTITUENTS AND
POTENTIALS IN CHRONIC DISEASE
PREVENTION

It is often said “an apple a day, keeps the doctor away”
due to the numerous health benefits popularly associated
with the ingestion of the fruit. However, these benefits
have mostly been proven in in vitro, in vivo experiments
as well as a few clinical trials. Many observational stud-

ies have also revealed positive correlations between apple
intake and lower risk of developing many chronic diseases
or dying from them (Bondonno et al., 2017).
Therefore, this section elucidates the major underly-

ing biological effects that have been attributed to the
compounds present in apples. The subsections primarily
focus on the activities of these compounds in modulating
oxidative stress, inflammation, and gastrointestinal tract
(GIT) flora for health benefits. In addition, the subsec-
tion highlights the recent scientific evidence on the poten-
tial of apple supplementation against selected chronic dis-
eases such as diabetes, obesity, cancer, and cardiovascular
diseases.

3.1 Antioxidant properties of apples

Oxidative stress is implicated mostly in the develop-
ment of many chronic diseases including diabetes, obesity,
cancer, hypertension, and cardiovascular diseases (Egea
et al., 2017). The occurrence of oxidative stress is a con-
sequence of the inability of cells to regulate the pro-
duction and utilization of cellular reactive oxygen (or
nitrogen) species (ROS). The process of ROS generation
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F IGURE 3 The annotation of sources, enzymes, and minerals (A), and cellular processes for the generation of reactive oxygen species
(ROS) (B)

—either endogenously in normal metabolism and inmito-
chondria or exogenously from exposure to xenobiotics and
the environment—is usually tightly controlled by inher-
ent cellular antioxidants that act by different mechanisms
and at various stages to maintain the cellular redox home-
ostasis (Figure 3). This process involves enzymes, pro-
teins, vitamins, carotenoids, polyphenols, and minerals as
presented (Anwar et al., 2018; Nimse & Pal, 2015). Any
compromise in the amount or actions of these antiox-
idants allows the uncontrolled overproduction of ROS,
which leads to the onset or propagation of chronic diseases
via many oxidative pathways. These activities have been
reviewed comprehensively (Pisoschi et al., 2021; Zuo et al.,
2019) and would not be the focus of this article. To sum-
marize, three different steps of antioxidant actions in the
regulation of ROS activities have been described in the lit-
erature. The first action involves preventing or suppressing
the formation of excess ROS, for example, the superoxide
dismutase (SOD) enzyme converts intracellular superox-
ide anions to hydrogen peroxide, which is in turn con-
verted to water by catalase (CAT) or glutathione peroxi-
dase (GPx) (Nimse & Pal, 2015). Second is the direct scav-
enging of excess ROS already produced thereby terminat-
ing oxidative chain propagations. Vitamins C and E and
reduced glutathione are notable examples of antioxidants
employing this mechanism (Oroian & Escriche, 2015). The
third level of action involves the repairing mechanisms
that ensure the removal of ROS-mediated damaged cellu-
lar macromolecules by de novo antioxidants such as prote-
olytic and DNA-repair enzymes (Oyenihi et al., 2014).
The supplementation with exogenous antioxidants in

the attempt to complement the capacity of endogenous
antioxidants and to compensate for any depletion in their

amounts or functions is a widespread strategy to boost
the overall cellular antioxidant defense system. Dietary
intake through the consumption of fruits, vegetables,
and herbs containing antioxidants (notably; polyphenols,
carotenoids, and vitamins) remains invaluable sources for
such exogenous supplementation. For example, the daily
dietary intake of apples (2 ‘Fuji’ weighing∼360 g) for 7 days
was shown to increase SOD and GPx enzymes in the blood
of hemodialysis patients (Giaretta et al., 2019). Apples con-
tain high amounts of polyphenols and have been singled
out as the major contributor to their antioxidant qualities
due to positive correlations obtained between polyphenol
concentrations and antioxidant values (Zhao et al., 2019).
Polyphenols consist of diverse groups of antioxidants,
which operate at different levels of antioxidant actions that
are linked to their chemical structures. They possess aro-
matic rings, a highly conjugated system, and many free
hydroxyl groups; features that are integral for the dona-
tion of electrons or hydrogen atoms to neutralize ROS and
to chelate oxidative metals via different postulated mecha-
nisms (Olszowy, 2019; Zhang & Tsao, 2016). Furthermore,
polyphenol supplementation has been reported to also
improve the activities of SOD, CAT, GPx enzymes through
the induction of the nuclear factor erythroid-related factor-
2 (Nrf2) upon signaling by ROS (Zhang & Tsao, 2016).

3.2 Modulation of the immune
system/inflammation by apples

Inflammation and oxidative stress are inseparable part-
ners since they exert their cellular effects through intercon-
nected molecular pathways designed to propagate mutual
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signal cascades. However, excess activation of the two
phenomena in concert can accelerate the development
or exacerbation of chronic diseases as has been demon-
strated in accelerated aging (Petersen & Smith, 2016),
arthritis (Marchev et al., 2017), type 2 diabetes, obesity
(Rains & Jain, 2011), cancer (Piotrowski et al., 2020), and
cardiovascular diseases (Wenzel et al., 2017). Inflamma-
tory cells, when signaled, mostly carry out their cellu-
lar functions through ROS-mediated pathways. For exam-
ple, macrophages have been shown to defend the cell
from invaders via the generation of ROS (Ahmed et al.,
2017). Chronic inflammation characterized by excess pro-
inflammatory cytokines, chemokines, and prostaglandins
is facilitated through the continuous overproduction of
oxidative stress as well as the inhibition of antioxidant
defense systems; and is hindered upon the activation of
the antioxidant transcription factor—Nrf2. In the same
vein, oxidative stress increases inflammation by stimu-
lating stress signals, notably extracellular signal-regulated
kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38
pathways, as well as activating NF-κB (Ahmed et al., 2017).
The two partners essentially feed off each other in a contin-
uous cycle, hence the attenuation of oxidative stress may
lead to the reduction in inflammatory processes and vice
versa—a major target of many therapeutic interventions.
Apple polyphenols have been shown to exhibit these

properties in vitro, in animal models, and in clinical trials
of chronic inflammatory diseases (Farzaei et al., 2015). For
instance, the amelioration of postprandial inflammation
by the intake of ‘Gala’ apples was demonstrated recently
to occur via the reduction of pro-inflammatory cytokines;
IFN-γ, IL-6, and TNF-α (Liddle et al., 2021). Additionally,
using the grass carp fish, Yang et al. (2021) reported the
diminishing of the intestinal inflammatory response by the
suppression of TLR4 signaling and transcription of IL-1β,
IL-6, and TNF-α genes following apple polyphenols sup-
plementation.

3.3 Gastro-intestinal tract (GIT)
protection by apple consumption

Another major mechanism employed by apple
constituents to improve human health is through
their activities on the human gut microbiota. Apple
proanthocyanidins and the pectin fiber have been par-
ticularly shown to interact with the gut microbiota,
modulating its composition to achieve beneficial out-
comes (Garcia-Mazcorro et al., 2019; Koutsos et al., 2015).
For example, the decrease in the Firmicutes/Bacteroidetes
ratio accompanied by a rise in Akkermansia in the cecum
was attributed to the intake of apple procyanidins and
was shown to prevent obesity in mice (Masumoto et al.,

2016). The anti-inflammatory effects of apples related to
the alleviation of metabolic syndrome are purportedly due
to the modulation of the gut microbiota. In this regard,
pectin was reported to stimulate the commensal bacteria,
Faecalibacterium prausnitzii, in the human colon that
possesses anti-inflammatory actions (Chung et al., 2017;
Garcia-Mazcorro et al., 2019).

3.4 Apple consumption against type 2
diabetes and obesity

Type 2 diabetes (T2D), a chronic metabolic disease with a
complex etiology and multifarious pathogenesis, is preva-
lent among adults with an estimated more than half a
billion patients expected by 2045 (International Diabetes
Federation, 2017). Although antidiabetic therapeutics are
available with varying degrees of efficacy, diet and exercise
have been proven to play major roles in the management
of T2D (Magkos et al., 2020).
Apple supplementation in the diet of diabetic or obese

rodents (Ogura et al., 2016; Tamura et al., 2020) and in vitro
experiments (de Oliveira Raphaelli et al., 2019; D. Li et al.,
2020) indicated an amelioration of the diabetic indices
measured. These antidiabetic actions, mostly attributed
to the polyphenol constituent, were reported to occur
through the induction of beige adipocyte development in
inguinal white adipose tissue. Other mechanisms include
alleviation of insulin resistance and hyperglycemia, reduc-
tion of excess oxidative stress and inflammation, and inhi-
bition of α-glucosidase enzyme activity. In the analysis
of three prospective longitudinal studies involving almost
200,000 total participants, higher consumption of whole
apple, grape, or blueberry fruits was linked to a reduced
risk of developing T2D (Muraki et al., 2013). With obesity,
a major predisposing factor to the development of T2D, the
ability of apples—a low glycemic index fruit, to decrease
weight gain through its antioxidant and anti-inflammatory
activities, as well as actions on important signal transduc-
tion pathways has been highlighted (Asgary et al., 2018).

3.5 Apple supplementation to manage
cancer

Cancer continues to present a great cause of health and
economic burden to humans, occupying the second posi-
tion in the global cause of mortality ranking and pro-
jected to overtake ischemic heart disease for the first posi-
tion by 2060 (Mattiuzzi & Lippi, 2019). Polyphenol-rich
fruits or plant extracts have been suggested to help in
the chemopreventive medicines niche due to their multi-
faceted medicinal modes of action targeted at preventing
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carcinogenesis (Oyenihi & Smith, 2019). The regular con-
sumption of apples has shown beneficial effects on many
types of cancer.
Apple polyphenols, flavonoids (Chang et al., 2018),

phloretin (Lin et al., 2016), and polysaccharides (Y. H.
Li et al., 2020) were reported to alleviate colorectal can-
cer endpoints. In the azoxymethane (rat carcinogenesis)
model, apple anthocyanin—cyanidin-3-O-galactoside—
was recently demonstrated to reduce the appearance of
the precancer indices assessed in the study (Bars-Cortina
et al., 2020). The purported modes of action against cancer
include cell cycle arrest; inhibition of cell migration and
invasion; apoptosis, anti-angiogenesis; anti-inflammatory;
and antioxidant (Tu et al., 2017). Phloretin from apples
may be an important anticancer phytochemical based on
the results obtained in experiments on the breast (Wu
et al., 2018), prostrate (Kim et al., 2020), cervical (Hsiao
et al., 2019), lung, esophageal, gastric, and blood cancers
(Choi, 2019).

3.6 Apple consumption for the
prevention of cardiovascular diseases

Cardiovascular diseases (CVDs) including coronary heart
disease, stroke, atherosclerosis, hypertension, cerebrovas-
cular, and so on, remain the number one health challenge
and cause of mortality globally and accounted for close to
18 million deaths in 2017 alone (Virani et al., 2020). This
huge health burden, therefore, warrants urgent disease-
management approaches to lower the prevalence and
mortality.
Dietary flavonoids were shown to exert an inverse rela-

tionship with CVD-associated mortality in prospective
cohort studies supporting the recommendation that the
regular consumption of fruit and vegetables may help in
reducing the risk of developing CVD (Kim & Je, 2017).
The intake of apples decreased atherogenic cholesterol
levels (Chai et al., 2012), enhanced endothelial function
(Bondonno et al., 2018), and decreased the bone mass
index (Gayer et al., 2019) in clinical trials. These collective
research findings could be crucial in preventing CVD. It
has been suggested that the modulation of the gut micro-
biota by apples should be considered amajor link to its abil-
ity to reduce CVD risk markers (Koutsos et al., 2015).

4 ADVANCES IN HURDLE
TECHNIQUES FOR APPLES

Various conventional hurdle techniques have been demon-
strated over the years to maintain the quality of fresh fruit
and retain the bioactive/nutritional compounds (Mahajan

et al., 2014; Nyamende et al., 2021). Hurdle technologies
ensure the freshness of the fruit, through microbial inac-
tivation that occurs via a multiphase approach involving
milder but synergistically/combinatorial effects of tech-
niques (Ross et al., 2003). Techniques can be physical,
chemical, or biological (Figure 4). The correct selection of
a specific approach or combination of hurdle techniques
can ensure microbial safety, stability, and quality (Pinela
& Ferreira, 2017).
However, new hurdle techniques that often have

an overarching focus on safety (microbial or chem-
ical residue/toxins), due to public health and cross-
contamination concerns are emerging. Thus, this section
discusses the advancement in hurdle technique for apples
and highlights the unintended consequences on nutri-
tional quality degradation during handling and storage.

4.1 Physical hurdles

Effective control and management of fresh apples along
the supply chain using physical hurdle techniques, espe-
cially cold decontamination, is one of the most promising
areas of approach (Pietrysiak et al., 2019). Cold storage tem-
perature alone or in combination with other conventional
techniques such as chemical and heat pretreatments have
been used as a shelf-life extension mechanism (Kabelitz
et al., 2019; Ranjbar et al., 2018). Under low-temperature
storage, most of the biochemical processes that have detri-
mental effects on the fruit quality can be delayed, which
enhances the storage life. However, not all fruits favor low-
temperature storage, and apple fruit is prone to chilling
injury and browning during storage below the optimum
temperature (Watkins & Liu, 2010).
Emerging knowledge in the area of packaging systems

and nonthermal technologies for postharvestmanagement
of apple fruit has been reported to show beneficial effects
in comparison to conventional approaches (Moreira et al.,
2017). Controlled or modified atmosphere tools and active
packaging systems (that can absorb or adsorb gases, mois-
ture, and those that release bioactive compounds) and edi-
ble films/coating have been extensively reported as shelf-
life extension strategies for apples (da Rocha Neto et al.,
2019; Khalifa et al., 2017;Mditshwa et al., 2017). These tech-
niques have been used in combination with cold storage
as a natural alternative to extend the shelf-life of apples
(Khalifa et al., 2017).
Furthermore, various nonthermal technologies such

as pulsed electric field (PEF), irradiation, ozone, pulsed
light (PL), ultra-sound (US), short-wave ultraviolet light
(UV-C), and high hydrostatic pressure (HHP) have been
demonstrated to be effective decontaminants of spoilage
and pathogenicmicroorganisms in apple fruit (Grimi et al.,
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F IGURE 4 Technologies to extend the shelf-life of fresh apple during postharvest

2010; Manzocco et al., 2011; Moreira et al., 2015; Ribas-
Agustí et al., 2019; Salem &Moussa, 2014; Wu et al., 2012).
However, in some cases, suboptimal or excessive use of
these treatments alone can have detrimental effects on
the quality of the apples (Table 2). Hence, it is recom-
mended to combine these tools with dipping treatments
using ascorbic acid, citric acid, and calcium chloride to
minimize browning and for a better shelf-life (Gómez et al.,
2012; Salem & Moussa, 2014; Wu et al., 2012). Further-
more, the application of the edible coating in combina-
tion with the nonthermal techniques for extending the
shelf-life of fruits is emerging (Moreira et al., 2017; Moreira
et al., 2015). It is alsoworthmentioning that the previously-
mentioned nonthermal technologies have limitation for an
in-depth treatment of opaque substances due to absorp-
tion and scattering of light and therefore, is only suitable to
control surface microflora (Gómez et al., 2012; Manzocco
et al., 2011).
The application of electromagnetic waves as decontami-

nation is beneficial especially for internal defects that need
a treatment, which can penetrate the depth of the fruit. In
this aspect, the use of microwave (MW) could have poten-

tial by creating volumetric heating (Gamage et al., 2015).
The potential ofMW (100–120 Kj/kg) treatment as an alter-
native to chemical treatment during storage to controlBac-
trocera tryoni, Froggatt and Bactrocera jarvisi was demon-
strated for ‘Granny Smith’ apples (Gamage et al., 2015). The
authors further suggested that the application ofmild heat-
ing alongwith other treatments (hot air) havemore benefit
than MW alone. Furthermore, during MW treatment of a
whole fruit, uneven heating is unavoidable due to the fruit
structure and thermal properties.
For a complete nonthermal technique, pulses UV (PUV)

and UV-C have been shown having great advantage with
a short treatment duration (>10 s) (Ferrario & Guerrero,
2016). For maximum effectiveness of UV-C treatment, fac-
tors such as the presence of dispersing reflector as well
as ensuring the uniform exposure of fruit must be consid-
ered (Manzocco et al., 2011). Ultrasound is another emerg-
ing nonthermal postharvest treatment used to extend
the shelf-life of fresh apples (Ferrario & Guerrero, 2016).
Ultrasound treatment is categorized as a nontoxic, safer,
and environmentally friendly approach, but, its efficiency
againstmicrobial inactivation needs integrationwith other
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treatments such as chemical, heat, and pressure (Ferrario
& Guerrero, 2016).
In addition to electromagnetic and sound energy in the

postharvest shelf-life extension on apples, the use of hyper-
baric pressure also emerged as a potential alternative to
chemical and thermal treatments (George et al., 2016).
High-pressure treatment is effective to eliminate pests on
the fruit surface during postharvest processing of apples
(Fernández-Jalao et al., 2019). Table 2 presents the selected
nonthermal postharvest treatments reported for shelf-life
extension of apple fruit during postharvest.

4.2 Natural compounds

Decontamination of apple fruit surface after harvest has
been heavily dependent on fungicides or chlorinatedwater
treatment. This practice has an impact on fruit quality and
human health, and has resulted in the development of
resistant strains (Li & Xiao, 2008). Essential oils (EOs) are
one of the most promising plant metabolites, that are bio-
logically safe, biodegradable in nature, and with a low risk
to cause pathogen resistance (da Rocha Neto et al., 2019;
Hu et al., 2017). Treatment of apples with EOs to prevent
the growth of Penicillium expansum and Botrytis cinerea
has been reported as an effective approach (Frankova et al.,
2016).
Banani et al. (2018) reported significantly lower gray

mold incidence and severity due toB. cinerea for “RedFuji”
apples treated with thyme and savory Eos, respectively.
However, the efficacy of EOs depends on the natural resis-
tance of the apple cultivar, length of storage, andmethod of
application (dipping/spraying) (Lopez-Reyes et al., 2013).
The drawbacks of some EOs are their strong aroma and
the volatility of active compounds, which might affect
the organoleptic quality and storage life of the product
(Ribeiro-Santos et al., 2017). In this case, the combination
of EOs with other postharvest treatments such as hot air
(Frankova et al., 2016), as well as hurdle approach tomain-
taining a controlled-release incorporated EOswith packag-
ing (films/coating) is advantageous (Guerreiro et al., 2016).
Decontamination using chemical or surface treatments
for apple fruit can ensure the low or inhibited growth of
microbes on the surface of the fruit; however, combining
them with electromagnetic or sound and pressure treat-
ments can ensure the inhibition of microbes on the peri-
carp and mesocarp of the fruit (Salem &Moussa, 2014).

4.3 Biological controls

Biological control is a promising alternative to chemical
and heat treatments for a more naturally preserved apple

fruit without detrimental effects on the quality (Dukare
et al., 2019; Quaglia et al., 2011). Currently, available biolog-
ical control agents for apple fruit postharvest decay man-
agement include various bacteria, yeast, and filamentous
fungi (Castoria et al., 2005; Nadai et al., 2018). The appli-
cation of microbial antagonists can be performed by pul-
verization or immersion in solution (Carmona-Hernandez
et al., 2019). Most of the microbial antagonists are natu-
rally present on fruit and vegetable surfaces or they can
be obtained from sources such as roots and soils (Droby
et al., 2016; Dukare et al., 2019). The main mechanisms
of antagonists against phytopathogens are by suppressing
or interfering with the normal growth due to competition
for space and nutrients, biofilms, parasitism, and by pro-
ducing inhibitory metabolites (Dukare et al., 2019; Wallace
et al., 2017).
Common types of pathogenic molds that affect the

shelf-life of apples include blue and grey mold and ring
and brown rot caused by Penicillium expansum, Botrytis
cinerea, Botryosphaeria dothidea, andMonilina functigena,
respectively (Li & Xiao, 2008; Quaglia et al., 2011). How-
ever, P. expansum is the most aggressive (Mostafavi et al.,
2012) and widely studied compared to the others inhib-
ited by biocontrol agents so far (Czarnecka et al., 2019;
Mari et al., 2012; Nadai et al., 2018; Quaglia et al., 2011;
Vero et al., 2013; Wallace et al., 2017). In addition, P. expan-
sumproducesmycotoxins, such as patulin, that causes seri-
ous health problem for consumers (Nadai et al., 2018). The
positive synergetic effect of various microbial antagonists
such as Bacillus amyloliquefaciens PG12 (Chen et al., 2016),
Paenibacillus polymyxa APEC136 and B. subtilis APEC170
(Kim et al., 2016) and B. subtilis 9407 (Fan et al., 2017) have
been reported for apple fruit. More recently, the beneficial
effects of other antagonistics including Starmerella bacil-
laris (Nadai et al., 2018),Debaryomyces hansenii, andWick-
erhamomyces anomalus (Czarnecka et al., 2019), and var-
ious yeast isolates (Madbouly et al., 2020) have shown a
beneficial effect as a biocontrol of postharvest pathogens
of apple fruit. Table 3 presents the list of antagonists as a
biocontrol against various molds that affect the shelf-life
of apples during postharvest.
The successful application of biocontrol agents mostly

involves a complex interaction between thehost, pathogen,
antagonists, and environment (Li et al., 2013; Nunes,
2012). According to the previously mentioned studies, the
inhibition/biocontrol efficacy of the antagonistic yeasts,
pathogenic fungus, or bacteria could be depending on the
pH, relative humidity, prolonged cultivation of microor-
ganisms, or successful colonization (biofilm formation and
swarming motility). Furthermore, biocontrol efficacy of
yeast can be influenced by oxidative stress and incorporat-
ing an antioxidant such as ascorbic acid can induce stress
tolerance and biocontrol efficacy of antagonistic yeast
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TABLE 3 Studies on different antagonistic and target microbes that affect the shelf-life of apple during postharvest

Cultivar(s) Target microbes Antagonists microbe(s) Concentration(s) †, *, ** Reference(s)
‘Golden Delicious’ Penicillium expansum Trichoderma isolates 1 × 108 † (Quaglia et al., 2011)
‘Gala’ and ‘Golden
Delicious’

P. expansum, B. cinerea, C.
acutatum

Pullulans (L1 and L8) 1 × 106 to 1 × 108 † (Mari et al., 2012)

‘Red Delicious’ and ‘Pink
Lady’

P. expansum, B. cinerea, C.
acutatum

Cystofilobasidium
infirmominiatum

1 × 107 † (Vero et al., 2013)

‘Borkh’ P. expansum Pichia caribbica 1 × 108 † (Li et al., 2014)
‘Fuji’ Botryosphaeria dothidea Bacillus amyloliquefaciens

PG12
1 × 108 † (Chen et al., 2016)

– Fungal mycelia (C.
gloesporioides, C.
acutaum, B. dothidea)

Paenibacillus polyxa
APEC136 and Bacillus
subtilis Apec170

1 × 108 † (Kim et al., 2016)

‘Fuji’ Bacillus subtilis 9407 Botryosphaeria dothidea 1 × 107 † (Fan et al., 2017)
‘McIntosh’ and ‘Spartan’ P. expansum Pseudomonas Fluorescens

isolates 1–112, 2–28, 4–6
1 × 108 † (Wallace et al., 2017)

‘Golden Delicious’ P. expansum Saccharomyces/Bacillaris
strains

1 × 107 † (Nadai et al., 2018)

‘Ligol’ M. functigena Debaryomyces hansenii and
Wickerhamomyces
anomalus

1 × 108 * (Czarnecka et al.,
2019)

‘Golden Delicious’ M. functigena Schwanniomyces vanrijiae,
Galactomyces geotrichum,
Pichia kudriavzevii|)

2 × 108 ** (Madbouly et al.,
2020)

NB. † CFU/ml. *cells/ml. **spores/ml.

(Li et al., 2014). In addition, the effectiveness of antagonis-
tic yeast (P. guilliemondii) against P. expansum, B. cinerea,
and C. gloesporioides was improved by combining it with
hot water (30◦C) treatment for ‘Red Fuji’ apple (Zhao &
Yin, 2018).
The development of biocontrol, however, is a tedious

process requiring a detailed knowledge of several disease
factors such as pathogen, host, disease epidemiology, con-
stitutive or induced host resistance, and the environmen-
tal condition (Droby et al., 2016; Nunes, 2012). Though
the application of EOs and biocontrols have been proven
as effective methods to control the postharvest pathogens
of apples, however, at higher concentrations, and depend-
ing on the application methods or frequency of treat-
ments, phytotoxic tendencies have been reported (Lopez-
Reyes et al., 2013). Therefore, cautious advancements are
required to avoid the determinate effects of the hurdle
approach on the quality of the fruit.

5 CONCLUSION

The value of apple fruit and the role of its bioactive con-
stituents in the delivery of essential micro- and phyto-
nutrients to humans cannot be overemphasized. The mul-

titargeted and multilevel pharmacological actions of its
vitamins, minerals, and polyphenols especially against
chronic diseases could indeed “keep the doctor away.”
Thus, research strategies that prioritize the medicinal
value of apples from the farm gate to consumer plate
should be actively promoted. Therefore, as efforts to main-
tain fresh fruit safety and control biohazards heighten in
the wake of the global COVID-19 pandemic, it is important
to balance these activities with access to nutritional fruit.
Advancements in the application of hurdle techniques
such as the use of cold plasma, electrolyzed water, nano-
bubbles, high pressure, ultrasounds, and superheated
steam/vapor for apples should include nutritional quality
considerations. Further research is needed on the impact
of these emerging tools on bioactive compounds of fresh
apples during storage and the entire supply chain.
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