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Abstract
Background. Artificial intelligence (AI) is an era upcoming in medicine and, more recently, in the operating room (OR).
Existing literature elaborates mainly on the future possibilities and expectations for AI in surgery. The aim of this study is
to systematically provide an overview of the current actual AI applications used to support processes inside the OR.
Methods. PubMed, Embase, Cochrane Library, and IEEE Xplore were searched using inclusion criteria for relevant articles
up to August 25th, 2020. No study types were excluded beforehand. Articles describing current AI applications for
surgical purposes inside the OR were reviewed. Results. Nine studies were included. An overview of the researched and
described applications of AI in the OR is provided, including procedure duration prediction, gesture recognition, in-
traoperative cancer detection, intraoperative video analysis, workflow recognition, an endoscopic guidance system,
knot-tying, and automatic registration and tracking of the bone in orthopedic surgery. These technologies are compared
to their, often non-AI, baseline alternatives. Conclusions. Currently described applications of AI in the OR are limited to
date. They may, however, have a promising future in improving surgical precision, reduce manpower, support in-
traoperative decision-making, and increase surgical safety. Nonetheless, the application and implementation of AI inside
the OR still has several challenges to overcome. Clear regulatory, organizational, and clinical conditions are imperative
for AI to redeem its promise. Future research on use of AI in the OR should therefore focus on clinical validation of AI
applications, the legal and ethical considerations, and on evaluation of implementation trajectory.
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Introduction

The last few years have seen a tremendous growth in the
use of sensors, video, and digital devices in the operating
room (OR).1–3 These applications generate large amounts
of data in various formats, often referred to as “big data.”4

Big data sets are complex and may be analyzed com-
putationally to reveal patterns, trends, and associations,
especially relating to human behavior and interactions.
Big data has the potential to become progressively useful
in both guiding surgical care and optimizing clinical
patient outcomes, if handled well.5-8 A limitation often
overseen in analyzing big data is that traditional data
processing techniques are not able to handle these vast
amounts of complex data.9 The solution may lie in a re-
search area that became popularly known as “artificial
intelligence (AI).” The term AI is often used to describe
the study of algorithms that enables machines to reason
and perform cognitive functions such as learning,
problem-solving, and decision-making.10,11 Recently, AI
has made its introduction into medicine and, even more

recently, into the OR.2 This is of interest as these high-risk
environments are considered to be one of the most error-
prone areas in the hospital, where outcome is highly
dependent on use of modern technology generating
multisource data.12,13 As such, if properly used, AI may
have great impact on surgical workflow and outcome. It
may provide context-aware perioperative decision sup-
port, predict patterns in patient parameters, monitor
progress, and develop new in situ training tools.14–17

These are just a few examples. To date, AI applications
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are painting and predicting a promising future surgical
landscape. Yet, as is often the case with new innovations,
AI may become lost in its promise when it is unclear what
the actual baseline and best use case is.18–20

The current medical literature fixates predominantly on
the future possibilities of AI in surgery, or more specif-
ically, inside the OR. However, it is important to know the
current situation—where does AI in the OR stand?—in
order to validly decide on areas worthy of further ex-
ploration. The aim of this study is to systematically
provide an overview of the current AI applications in
surgery, used to support various processes inside the OR.

Methods

Literature Search

A systematic literary search was performed up to August
25th, 2020 using the following online databases: PubMed,
Embase, Cochrane Library, and IEEE Xplore. The terms
AI, OR, and surgery, including synonyms or equivalent
terms, were used in certain combinations to obtain the
relevant literature. The full search strategy can be found in
Supplemental Appendix A.

Article screening was done independently by 2 re-
viewers (DCB and AvD). The inclusion criteria were as
follows: (1) AI, (2) in surgery, and (3) in the OR. The
exclusion criteria, next to duplicates and articles older
than 10 years, were the following: (1) articles published in
any language other than Dutch or English, (2) articles
containing future applications of AI only, (3) AI used
outside the OR, and (4) no full-text availability. Any study
design may benefit the study, so no specific study designs
were excluded beforehand. Disagreement between the
two reviewers in study selection was resolved by healthy
discussions concluding in consensus.

The studies that were included after full-text screening
were critically appraised, with the use of an Evidence-
Based Medicine Critical Appraisal Checklist (see
Supplemental Appendix B).

Data Extraction

The included articles were extracted of data on study
design, publication year, country of origin, and the spe-
cific researched applications of AI. The outcomes of these
studies were analyzed and described and, if possible,
defined in numbers. A clear overview of the different
studies, their applications of AI and their specifically used
subfield of AI, and their data type/source is provided. AI,
while not easily defined, is a machine’s capability to
mimic intelligent human behavior.21 AI is a broad field to
be distinguished by multiple subfields. In order to better
understand the analyses and outcomes of the studies, it
was decided to explain some of the different subfields in

AI beforehand. The subfields that are of importance to this
systematic review are explained and elaborated on in
Table 1.

Results

Search Results and Study Selection

The literature search yielded 193 articles from PubMed
database, 50 articles from Embase database, 5 articles
from the Cochrane Library, and 27 articles from IEEE
Xplore database. Finally, 9 articles were included. The
flowchart with a more detailed description of the selection
procedure may be viewed in Figure 1. The nine included
studies are the following: Bodenstedt et al.,22 Cho et al.,23

Devi et al.,24 Hashimoto et al.,25 Jermyn et al.,26 Kassahun
et al.,27 Padoy,17 Zhao et al.,28 and Liu et al.29

Critical Appraisal

Only the 2 included review studies by Padoy17 and
Kassahun et al.,27 were critically appraised. As a conse-
quence of inhomogeneity in study design, the additional
seven included studies did not contain a sufficient amount
of checklist characteristics and were therefore not suitable
for critical appraisal. Although both review studies scored
negatively on many criteria, indicating that the quality of
the studies should be considered relatively low, these
studies were not of a regular review design either and were
therefore difficult to classify.

Applications of AI

The included articles respectively researched one or
multiple applications of AI in surgery. Table 2 shows an
overview of the different studies, their researched appli-
cation(s), and the specific AI subfield(s) the application is
based on. Additionally, Table 2 specifies the data type/
source that was used by the AI application.

Procedure Duration Prediction

Due to the high density and non-singularity of information
in a video stream, extracting its data for evaluation pur-
poses is a challenging process. In comparison to the video
stream, data from surgical instruments provide in-
formation that is easier to quantify. Whether or not such
data provide sufficient information to make presumptive
predictions on surgery duration is uncertain to date.
Bodenstedt et al.22 proposed and compared methods,
based on CNNs to predict procedure duration based on
data from surgical devices or video streams. The input was
acquired from 80 recorded laparoscopic interventions of
which the necessary data were available. Overall, the
combined method (both video and surgical device data)
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Table 1. Definitions of major subfields in artificial intelligence.

Subfield Definition

Machine learning (ML) Gives computers via algorithms the ability to modify its processing when exposed to more
information, without being specifically programmed to do so.57,58 In this way, computers are
capable of “learning from experience.”21,58,59 ML is considered to be promising in pattern
recognition in large cohorts of data by using more complex techniques than traditional statistical
analysis does.60,61

Artificial neural networks
(ANNs)

Are tools used in ML. In function, they are imitating the human brain by connecting and finding
interrelated complex relationships and patterns between data.2 Basically, ANNs are composed of
many computational units (neurons) that receive inputs, perform calculations, and direct output
to the next computational unit. In other words, the input is being processed as signals through
layers of algorithms that create certain patterns as final output; these patterns are interpreted and
used in decision-making.62 ANNs are commonly composed of simple 1- or 2-layered neural
networks.

Deep learning Deep learning networks consist of many layers and are able to recognize and learn more subtle and
complex patterns.63 Deep learning networks may take one or more datasets into account, which
are evaluated multiple times in many different layers, until reaching the desired output.21

Convolutional neural networks
(CNNs)

A convolutional neural network (CNN) is a class of ANNs that specializes in processing data in
visualized imagery. In deep learning, “convolution” is a specialized kind of linear operation used in
analyzing images, and in CNNs, the ANN employs this mathematical operation in at least one of its
layers, hence the name convolutional.64

Computer vision (CV) Focuses on how computers can gain high-level understanding of digital images and videos such as
object and scene recognition, comparable to the human visual system.25,65,66 The processed data
may consist of video sequences, views from multiple cameras, or multidimensional data from
a medical scanning device.67,68

Abbreviations: ML = machine learning; ANN = artificial neural networks; CV = computer vision; CNN = convolutional neural network

Figure 1. Flowchart of literature search.
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performed best with an average error of 37% and an
average halftime error of approximately 28%. This is an
improvement to the baseline method with an average error
and average halftime error of both 124%.22

Zhao et al. sought to accurately predict procedure
duration of robot-assisted surgery cases using multiple
machine learning (ML) models, using case characteristics
(scheduled duration, age, gender, and comorbidities of the
patient, tumor location, month of year, time of day, day of
the week etc.) as data input. They compared the ML
models to the baseline model, which is the time scheduled
for the procedure determined by former case duration
averages and changes by the surgeon. The following ML
models were used: (1) multivariable linear regression, (2)
ridge regression, (3) lasso regression, (4) random forest,
(5) boosted regression tree, and (6) ANNs. The average
root-mean-squared error (RMSE), a measure for the im-
perfection of the fit of the estimator to the data, was lower
for all the ML models than the baseline model. The av-
erage RMSE was lowest with the boosted regression tree
(80.2 minutes, 95% confidence interval 74.0–86.4), which
was significantly lower than the baseline model
(100.4 minutes, 95% Confidence interval 90.5–110.3).
The use of a boosted regression tree, apredictive modeling
approach used in ML, increased the amount of correctly
booked procedures from 148 to 219 (34.9% to 51.7%,
P <.001).28

Devi et al. researched several techniques to estimate
procedure duration in an ophthalmology department by
taking the surgical environment into account (experience
of surgeon in years, experience of anesthetists in years,
type of anesthesia, etc.). Three techniques were

researched, namely, adaptive neuro-fuzzy inference sys-
tems (ANFISs), multiple linear regression analysis
(MLRA), and ANNs. However, ANFIS is a fusion be-
tween the adaptive learning capability of ANNs and the
intuitive logic of human reasoning, formulated as a feed-
forward neural network. The results of procedure duration
prediction were compared between the three techniques,
and the ANFIS model came out to be performing better
than the other 2 as portrayed in Table 3.24

Gesture Recognition

To decrease the risk of contamination during surgical
procedures, Cho et al.23 researched a noncontact interface
based on ML models in order to enhance the accuracy of
gesture recognition. Support vector machines (SVMs) and
naive Bayes classifiers, ML models with associated al-
gorithms used for classification, were used in the study.30

Cho et al. used 30 features, including hand and finger data,
as input for these ML models to predict and train 5 types

Table 2. Overview of included studies with specific AI application(s).

Application(s) Study AI Subfield(s) a Data Type/Source

Procedure duration prediction Bodenstedt
et al.22

CNN, deep learning, and ML Video stream

Zhao et al.28 ANN and ML Case characteristicsb

Devi et al.24 ANN and ML Surgical environmentc

Gesture recognition Cho et al.23 CNN and ML Depth video stream
and radiological
images

Intraoperative cancer detection Jermyn et al.26 ANN and ML Spectral light
Intraoperative video analysis Hashimoto et al.25 ANN, CV, and ML Video stream
Workflow recognition Padoy17 CNN, CV, RNN, deep learning,

and ML
Video stream and
images

Endoscopic guidance system and knot-tying Kassahun et al.27 RNN and ML Video stream
Automatic registration and tracking of the bone
in orthopedic surgery

Liu et al.29 ANN, deep learning, and ML Depth camera images

aAbbreviations: CNN = convolutional neural network, ML = machine learning, ANN = artificial neural network, CV = computer vision, RNN =
recurrent neural network.
bScheduled duration, age, gender, and comorbidities of the patient, tumor location, month of year, time of day, day of the week, etc.
cExperience of surgeon in years, experience of anesthetist in years, staff experience in years, type of anesthesia, etc. The actual set of environment
variables depends on the type of surgery.

Table 3. Comparison of techniques to estimate procedure
duration.24

Type of Surgery

Root-Mean-Squared Error (RMSE)

ANFIS ANN Regression

Corneal transplant .1557 .1895 .2755
Cataract .0697 .1427 .1768
Oculoplastic .1431 .1668 .2123

Abbreviations: ANN = artificial neural networks; ANFIS = adaptive
neuro-fuzzy inference systems.
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of gestures. The overall accuracy of the 5 gestures was
99.58% ± .06 and 98.74% ± 3.64, respectively, for SVM
and naive Bayes classifiers. Self-training methods of
SVMs and naive Bayes classifiers improved accuracies by
about 5–10%.23

Intraoperative Cancer Detection

During brain tumor removal it is important yet very
difficult to detect and remove all cancer cells. As a con-
sequence, when not completely removed, the patient is at
risk for recurrence of cancer. With certain types of brain
cancer in vivo, Raman spectroscopy can detect these
invasive cancer cells. A downside to this technique is the
fact that the Raman signal is weakened by spectral arti-
facts generated by the regular lights in the OR. Jermyn
et al. found that ANNs are able to improve the detection of
invasive brain cancer cells by overcoming the negative
impact of spectral artifacts. Despite the inclusion of light
artifacts, ANNs keep the detection of invasive cancer cells
at almost the same level, improving sensitivity by 19%
and specificity by 7% compared to the standard
technique.26

Intraoperative Video Analysis

Video data of laparoscopic procedures are used for both
education and quality improvement purposes. In order to
decrease the required time for analysis and review of
video data, Hashimoto et al. investigated the possibility of
automatic video segmentation using CV and ML tech-
niques. Their research demonstrated that CV and ML
techniques were able to differentiate between specific
steps of laparoscopic surgery procedures with an accuracy
of 82% ± 4%.25

Workflow Recognition

The long-term vision of Padoy17 is to develop a sur-
gical control tower (SCT) that, using AI, can monitor
and support many processes, providing overall
awareness of what is happening in the OR. Key for
such an SCT is the requirement of an AI system that can
recognize the surgical workflow and is aware of the
surgical context. Workflow is often described as the
sequence of tasks, interactions, or other processes
through which a piece of work passes from initiation to
completion.31 In their review, Padoy17 researched
several recent ML and deep learning applications that
can add to the workflow recognition system. These
applications include phase recognition, tool detection
and localization, and human detection and pose esti-
mation and are described below.17

Phase Recognition

Phase recognition, the task of instantly determining the
current phase of surgery at any time t from video data, was
researched both in laparoscopic videos and external
videos. In laparoscopic videos, a study showed that the
combination of a CNN and a recurrent neural network
(RNN) was able to recognize the different phases auto-
matically and in real time, with an accuracy of 86%. In
a study using external videos, a combination of a CNN
and hidden Markov models (HMMs), a popular appli-
cation for ordinal or temporal data within AI, recognized
different phases in the surgical procedure with an accuracy
of 90%.17

Tool Detection and Localization

Tool detection and localization adds to the precision of
phase recognition. By recognizing more subtle and de-
tailed activities, tool detection and localization may be
informative for predicting operative steps and length of
operation. Deep learning techniques were used to research
tool detection and localization in laparoscopic images and
videos. Using a CNN, results show a mean average
precision of 87% in tool detection and 88% in tool
localization.17

Human Detection and Pose Estimation

Since the people are the main actors in the OR, detecting
their position and estimating their poses by localizing their
body parts can provide useful information for optimizing
workflow. With the use of external videos, the ability to
estimate the specific body poses of the people in the OR
was investigated. The mean per joint position error
(MPJPE) was used as a quantitative measure for 2D and
3D body part localization. Deep learning approaches
yielded the best results in both 2D and 3D pose estimation
with an average MPJPE of 17 and 5 cm, respectively.17

Endoscopic Guidance System

Weede et al. described an autonomous endoscopic
guidance system based on ML. The system is capable of
collecting and processing data on the movements of
surgical instruments in recorded videos of surgical pro-
cedures. Subsequently, with the use of trajectory clus-
tering, maximum likelihood classification, and HMMs,
the system uses this information to predict trajectories that
are used to guide the endoscope. The results show a hit
rate of over 89% for predicting the movement of the
surgeon’s instruments, leading to 29.2% less camera
movements and improved visibility.27,32
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Knot-Tying

Although in open surgery, knot-tying is part of basic skills
and a relative fast procedure, in minimally-invasive sur-
gery, laparoscopic knot-tying can take up to three minutes
for a single knot to complete. Mayer et al.32 described
a system to speed up the knot-tying based on RNNs in
robotic heart surgery. The surgeon presents a sequence
(eg, examples of human-performed knot-tying) to the
network and, an RNN with long-term storage learns the
task. The preprogrammed controller was able to construct
a knot in 33.7 seconds, whereas the use of an RNN
provided—after learning from 50 previous runs—a speed
improvement of almost 25%, producing a knot in
25.8 sec.27,33

Automatic Registration and Tracking of the Bone in
Orthopedic Surgery

In computer-assisted orthopedic surgery, registration of
the bone plays a vital role as it describes the position of
the patient in regard to the surgical system. This way, the
surgical site can be correctly aligned according to the
preoperative plan. Therefore, the precision of the regis-
tration has influence on all the following steps in the
procedure. Liu et al.29 describe a new way of automatic
registration and tracking of the bone, based on depth
imaging and deep learning. During surgery, a depth
camera repeatedly captures depth images of exposed
bone. Using these images, deep neural networks learn to
localize, segment, and extract the surface geometry of the
target bone. The extracted surface geometry is then
compared to a preoperative model of the same bone for
registration, making surgical intervention or invasive
optical markers superfluous. Ex vivo experiments show
a mean translational and rotational error of 2.74 mm and
6.66°, respectively. However, these accuracies are cur-
rently lower than conventional intraoperative registration
methods based on optical markers.34,29

Discussion

The results of this systematic review study provide an
overview of various AI applications currently used for
surgical purposes inside the OR. The great majority, of
the AI applications have shown superior results in
comparison to their non-AI alternatives. However,
studies are set up in various pilot settings. The various
applications are an indication of multi-field interest in
finding use cases for AI in the OR, paired with a need for
more clinical research across user settings. Many studies
have shown significant technological performance in the
field of AI, but only a small minority has been able to
situate their impacts and associated changes in current
health systems.35

According to Rogers’36 widely used Diffusion of In-
novations theory, adoption of innovative technology al-
ways involves early and late adopters. During the
innovation process, where an individual is motivated
to reduce uncertainty about the advantages and dis-
advantages of an innovation, it is important to emphasize
the ethical and legal challenges.37,38 Yet, sufficient po-
litical, regulatory, organizational, and clinical conditions
for AI development and ethical use of sensitive in-
formation are still lacking and hence needed to implement
AI applications safely and sustainably in the future.35,39,40

Additional barriers for the widespread implementation of
AI in health care may be unawareness on the topic or
solutions, lack of user or implementation knowledge by
the medical professionals and their workplace supporters,
unresolved questions about ethics or privacy from man-
agement, or an insufficient IT infrastructure. Most likely, it
will be a combination of these barriers.41

While AI, and ML in particular, is receiving more
attention in surgery, it is obviously not the only field of
medicine in which the use of AI is growing.27 The surgical
field may be able to learn from the use of AI in other
medical fields. For example, in oncology, research has
demonstrated that ML applications can be of great help for
the diagnosis or detection of cancer.42-44 In cardiology, AI
techniques are capable of reading electrocardiograms, and
by integration with electronic medical records of patients,
heart failure can be detected early on with reduced
mortality as outcome.45–47 In anesthesiology, ANNs are
used to monitor the depth of anesthesia, and ML tech-
niques are able to predict hypotension during surgery.48,49

And now, during the current COVID-19 pandemic, more
AI applications and studies have been initiated.19,50,51 The
Guangdong Second Provincial General Hospital, for
example, plans to incorporate AI image recognition into
their infection control system to provide real-time mon-
itoring and an aid for minimizing the risk nosocomial
COVID-19 infection. The observing system aims to en-
hance the sensitivity and accuracy of instant detection in
negative pressure isolation wards, which offers creative
assistance to combat the COVID-19 outbreak.50 This
application may also be used in the OR to minimize the
risk of surgical infection.

Indeed, AI in health care has presented some promising
and impressive results and is a fertile area of research, as
Challen et al.52 concluded in their review. However, as
this study shows the multilingual character of AI in
surgery, AI is a complicated and comprehensive field of
study. The rapid pace of change, diversity of different
techniques, and multiplicity of tuning parameters make it
difficult to get a clear picture of how accurate these
systems might be in clinical practice or how reproducible
they are in different environments.52 A realistic per-
spective is needed, balancing the potential for improve-
ment against the risk of negative outcomes. As Yu et al.8
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also concluded, we need to acknowledge the brittleness
of these systems, the importance of defining the correct
frameworks for their application, and ensure rigorous
quality control, including human supervision, to un-
wanted outcomes. Rigorous prospective trials in a diverse
patient population and clinical review of atypical feature
statistics are needed, to safeguard the value and coherency
of the collected data.8,52 It is therefore wise to attract
knowledge coming from ML experts, ethicists, and
lawyers, next to healthcare professionals, to decide on
proper fit of use case and safety of AI systems.

This study has some limitations to take into account.
First, as this is a review study, unpublished data and gray
literature, such as technical reports, are not included,
which may have strengthened the results. Moreover, the
results may have been influenced by a publication bias,
especially, because—as this is study shows—AI assis-
tance in the OR is still in its infancy. Park et al.53 ac-
knowledged the problem of irregular research designs in
medical AI studies. This is also displayed by the signif-
icant variability in the way results are reported, making it
very difficult to combine and compare data across studies.
This results in the realization that before any AI tool can
be used in clinical practice, it requires confirmation of its
clinical utility by undergoing thorough research. In their
article, they therefore described and reviewed essential
methods on the design of such studies, like the importance
of using an adequate external dataset, crucial to the
clinical evaluation of AI in medicine.53

Second, the applications of AI discussed in this study
are, although interesting in their pilot effort, not ready for
large-scale clinical practice.54 AI is not yet able to detect
causal relationships in data at a necessary level for clinical
implementation to rely on, nor is it able to produce truly
automated interpretations of its analyses.54 Before these
implications can be clinically and safely applied in the OR
on a bigger scale, future studies should focus on clinical
studies, with data from actual patients.39

Conclusion

AI systems inside the OR, if well-designed, embedded, and
researched, may have a promising future in the OR en-
vironment. It may support surgical decision-making, im-
prove surgical precision, reduce manpower, improve
workflow, increase surgical safety, and some day it may
even carry out some autonomous functions.6–8,16,21 In the
not so distant future, evolving technology like the OR black
box, with integrated deep learning algorithms, may prove
to be of great help in analyzing and optimizing workflow
and outcome in real time.55 Indeed, the application and
implementation of AI inside the OR still has several
challenges to overcome. However, evidence-based re-
search adding to the body of knowledge concerning ap-
plications of AI inside the OR is moving quickly.

Healthcare professionals ought to accept the fact that we
needAI in order to optimize future circumstances in the OR
and ultimately, surgical quality and safety.14,55,56
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