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Abstract: The use of nanoparticles for developing vaccines has become a routine process for re-
searchers and pharmaceutical companies. Gold nanoparticles (GNPs) are chemical inert, have low
toxicity, and are easy to modify and functionalize, making them an attractive choice for nanovaccine
development. GNPs are modified for diagnostics and detection of many pathogens. The biocompat-
ibility and biodistribution properties of GNPs render them ideal for use in clinical settings. They
have excellent immune modulatory and adjuvant properties. They have been used as the antigen
carrier for the delivery system to a targeted site. Tagging them with antibodies can direct the drug
or antigen-carrying GNPs to specific tissues or cells. The physicochemical properties of the GNP,
together with its dynamic immune response based on its size, shape, surface charge, and optical
properties, make it a suitable candidate for vaccine development. The clear outcome of modulating
dendritic cells, T and B lymphocytes, which trigger cytokine release in the host, indicates GNPs’ effi-
ciency in combating pathogens. The high titer of IgG and IgA antibody subtypes and their enhanced
capacity to neutralize pathogens are reported in multiple studies on GNP-based vaccine development.
The major focus of this review is to illustrate the role of GNPs in developing nanovaccines against
multiple infectious agents, ranging from viruses to bacteria and parasites. Although the use of GNPs
has its shortcomings and a low but detectable level of toxicity, their benefits warrant investing more
thought and energy into the development of novel vaccine strategies.

Keywords: gold nanoparticle; nanovaccine; nanoparticle immunology; nanovaccine immunity; GNP

1. Introduction

The development of vaccines and immunization programs against various kinds
of diseases ranging from infections to cancer significantly progressed in the past few
decades. One of the most important factors contributing to this growth is the advancement
of nanotechnology. The use of nanoparticles in the development of vaccines is a major
landmark step. One key step for the vaccine development process is the use of an optimal
carrier or delivery system that can influence a potent immune response. The use of different
types of nanoparticles and their roles in influencing the immune system has been studied
in different disease models. Nanocarriers can be used as adjuvants in the preparation of
new-age vaccines. The size, shape, route of administration, and antigen tagging mechanism
on the nanoparticles are all critical in this [1,2]. In the past few years, major progress has
been achieved in characterizing nanoparticle-based immunogenicity, immunotoxicity, the
nature of immune suppression, and immunomodulation [3–5].

Among different nanoparticles already tried and used for the successful development
of nanovaccines, the gold nanoparticle (GNP) is noteworthy. The chemical synthesis process
of antigen tagging on the GNP and its formulations is easy, making it a suitable candidate
in the nanovaccine manufacturing process [6]. Metallic nanoparticles such as GNPs provide
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a higher binding affinity, special electronic structures, plasmon excitation, and large surface
energies owing to their higher surface area to volume ratio [7]. This also enables GNPs to
interact with different functional groups or ligands with high affinity [8]. Due to its inherent
magnetic and optical properties, colloidal gold has already been used in the treatment of a
wide variety of diseases with a minimum level of cytotoxicity.

Multifunctional GNPs have been used by conjugating them with FDA-approved
antimicrobial drugs and antibiotics in many studies [9–15]. GNPs coated with antigenic
peptides have also been used to synthesize antibodies specific to the pathogens [16–32]. The
GNP-based drug or antigen delivery system is more competent for its controlled release
to the target site [33]. GNP nanoformulations can be used by tagging specific antibodies
or molecules to their surface. This enables efficient targeting to the particular cell types,
leading to a site-specific immune response profile and less off-target distribution [34].
The GNP has by itself excellent adjuvant properties to boost the immune system of the
host. The variations in size, shape, charge, and surface functionalization are all crucial in
eliciting varied immune responses upon administration [35]. Some of these properties are
highlighted in Figure 1.

Figure 1. Schematic representation of the gold nanoparticle and its possible uses in the biomedical
field. The gold nanoparticle can be tagged with one or more things depending on its intended use,
such as the delivery of nucleic acids or protein fragments or the delivery of drugs and their controlled
release. Targeting of its contents to the specific cells of the body is performed by using antibody-
tagged GNPs or by the use of ligands attached to them targeting specific receptors of the body.
Imaging techniques have been immensely developed by the use of GNP-tagged dye optical probes.

One key concern regarding the use of any foreign chemical such as gold in any form of
treatment intervention is its possible harmful side effects. However, the administration of
gold as an adjuvant or in a nanovaccine formulation has a high safety profile with few side
effects [36,37]. Like any other nanomaterial, GNPs also have certain limitations that we
discuss later in this review. However, the advantages of using them for new-age vaccine
development are showing promising results and far surpassing the concern.
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Although GNPs are widely used in the development of vaccines against multiple
cancers, in this review, we focus on their use in vaccination against infectious agents. We
discuss the characteristic features of gold nanoparticles that make them advantageous
to use in vaccine development, including their shape, size, and generated immune re-
sponse (Figure 2). We specifically elaborate in separate sections about the use of gold
nanovaccines in different types of immune cells and infections: bacterial, viral, and para-
sitic. We highlight the advancements made in the use of gold nanoparticles in the vaccine
development process.

Figure 2. A schematic representation of the use of GNPs in developing nanovaccines against a virus.
(A) The protein subunit from the virus is isolated to determine the peptide sequence, which is both
immunogenic for the host and conserved across multiple strains of the virus. The peptide is tagged
with GNPs to create the novel nanovaccine and tested on the mice model. (B) The immune cells of the
mice are triggered as the dendritic cells start presenting the peptides to the CD4 helper T cells and the
CD8 cytotoxic T cells. The clonal expansion of the activated helper T cells and subsequent activation
of the B cells into the plasma cells lead to the production of the antibodies specific to the peptide
used for nanovaccine production. The cytotoxic T cells can recognize and deploy themselves in the
killing of the infected cells. (C) The cytokines produced during the process of immune regulation
of the nanovaccine produce a chemical milieu where the immune cells can favorably fight against
the pathogens and shape the Th1 or Th2 immune response depending on the inflammation status.
The antibodies can recognize the peptide sequence present in the whole virus and neutralize them
effectively. (D) The B and T memory cells formed during this vaccination process can hold the
information of the peptide used during the process and live long after. They are equipped to start an
immediate immune response against any future challenge of the same virus and thus can eliminate
them before they can cause major harm to the host.
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2. GNP Characteristics and Features Make It Indispensable in Vaccine
Development Research

GNPs are often used to develop a potent antigen carrier system for immuniza-
tion [1,2,33–37]. They are easy to prepare and have special physicochemical properties
with very little toxicity [38]. Multiple variables in the shape, size, geometry, and surface
modifications influence GNP function. The stability of the GNP and its flexibility helps
in manufacturing GNPs with variable core diameter, size, and shape. Conversion of the
electromagnetic radiation to heat by this noble metal can be exploited for therapeutic and
targeting purposes [39–42]. However, there is no relevant systemic study for an optimal
and standard GNP system for all applications [41,42].

Precision in the nanocarrier delivery and penetration to the site of interest or the
immune cells is a critical component. This facilitates the induction of the immune response
genes, antigen processing, cytokine production, antibody secretion, and T cell stimulation
for effective therapy or vaccine efficacy [43–46]. GNPs have unique size and surface area
properties. They can penetrate blood vessels and tissue barriers and can deliver to targeted
sites due to their high uptake efficiency [37,47,48].

GNPs are efficient in delivering antigens into the major antigen-presenting cells such
as dendritic cells, facilitating the downstream immune response, cross-presentation, and
CD8+ cytotoxic T cell response (Figure 2A,B) [49]. Along with passive targeting by vary-
ing the size and shape of the GNPs to make them more prone to internalization by the
individual cell types, active targeting can also be achieved via surface modifications and
functionalization. For example, using GNPs coated with antibodies for DEC205, CD40,
CD11c, or mannose can be selectively uptaken by dendritic cells by the process of receptor-
mediated endocytosis [50–52]. For targeting them to macrophages, CD44, folates, and
lectins are used [53–55]. Thus, loading GNPs with immune target antibodies leads to the
activation and stimulation of the specific immune cells.

GNPs are biocompatible and inert. They are easily functionalized with a wide range
of peptides and molecules and are also very stable [2,56–59]. GNPs can be packaged inside
virus-like particles (VLP) using the expression of structural genes of the virus and can be
used in the vaccine development process [60]. GNPs can be conjugated with the polysac-
charide or protein linkers before their antigenic functionalization. The immunomodulating
capacity of gold glyconanoparticles is well known. In many vaccine development programs,
the GNP is used as an adjuvant to stimulate the immune response [61,62]. Hence, all these
features make the GNP a favored choice in biomedical applications for vaccination, drug
delivery, and tracking (Figure 1).

The GNP shape, size, charge, and conjugated materials all influence organ accumula-
tion and blood clearance [63]. Progress has been made to optimize GNP pharmacokinetics
by increasing the half-life time of its circulation and its physical size and by reducing the
mononuclear phagocytosis system (MPS)-based clearance [64]. Polyethylene glycol (PEG)-
mediated surface modification of GNPs is commonly used to decrease MPS activity and
increase their circulatory half-life [65]. Using 15 nm GNPs provides a better half-life than
100 nm GNPs, while GNPs smaller than 6 nm are rapidly filtered out by the kidneys [66,67].
Protein crown formation on the GNP after its entry into circulation and opsonization facili-
tate its recognition by MPS of liver, spleen, and marrow, leading to its higher accumulation
in these organs [68]. This crown formation also has a crucial impact on biodistribution, as it
masks the original functionalization of the GNP [69,70].

3. Shape and Size of GNP Influence Its Impact on the Immune System

The size of the GNP, along with its shape, influences the immune system differently.
This shape and size dependency of the adjuvant activity of GNPs is used to polarize the
immune response in different scenarios to deliver the best outcome [37–42].

Rod-shaped GNP-treated bone marrow dendritic cells (BMDCs) produce high levels of
IL1b and IL18, whereas cube- and spherical-shaped GNPs result in the production of high
levels of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNFa), inter-
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leukin (IL)-6, IL17, and granulocyte-macrophage colony-stimulating factor (GM-CSF) [71].
Niikura et al. [72] studied the varieties of GNP shapes: spherical, rod, and cube. This
group found that the ratio between the total surface area per single nanoparticle volume is
critical for antibody response and TNFa production. They found that larger-sized (40 nm)
spherical GNPs are more efficient in producing IL6, IL12, and GM-CSF than the smaller-
sized or differently shaped GNPs [72]. GNP functionalization by chemical modification,
addition or removal of functional group, antigen coating, etc., influences surface charge
and hydrophobicity, leading to alterations in the level of immune response thus generated
(Figure 2) [73,74].

Chen et al. studied the impact of GNP sizes spanning from 2 to 50 nm and found
that those between 8 and 12 nm are mostly drained nanoparticles [18]. GNPs between
14 and 20 nm are reported to be better uptaken by the cells. An increase in the diameter
leads to more toxicity. Receptor-mediated endocytosis may be the probable mechanism by
which GNPs enter the cells [50–52,75]. The diameter of a GNP is also correlated with its
localization inside the cell. A tiny GNP with a diameter of around 2.4 nm can be localized
inside the nucleus, whereas a particle size of around 5.5 to 8.2 nm is found mostly in the
cytoplasm. The nanoparticles with a higher diameter above 18–20 nm do not generally
enter the cells [39–42,76].

4. Effect of GNPs on Dendritic Cells, Macrophages, and Natural Killer Cells
4.1. Dendritic Cells

The effect of GNPs on DCs is critical as it can activate the branch of the adaptive
immune system. GNPs surface-tagged with DC-targeting molecules results in the better
induction and polarization of immune response (Figure 2A,B) [77]. Although many stud-
ies [78,79] suggest the possible cytotoxicity, phenotype alteration, cytokine production, and
activation by GNPs targeting DCs, the intricate details of such interaction, stimulation, or
suppression of the immune system are yet to be divulged. In one study, DCs loaded with
a GNP-conjugated Listeria antigen were adoptively transferred to naïve animals, leading
to the induction of natural killer cells, CD8 + T cells, and better Th1 response and vaccine
efficacy than any other traditional immunization methods [24].

DC from bone marrow, when stimulated by GNP, starts producing IL6, TNF-α, and
interferon gamma (IFN-γ) [80]. GNP can induce the extracellular traps for the neutrophils,
leading to immune system triggering via DNA receptors such as Toll-like receptor 9
(TLR9) [81]. GNPs coated with polyethylene glycol (PEG) or polyvinyl alcohol (PVA) or
both increased their interaction with monocyte-derived dendritic cells (MDDCs). Although
PEG coating restricts GNP uptake, it enhances the TNFa synthesis. PVA- or PEG+PVA-
coated GNPs have a higher rate of uptaking with IL1b synthesis, although both types of
coating do not influence the immunological characteristics, phenotypes, or activation of
MDDCs [82].

4.2. Macrophages

The polarization and function of macrophages are reported to play a key role in
different disease conditions [83]. GNPs are reported to promote crosstalk between the
macrophages and other cells for tissue regeneration [84] and also suppress pro-inflammatory
cytokine release from the macrophages. Similar suppression of immune response is re-
ported in the lipopolysaccharide (LPS)-treated splenocytes in the presence of GNPs [85,86].

GNPs are reported to have oxygen radical scavenging properties in the mouse macrophages
as they reduce the reactive oxygen species (ROS) of GNPs in a dose-dependent manner
in the presence of LPS treatment [24]. The reduction in the pro-inflammatory cytokines,
including IL17 and TNFa, is also noteworthy in the same set of experiments [87].

4.3. Natural Killer Cells

Natural killer cells (NK) sourced from the lymphoid progenitor lineage play a crucial
role in immune surveillance in the circulation. They release granzymes and perforins to
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induce infected cell lysis. GNPs have been researched to target NK cells by using the
mechanism of NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). This is
the use and targeting of the NK cell receptors by antibody-tagged GNPs. This helps in the
delivery and activation of NK cells [87].

PEGylated polyamidoamine dendrimers entrapped within GNPs to transfect human
ferritin heavy chain in the NK cells constitute a novel immunotherapy method [88]. A
modified version of GNPs has an anti-inflammatory response while being used to treat NK
cells in vitro, significantly reducing IFN-γ secretion [89].

5. Use of GNP in Antiviral Immunization

GNP is a favored tool of virologists and has been used frequently in the development
of the antiviral vaccination process.

5.1. HIV

Human immunodeficiency virus (HIV) possesses an important cluster of mannose-
rich glycans in its envelope glycoprotein called gp120, which is recognized by 2G12-
like antibodies. Gold nanoparticles were synthesized with a monolayer coating of self-
assembled oligomannosides (similar to gp120) and were capable of binding with 2G12 [90].
GNPs attached with thiol-terminated oligosaccharides have also been used for developing
HIV vaccines [91].

GNPs 2 nm in size coated with a synthetically prepared partial structure of multiple
mannosidases [91,92] provide excellent binding to anti-HIV antibody-like 2G12. The
third variable region (V3 peptide) of gp120 of HIV1 forms alpha helix or beta-strand
conformation, which can be conjugated to GNP. This makes them more stable against any
form of peptidase degradation and can also produce a high amount of specific neutralizing
antibodies in rabbits [92].

Rabbits were immunized intramuscularly with 50 µg of 2 nm glyconanoparticles
coated with the V3β peptide of the HIV-1 gp120 protein. Post-immunization, they produced
a high titer of neutralizing antibodies against HIV1 [91,93]. Moreover, Gag p17 peptide
of HIV1 conjugated with 2 nm GNP exhibited an increased proliferation of cytotoxic and
helper T cells specifically against HIV, along with functional IL-1β and TNF-α cytokine
production [93]. GNPs conjugated with Gp120, and gp41 HIV proteins have also been
tested for vaccine development.

5.2. Hepatitis B

Hepatitis B virus surface antigen (HBsAg) DNA coated with GNP was injected into
the epidermic cells employing a gene gun as a possible treatment measure [94]. GNPs
were also used as adjuvants along with plasmid DNA encoding HBsAg DNA and injected
into mice. The presence of GNPs triggers fast antibody production that leads to a quick
achievement of the peak antibody titer in the animals [95].

In vitro studies in RAW 264.7 macrophages with a gold nanocage conjugated with HB-
sAg showed better uptake and antigen processing with IL4 secretion [96]. Recent advances
have been made in the detection and diagnosis of the HBsAg by using GNP [97,98].

Virus-like particles (VLP) were produced with 10 nm GNPs conjugated with CpG
oligodeoxynucleotides (ODN) and core antigen of hepatitis B. Mice immunized four times
with 50 µg conjugate (i.p.) showed a 200% increase in the antibody titer as compared to
GNP-free administration. CD4 helper T cells and CD8 cytotoxic T cell population expanded
with the higher secretion of IL-4 and IFN-γ, along with immunostimulation of both Th1
and Th2 responses [62].

5.3. Hepatitis C

An interesting and effective means of delivery of hepatitis C virus DNA vaccine
was proposed by a group that used plasmonic GNP activated by an electrical charge.
This led to increased pore formation on the cell membrane and enhanced uptake of the
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DNA vaccine. The immunized mice group exhibited 100 times more gene expression as
compared to the control group (without GNP use), with highly activated humoral and cell-
mediated immunity being reported [99]. E2 proteins of hepatitis C were used to conjugate
with GNP and immunize the mice to obtain higher igG production and proliferation of
splenocytes [100].

5.4. Dengue

GNPs 20, 40, and 80 nm in size were used to conjugate the serotype 2-derived domain
III envelope glycoprotein of dengue virus (EDIII). The conjugate administered three times
subcutaneously to BALB/C mice led to the production of serotype-specific concentrated
neutralizing antibodies. The size and concentration of GNPs were manipulated to affect
the levels of antibodies produced in the animals. Splenocyte proliferation, helper, and
cytotoxic T cell expansion and activation with the increased synthesis of IL-4 and IFN-γ
were observed in mice [16]. GNP was also conjugated with small interfering RNA (siRNA)
produced against the dengue virus. GNP in this conjugation helped in the enhanced
stability and delivery of siRNA and elicited a better immune response [101].

5.5. Influenza

Much work on the development of a vaccine against influenza by using the GNP
has been carried out by Gill’s group. They took a highly conserved N-terminal conserved
extracellular domain of influenza virus matrix protein 2 (M2e) peptide and conjugated it
with a 12 nm GNP [102,103]. They used soluble CpG and CpG ODN as their adjuvants.
BALB/C mice were immunized two times with the conjugates, which led to enhanced
production of IgG1 and IgG2 and better protection against a lethal dose of PR8-H1N1
infection challenge [104].

Another group has shown that even after 15 months of vaccination with GNP/M2e+
CpG conjugate, the mice retained M2e-specific neutralizing antibody production and
could survive the lethal H1N1 challenge. They suggested that the vaccinated mice could
effectively retain the memory B cells specific to the M2e peptide used [105].

Two intraperitoneal doses of M1 antigen of influenza virus conjugated with 15 nm
GNP led to a higher titer of neutralizing antibody production along with the synthesis of
IFN-γ and interleukins (ILs) 1β and 6. The activation of spleen lymphocytes and peritoneal
macrophage respiration was also reported [106].

Another study proposed the use of more than one antigen against influenza in the same
vaccination dose. They prepared and administered GNPs conjugated with hemagglutinin
and flagellin of the H3N2 influenza virus. This vaccination process generated stronger
systemic and mucosal immunity and better protected the animals from the lethal influenza
challenge, compared to when a single antigen conjugate was used [107,108].

Many other vaccination processes have been developed against viral pathogens. A
few of them are highlighted in Table 1.

Table 1 some of the studies focusing on the use of GNP-based nanovaccines against
viral pathogens. Surface proteins from the viruses are tagged on the GNP to develop
the nanovaccines. Most of the studies focus on mice models for demonstrating immune
activity. The key factor of these studies is the successful development of the antibodies
with neutralizing capacity [114]. Although one study reports the effectiveness of their
novel GNP vaccine to be superior to the commercially available one [109], many other
studies lack this important criterion to investigate. Enhanced activity by the professional
antigen-presenting cells, such as dendritic cells and macrophages, is reported [110–112,114].
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Table 1. Use of GNP based nanovaccine against viral pathogens.

SN Antigen Conjugated with AuNP GNP/Adjuvant Immunization Mechanism Immune Response Ref.

1 Surface antigens spike glycoprotein
of avian coronavirus

Virus-like particles (VLP) by incubating
the antigen with 100 nm AuNPs

Dose: Single, 10 µg
Mode: Intramuscularly

Animals: BALB/C mice and
specific pathogen-free chickens

1. Showed increased antigen delivery to
lymphoid organs.

2. An enhanced response of spleen T cells.
3. Higher antibody titers.
4. A reduction in symptoms of

infection.(Comparative study with a
commercial vaccine also showed that the
AuNP conjugate provided better
protection against the virus.)

[109]

2 Surface antigens
gastroenteritis virus Conjugated with 15 nm AuNPs

Guinea pigs twice subcutaneously
with 125 µg, mice once

intraperitoneally with 70 µg, and
rabbits three times subcutaneously

with 220 µg

1. Increased the level of IL-6, IFN-γ, IL-1β in
the blood plasma.

2. Higher respiratory activity of peritoneal
macrophages and spleen lymphocytes.

3. Activation of humoral immunity; increase
in the number of follicles in the spleen.

[84,110]

3 Glycoprotein antigen of respiratory
syncytial virus Nanorods Human cell treatment in vitro

Human dendritic cells induced an immune
activation (proliferation and expansion) of
primary T cells.

[111]

4 Glycoprotein isolated from fixed
rabies virus, strain Moscow 3253 Conjugated with 15 nm AuNPs

Animal: Mice
Mode: Intraperitoneally

Dose: 25 µg in four booster doses,
50 µg was used

Develop highly specific neutralizing antibodies
against the virus. [112]

5
Surface glycoprotein (gB) of

human cytomegalovirus
(CMV, a herpes virus)

Conjugated with AuNP In vitro

1. Viral replication blocked.
2. Virus-induced cytopathogenic

effects blocked.
3. Virus spread in cell culture decreased

without generating cytotoxicity.
4. Cells gained resistance to CMV infection

post-treatment.

[113]
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Table 1. Cont.

SN Antigen Conjugated with AuNP GNP/Adjuvant Immunization Mechanism Immune Response Ref.

6 West Nile fever virus
Multiple sizes and shapes of AuNPs used:

20 and 40 nm nanospheres, 40 × 20 nm
nanorods, and 40 × 40 × 40 nm nanocubes

Animal: Mice
Mode: Intraperitoneally

Dose: 100 µg
No. of doses: 2

1. 40 nm nanospheres induced the highest
level of specific antibodies.

2. The dendritic cells and macrophages
absorbed larger numbers of nanorods.

3. IL-1β and IL-18 synthesis increased while
using nanorods, while nanospheres and
nanocubes resulted in higher synthesis of
TNFα, IL6, IL12, and
granulocyte-macrophage
colony-stimulating factor.

[72]

7 Capsid (Cap) protein from
pathogenic porcine circovirus Conjugated with 23 nm GNPs In vitro and mice immunized

twice subcutaneously

1. Increase in Cap protein phagocytosis.
2. High production of virus-neutralizing anti-

bodies.(Similar results were obtained with
classical swine fever virus antigen.)

[114]
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Expert opinion and future perspectives on Section 5 and Table 1: Most of the studies
regarding the antiviral use of GNP-based vaccination programs focus mostly on the hu-
moral or antibody-based immune protection by the host. Antibody titers are taken as the
primary consideration to evaluate the efficacy of the novel immunization program. The
cell-mediated immunity and particularly the maturation differentiation activation status of
the dendritic cells, T cell subtypes, etc. (Figure 2B,C), are not studied in detail in many of
these studies. Studying in depth this branch of immunity might answer various questions
that are yet to be addressed.

Apart from the GNP-based influenza vaccine development (Section 5.5.), most other
studies have not explored the possibility of the use of multiple protein epitopes of the
pathogens conjugated to the GNP surface. Studying that aspect might expand the possibility
of conferring a broad protective immunity against the pathogen. Future studies of isolating
the memory cells (Figure 2D) from the vaccinated host and transferring them to naïve
animals might be interesting for exploring the possibility of long-term immune protection.
The comparative profiles of the routes of administration of the novel GNP-based vaccines
are not disclosed or presented in most of these studies. Each study has shown either
subcutaneous or intramuscular or intraperitoneal mode of delivery. The question remains
on the possibility of a better immune response by the host if the vaccine is delivered through
other delivery routes.

6. Use of GNP in Antibacterial Immunization

GNP is used for designing and delivering antigens for immunization in a number
of bacterial infections. In some cases, it also acts as an adjuvant. Antigenic fragments
from bacterial sources are tagged along with the GNP to stimulate the immune response
generated against them.

A vaccine against the N terminal domain of the flagellin subunit of Pseudomonas
aeruginosa along with GNP and Freund’s adjuvant induces a better IgG response [23].
Two antigens from Francisella tularensis were isolated and conjugated with 15 nm GNP to
immunize the animals and obtain antitularemia sera rich in neutralizing antibodies [115]. In
another study, 15 nm GNP was used as the adjuvant for the first time during the preparation
of antibodies against the surface of the antigens of Yersinia pseudotuberculosis [116].

Another group studied the efficacy of the antibodies raised against F1 antigens of Y.
pestis after coating it on 15 nm GNP. It helped elicit igG2a levels, interferon gamma, and
Th1 cell activation [21]. Similarly, synthesized surface antigens of Salmonella typhimurium
were also coated on GNPs and were reported to have better immunogenic properties in
the clearance of the bacteria [117]. Non-immunoactive mono- and disaccharides derived
from capsular polysaccharides of Neisseria meningitidis were coated on GNP and reported
to have better T cell activity, MHCII presentation, and immune properties [118].

Several other uses of GNPs in the immunization process against bacterial infection are
discussed in Table 2.

Table 2 some of the studies focusing on the use of GNP-based nanovaccines against
bacterial pathogens. Successful production of neutralizing antibodies is the key to combat-
ing pathogens. These studies demonstrate that the GNP-based nanovaccine formulation
can successfully combat these bacteria. The use of adjuvants makes the nanoformulations
perform better [26,121–123]. The activation of the T cell subsets in most of these studies is an
indicator of dual combating potential by means of cell-mediated and humoral-mediated im-
munity. It is interesting to note that there is only a minor difference in the immune response
based on the route of administration. Some studies use more than one route of vaccine
delivery [24,119,121–123]. The cytokine response is inclined to a pro-inflammatory or Th1
immune response [19,121–123], creating ideal conditions for the clearing of the pathogens.



Vaccines 2022, 10, 505 11 of 22

Table 2. Use of GNP based nanovaccine against bacterial pathogens.

SN Antigen Conjugated with AuNP GNP/Adjuvant Immunization Mechanism Immune Response Ref.

1 Listeriolysin O peptide (LLO91-99)
from Listeria monocytogenes Conjugated with AuNP

A single intravenous or
intraperitoneal immunization

of mice

1. Increase in the number of splenic CD4+
and CD8+ T cells, NK cells, and CD8α+
dendritic cells specific T cell response.

2. An increase in the synthesis of the
cytokines IL-12, TNF-α, IFN-γ, and
MCP-1.

3. Newborn mice born to vaccinated females
were healthy and bacteria-free.

[95,119]

2

A synthetic tetrasaccharide epitope,
similar to the capsular

polysaccharide of Streptococcus
pneumoniae type14

Conjugated with 2 nm AuNP + T
helper peptide

Animal: Mice
Dose: 3 µg

Mode: Intradermal
No. of doses: 1

1. Specific high-titer IgG.
2. Increase in the level of the cytokines IL-2,

IL-4, IL-5, IL-17, and IFN-γ.
3. Increased phagocytosis of type 14 bacteria

stimulated by antisaccharide antibodies.

[25,120]

3 Bacterial vesicles of the outer
membrane of Escherichia coli Conjugated with 30 nm AuNPs Injected in mice three

times subcutaneously

1. Rapid maturation and activation of
dendritic cells in the lymph nodes.

2. Increase in higher avidity antibodies.
3. Enhancement of IFN-γ and IL-17,

indicating strong Th1 and Th17
cellular responses.

[19]

4 Tetanus toxoid Clostridium tetani
Conjugated with 25 nm AuNPs + plant

adjuvants (saponins) from Quillaja
saponaria (79) and Asparagus racemosus (80)

Subcutaneous injection, or
transmucosal delivery

Oral administration highly enhanced mucosal
immune response in the presence of
plant adjuvants.

[121–123]

5

Burkholderia mallei recombinant
protein: Hc fragment of tetanus
toxin, hemolysin (produced by

both B. mallei and B. pseudomallei),
and flagellin (produced by

B. pseudomallei)

15 nm AuNP functionalized with purified
LPS from a nonvirulent

B. thailandensis strain

BALB/C mice, intranasal,
3 different dose concentrations

1. Generated significantly higher antibody
titers compared with LPS alone.

2. Improved protection against a lethal in-
halation challenge of B. mallei in the
murine model of infection.

[26]
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Table 2. Cont.

SN Antigen Conjugated with AuNP GNP/Adjuvant Immunization Mechanism Immune Response Ref.

6
7.5 µg of tuberculin (mixture of the
surface antigens of various types

of mycobacteria)
Conjugated with 15 nm AuNPs Rabbits, four times intramuscularly High antibody production against multiple

types of mycobacteria. [29,30]

7

Specific immunogenic antigens
LomW and EscC from

enterohemorrhagic strain E. coli
O157: H7

Conjugated with AuNP Mice, three times subcutaneously,
2-week intervals

1. Higher-titer IgG and IgA.
2. Serum IgG titer increase correlates with

the decrease in the intestinal colonization
of E. coli.

3. Reduced the adhesion of E. coli O157: H7
and two different E. coli pathotypes
to humans.

4. Bactericidal properties of intestinal
epithelial cells specific to
antigen generated.

[20]
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Expert opinion and future perspectives on Section 6 and Table 2: It is more common
to take vaccines against the virus than bacterial pathogens. Although most of the studies
here show promising results for the use of vaccines against multiple types of bacteria, it
is not yet clear how the host benefits from the antibacterial vaccines in comparison to the
available antibiotics. It would be relevant to compare the controlled drug release via GNPs
in the infectious site with that established in many GNP-based cancer vaccination programs.
Many FDA-approved drugs and antibiotics are used to conjugate with GNP for various
treatment possibilities. Some of these antibiotics are Ciprofloxacin [9], Lincomycin [10],
Vancomycin [11], Ampicillin [12], Cefaclor [13], Rifampicin [14], and Kanamycin [15].

Most of the animal studies discussed in Section 6 and Table 2 did not follow up with
the host for a considerable period after the vaccination. Thus, the duration and the strength
of the immune protection conferred by these vaccines remain unclear. Gold nanoparticles
are reported to have adjuvant properties for boosting the immune system. It would be
interesting to study what proportion of the host immune protection is derived from the
GNP alone as compared to the combination of other adjuvants used in these studies. In
Table 2, most of the GNPs used range from 15 to 25 nm in size. As it is already well known
that the size of the GNP influences the immune response, it would be useful to study the
comparative account of the use of differently sized GNP in these studies.

7. Use of GNP in Anti-Parasitic Immunization

Some parasitic infections are being studied where GNP plays a critical role in generat-
ing the immune response in the host to combat the infections. The following table describes
a few of them.

Table 3 some of the studies focusing on the use of GNP-based nanovaccines against
parasitic pathogens. The activation of both MHC I and II was reported, along with both
the CD4T and CD8T response [124]. These are the keys to fighting against pathogens. The
high titers of specific antibodies [31,32] with better host responses against the pathogens
were observed.

Expert opinion and future perspectives on Section 7 and Table 3: The studies aiming at
GNP-based vaccination in parasitic diseases are relatively few, and there are various scopes
to improve and explore. Plasmodium falciparum is one key pathogen mostly studied by
various groups because of its wide prevalence and potential to cause deaths worldwide.

In the previous three sections of this review, we discussed the successful laboratory im-
plementation of GNP-based nanovaccines. It would be interesting to explore and carry out
a comparative study of treatment with the antibody synthesized by using GNP-conjugated
antigens side-by-side with the GNP nanovaccine formulations to determine which treat-
ment works best in a particular infection. GNPs conjugated with the antigens, haptens, and
adjuvants (such as Freund’s or alum) of various pathogens have been used to obtain the an-
tibodies. Some of these pathogens are dengue viruses [16], foot-and-mouth disease [17,18],
influenza [19], Escherichia coli [20], Yersinia [21], tetanus toxoid [22], Pseudomonas aerugi-
nosa flagellin [23], Listeria monocytogenes [24], Streptococcus pneumoniae [25], Burkholderia
mallei [26,27], Neisseria meningitides [28], tuberculin [29,30], and malaria plasmodium surface
proteins [31,32].
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Table 3. Use of GNP based nanovaccine against parasitic pathogens.

SN Antigen AuNP/Adjuvant Immunization Mechanism Immune Response Ref.

1 Recombinant protein from rSm2
Schistosoma mansoni Gold nanorods conjugated Mice immunization

intraperitoneally with 2 µg dose

• Th1 immunological response.
• Higher production of IFN-γ, mostly by

CD4+ and CD8+ T cells.
• Activated dendritic cells (in vitro).
• Increase in the expression of MHCI and

MHCII and the synthesis of IL-1β.

[124]

2 Surface protein Pfs25 from the
P. falciparum

Attached to various AuNPs, including
nanospheres, nanostars, nanocages,

and nanoprisms

Mice were immunized with the
resulting conjugates.

Dose: 10 µg, three times,
intramuscularly

• High-titer antibodies.
• The highest titers were obtained with gold

nanospheres and nanostars.
• The antibodies blocked the transmission of

parasites to mosquitoes in
membrane-feeding assays.

[32]

3

C-terminal 19 kDa fragment of
merozoite surface protein 1 from

the malaria pathogen
Plasmodium falciparum

17 nm AuNP conjugated
+ adjuvant Alhydrogel®

Mice were immunized three times
subcutaneously at a dose of 25 µg

• Antibodies produced against the weakly
immunogenic peptides.

• It blocked the invasion of P. falciparum in
an in vitro assay.

[31]
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8. Limitations of the GNP

The use of the GNP shows some promising results in nanovaccine development
technology. Still, it is not free from limitations. GNP, being a non-biodegradable agent,
can easily be accumulated in vivo, which eventually might lead to certain side effects.
Such non-porous and non-biodegradable properties might impair GNPs’ impact on the
encapsulation and the timed or targeted release.

Biosafety is a major concern when using any nanomaterial. A research group has
shown that encapsulated GNP conjugated with fluorescein isothiocyanate (FITC) sup-
presses reactive oxygen species and cytokine secretion from the macrophages [125]. GNP
size-dependent toxicity is reported with smaller diameters (1–2 nm) that can be internal-
ized by cells and organelles such as nuclei and mitochondria, leading to the induction
of irreversible cellular damage [126,127]. GNPs more than 15 nm in diameter are mostly
localized to the cytoplasm without being uptaken by the organelles [127]. Meanwhile,
20 nm GNPs cause oxidative stress, activate the autophagic pathway, and finally lead to
genomic instability [128]. Other groups have shown lysosome impairment [129] and higher
mitochondria [130], endoplasmic reticulum, and Golgi apparatus [131] accumulation of
GNPs within the cell. Thus, we can see reports of the disruption of cellular metabolism due
to the accumulation of GNPs in cells and their organelles.

The low penetration depth of GNPs due to the photothermal effect is a limiting factor
to release the drugs or vaccinating agents into the depth required, leading to lessened
immunoregulatory activities [132]. Surface modifications on the GNPs can lead to the
alteration of the histocompatibility and pharmacokinetic parameters [133]. Thus, each
variant of the GNP must be characterized individually before being used in therapeutic or
clinical settings.

Moreover, there is still a lack of in-depth understanding about GNPs’ influence upon
interaction with different cell types, especially after the modifications. Although reports
suggest the formation of reactive oxygen species (ROS), oxidative stress and cell cycle
impacts with induced DNA damage are also possible biological cellular responses [134–137].
GNPs coated with 1.4 nm triphenyl monosulfonate induced oxidative stress within the cells,
with mitochondrial potential loss leading to necrosis [138]. The endogenous redox capacity
of the cells was also impaired by GNPs by depleting the naturally available antioxidants in
the cells [138].

Positively charged GNPs are reported to have a more toxic effect due to their propen-
sity toward negatively charged DNA and cell membranes. However, both positively and
negatively charged GNPs, and not neutrally charged, have been reported to have harmful
impacts leading to mitochondrial stress [139,140].

9. Discussion and Future Perspectives

In this review, we discussed the promising potential of the gold nanoparticle for
prophylactic and therapeutic purposes. Advancements in the field of nanotechnology
coupled with vaccine research have paved the way for successful nanovaccine development
for combating many deadly infections. Being relatively safe to administer in humans, GNPs
are widely used in the development of vaccines for many diseases, ranging from cancer to
infections. Some of the vaccines developed against different cancer forms are in clinical
trials and show promising outcomes. The summarized advantages and limitations of the
GNP in its use in the vaccine development process are tabulated in Box 1.

The properties of gold nanoparticles and the ease of their usage and functionalization
make them attractive to researchers. Attaching the isotopes or fluorochrome tags or
optical probes with gold nanoparticles and targeting them to specific cells by attaching the
antibodies or targeting ligands remarkably helped the advancement of optical imaging
techniques, as well. Another success of using GNPs has been achieved in obtaining
the antibodies for immunological identification of different pathogens in biosensor or
microscopic methods. GNP antigen-conjugated vaccines are reported to protect animals
from a lethal dose of virulent challenge with a 100% survival rate [140].
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Box 1. Advantages and limitations of the use of GNPs in the vaccine development process.

Advantages

1 Biocompatible
2 Easy synthesis process
3 Size- and shape-dependent varied immune response
4 Colloidal stability
5 Optical properties
6 Efficiency in molecule loading on the surface
7 Surface functionalization flexibility and multi functionalization property
8 Can be designed for targeted delivery and controlled release of drugs
9 Photothermal conversion potential
10 Inherent adjuvant potential
11 Usage in imaging techniques
12 High binding affinity with wide range of molecules
13 Higher surface area to volume ratio
14 Large surface energy and charge

Disadvantages/Limitations

1 Non-biodegradable
2 Non-porous
3 Limited penetration depth
4 Altered biodistribution profile upon surface modification
5 Surface functionalization-mediated toxicity and pharmacokinetics issues
6 Limited knowledge of impact on multiple cell types
7 Clearance by macrophage phagocytosis system and renal pathway
8 Accumulation in cellular organelles such as mitochondria, lysosomes, etc., hampering

normal cellular metabolism and ROS production

There are certain concerns regarding the role of GNPs in the inhibition of Th1 response,
which is crucial in combating many pathogenic infections. Only one study reported the
enhancement of Th1 as well as Th17 immune response; the authors used the Listeria antigen
along with the combination of Advax and 25 nm GNP adjuvants [24]. Most of the other
studies highlight the increase in the Th2 response post-GNP administration. However, this
shortcoming inactivation of the proinflammation by the GNPs themselves is overcome
mostly by the antigens or drugs they are carrying or the cells they are targeting via the
attached ligands.

To improve prospects regarding the use of GNPs in vaccine development and in
clinical settings, there is a pressing need to address certain issues. Firstly, there must be
a large-scale production setup for GNPs with a high level of consistency. As we have
addressed before, multiple variable factors such as charge, size, and shape all impact the
cells in different ways. Thus, we need to be clear and cautious about each change that we
are implementing. We have also noticed that most labs are working with GNP sizes ranging
from 15 to 50 nm. Moreover, nanoshell-structured GNPs are most often used rather than
other shapes such as nanocage, nanorods, nanocubes, etc. Therefore, we lack knowledge of
the GNPs sized or shaped differently than as mentioned.

Secondly, it is important to characterize with better clarity the GNPs’ impact upon
interaction with immune cells. We believe a detailed investigation of immune cells in the
presence of functionalized or empty GNPs will be helpful for answering various questions.
Third, the biodistribution of the GNP must be evaluated in further detail, with special
emphasis on the off-target cells and organs. Most studies highlight only the organs or cells
or the disease pathogen and do not consider the possible accumulation of the nanomaterial
in other organs. This leads to our fourth concern: nanotoxicology. As already discussed, the
GNP is a non-biodegradable substance; thus, there may be a need to develop a synthesis or
tagging method that can make it less toxic or better suited for clearance.

Fifth, the protein coating formed outside the GNP surface upon in vivo introduction
(also known as bio-corona) is a problematic factor for the efficacy of the conjugated antigens
on its surface. This bio-corona formation blocks the coating antigens and materials from
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interacting with in vivo cellular physiology. Sixth, as there is no specific dosage yet, the
problem remains of replicating the success observed in animal experiments in early clinical
trials. The standardization and normalization of the dose must be established.

Seventh, a key important issue that needs to be addressed is how to fashion the GNP
so that it can evade clearance by MPS or by renal excretion before its intended action.
Studies have suggested coating GNPs with PEG, polyvinyl alcohol, poly (acrylic acid),
or biomolecules such as glutathione or albumin to prevent bio-corona formation and
MPS-based clearance and provide stability with relative less off-target toxicity [64,141,142].
Eighth, as the use of gold always bears a cost, logistical concerns regarding the manufacture
and distribution of such vaccines across a wide range of populations must be considered.

Future work should address the impact of the combination strategies with GNP-based
delivery along with photothermal therapy. It would also be interesting to explore the
optical properties of GNPs in combination with thermal therapy in inflammatory responses.
We expect that although some of the GNP-based nanoformulations discussed in this review
might be translated into clinical settings, it is vital to address the multiple challenges
associated with GNPs. Therefore, of paramount importance are the balanced testing and
validation of their safety before establishing them in biomedical applications.
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