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Abstract

The heterogeneous manifestations of MYH9‐related disorder (MYH9‐RD), character-

ized by macrothrombocytopenia, Döhle‐like inclusion bodies in leukocytes, bleeding

of variable severity with, in some cases, ear, eye, kidney, and liver involvement, make

the diagnosis for these patients still challenging in clinical practice. We collected

phenotypic data and analyzed the genetic variants in more than 3,000 patients with a

bleeding or platelet disorder. Patients were enrolled in the BRIDGE‐BPD and

ThromboGenomics Projects and their samples processed by high throughput

sequencing (HTS). We identified 50 patients with a rare variant in MYH9. All patients

had macrothrombocytes and all except two had thrombocytopenia. Some degree of

bleeding diathesis was reported in 41 of the 50 patients. Eleven patients presented

hearing impairment, three renal failure and two elevated liver enzymes. Among the

28 rare variants identified in MYH9, 12 were novel. HTS was instrumental in

diagnosing 23 patients (46%). Our results confirm the clinical heterogeneity ofMYH9‐
RD and show that, in the presence of an unclassified platelet disorder with

macrothrombocytes, MYH9‐RD should always be considered. A HTS‐based strategy is

a reliable method to reach a conclusive diagnosis of MYH9‐RD in clinical practice.

K E YWORD S

ACMG guidelines, clinical diagnosis, genomics, high throughput sequencing, MYH9‐related
disorders, variant classification

1 | INTRODUCTION

Nonmuscle myosin heavy chain 9 related disorder (MYH9‐RD) is a

rare autosomal‐dominant syndrome characterized by large/giant

platelets and thrombocytopenia associated with the presence of

Döhle‐like inclusion bodies in neutrophils (Kunishima et al., 2003).

Clinical manifestations include a mild to moderate bleeding tendency

(Orsini et al., 2017) and the risk of developing progressive

nephropathy, sensorineural deafness, pre‐senile cataract, or altera-

tion of liver enzymes during infancy or adult life (Balduini, Pecci, &

Savoia, 2011; Pecci et al., 2012; Pecci, Ma, Savoia, & Adelstein, 2018).

The disease is caused by heterozygous variants in MYH9, the gene

coding for the heavy chain of nonmuscle myosin of class IIA

(NMMHC‐IIA), a 1,960 amino acid residue protein involved in

platelet cytoskeletal contraction, granule secretion, and in the Rho

GTPases and Ca2+/calmodulin signaling pathways (Vicente‐Manza-

nares, Ma, Adelstein, & Horwitz, 2009). MYH9 is located on

chromosome 22q12‐13 and is composed of 41 exons. The coding

region from exons 2–19 encodes for the globular head domain (HD),

exon 20 for the neck region, and exons 21–40 for the coiled‐coil tail
domain (TD). The final 34 amino acid residues of the C‐terminal

nonhelical tail domain (NHTD) are encoded by exon 41.

About 101MYH9 variants are listed in the Human Gene Mutation

Database (HGMD, public version, as of July 2019; Stenson et al.,

2017): 72 missense/nonsense, 4 splicing substitutions, 25 deletions/

insertions. Some cases of somatic or germinal mosaicism have also

been described (Gresele et al., 2013; Kunishima et al., 2005;

Kunishima, Takaki, Ito, & Saito, 2009).

Genotype–phenotype correlation studies inMYH9‐RD patients have

reported that variants in the HD are associated with more severe

thrombocytopenia and a higher frequency and/or a more rapid

progression of nephropathy and deafness than variants in the TD, with

the amino acid substitution p.Arg702Cys resulting in the most severe

phenotype reported to date (Pecci et al., 2014; Pecci et al., 2008b;

Saposnik et al., 2014). However, some exceptions exist: the p.As-

p1424His variant which lies in the TD, is also associated with a high risk

of developing syndromic manifestations. Moreover, patients carrying

variants at the interface between the SH3‐like motif and the motor

domain (MD) of the HD (SH3/MD interface), present a mild clinical

phenotype consisting of mild macrothrombocytopenia and delayed risk

of sensorineural deafness (Pecci et al., 2014).

The diagnosis of MYH9‐RD requires skilled laboratory investiga-

tions, including the correct assessment of the degree of thrombocy-

topenia, made difficult by the abnormal size of platelets, the

identification of macrothrombocytes, and the determination of the

presence of Döhle‐like inclusion bodies in neutrophils on a blood

smear (Balduini et al., 2003). The latter test is performed by

May–Grünwald–Giemsa (MGG) staining or through the identification
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of NMMHC‐IIA aggregates by immunofluorescence (Kunishima et al.,

2003; Pecci et al., 2008b), a test which is not available in most of the

hematology diagnostic laboratories despite its high sensitivity.

Moreover, heterogeneity in the syndromic manifestations can

complicate the interpretation of the clinical presentation. The

identification of the causal MYH9 variant in a patient is key to reach

a conclusive diagnosis, predict the course of extra‐hematological

symptoms and consequently implement a personalized clinical

monitoring and therapeutic approach (Pecci et al., 2010a; Pecci,

Granata, Fiore, & Balduini, 2008a). HTS techniques represent a

comprehensive and cost‐effective strategy for diagnosing inherited

bleeding, thrombotic and platelet disorders (BPDs; Simeoni et al.,

2016; Zhang et al., 2016). The efficacy of HTS in patients with

uncharacterized macrothrombocytopenia has been recently demon-

strated (Rabbolini et al., 2017). Here, we report the patients with rare

MYH9 variants discovered after genome sequencing of 1,481

subjects enrolled in the BRIDGE‐BPD study and 1,550 patients

enrolled in the clinical diagnostic ThromboGenomics study (Simeoni

et al., 2016). We identified 28 causal rare MYH9 variants in 50

patients (44 index cases), 20 with a diagnosis of MYH9‐RD based on

the presence of macrothrombocytopenia, Döhle‐like bodies and an

extra‐hematological phenotype in some cases but without genetic

confirmation, 11 with suspected but unconfirmed MYH9‐RD, and 19

in whom MYH9‐RD was not previously suspected despite an expert

evaluation of their clinical and laboratory data. We describe the 28

MYH9 variants identified, 12 of which are novel, and classify the

variants for pathogenicity and contribution to phenotype. We also

describe the phenotypic profiles of thisMYH9‐RD cohort, adding new

insight into genotype–phenotype correlations and expanding the

knowledge of this rare inherited platelet disorder.

2 | METHODS

2.1 | Patient cohort

Patients gave their written informed consent and were enrolled

through two main projects: the NIHR BioResource ‐ Rare Diseases

study (specifically, the BRIDGE‐BPD project) and the clinical

diagnostic ThromboGenomics study. The BRIDGE‐BPD project

includes patients with rare inherited BPDs of unknown etiology

who were screened mainly by genome sequencing and a small subset

by exome sequencing. DNA samples from BPD patients with clinical

and laboratory phenotypes indicative of a particular molecular

etiology were sequenced using the ThromboGenomics HTS test.

Inclusion criteria have been previously described (Simeoni et al.,

2016; Westbury et al., 2015). Ethics authorities and approval

numbers are provided in Table S1.

2.2 | Clinical and laboratory phenotypes

Clinical and laboratory phenotypes were submitted by the referring

clinicians as Human Phenotype Ontology (HPO) terms, as previously

described (Westbury et al., 2015). The severity of bleeding was coded

as numerical scores using the MCMDM‐1 VWD Bleeding Assessment

Tool (http://www1.wfh.org/docs/en/Resources/Assessment_Tools_

MCMDM‐1VWD.pdf). Centralized analysis of blood smears was

performed by two independent centers for the identification of

Döhle‐like inclusion bodies in patients who had either not been

tested or had received an initial negative result for the presence of

Döhle‐like inclusion bodies. Blood films obtained from patients and

from healthy controls were randomly analyzed by two operators

blindly. Inclusions in neutrophils were classified as type I, II, and III

based on their size, shape and pattern of distribution (Kunishima

et al., 2003; Pecci et al., 2008b). Information on hearing impairment,

renal and liver dysfunctions were also collected.

2.3 | Variant prioritization and assessment

Sequencing results were processed by using a single bioinformatic

approach as previously described (Greene, BioResource, Richardson,

& Turro, 2016; Simeoni et al., 2016; see also Supporting Information).

An average of five variants per patient remained after bioinformatic

filtering of variants and each of these variants was assessed following

the ACMG Guidelines (Richards et al., 2015) by a MultiDisciplinary

Team (MDT) composed of clinicians, clinical geneticists, bioinforma-

ticians and clinical scientists. The Congenica software (Congenica

Ltd., Hinxton, UK) was used to visualize the data and assign

pathogenicity and contribution to phenotype to each variant based

on the clinical picture, predicted consequence for the protein,

presence in the Human Gene Mutation Database (HGMD; Stenson

et al., 2017) and allele frequency in control datasets such as the

Exome Aggregation Consortium (ExAC; Karczewski et al., 2017) and

the genome Aggregation Database (gnomAD; Lek et al., 2016)). The

MDT also evaluated the minor allele frequency (MAF) of the variants

found in more than 13,000 participants enrolled in other non‐BPD
BRIDGE projects. The LRG transcript LRG_567t1 (NM_002473.5,

ENST00000216181.10) was used as the reference sequence.

Variants and their pathogenicity have been deposited in ClinVar

under accession numbers SCV000891130 to SCV000891157. They

are accessible by searching for the accession number (e.g.,

SCV000891130) or with the keywords “MYH9 AND NIHR AND

BioResource”(https://www.ncbi.nlm.nih.gov/clinvar/?term =

MYH9 + AND +NIHR + BioResource).

3 | RESULTS

3.1 | Novel MYH9 variants

Total of 3,031 patients were enrolled in the BRIDGE‐BPD and

ThromboGenomics studies and screened for rare variants in the MYH9

gene. We found 74 individuals with a variant in theMYH9 gene, however

only 50 patients were considered for this study. The remaining 24 were

excluded for the following reasons: (a) theMYH9 variant was also present

in other non‐BPD patients; (b) the platelet disorder and/or phenotype

was not compatible with MYH9‐RD (e.g., thrombocytosis); (c) the

phenotype was explained by the presence of a causal variant in another
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gene; (d) the MYH9 variant was also identified in an unaffected family

member. All the patients excluded from this study and the reasons for

their exclusion are shown in detail in Table S2.

In the remaining 50 patients analyzed, of whom 44 are index cases,

we found 28MYH9 variants, namely 21 missense, three frameshifts, two

stop gains, one in‐frame deletion, and one in‐frame insertion. The

variants identified were positioned in 11 of the 41 exons of the MYH9

gene (Figure 1). Of the 28 variants, 12 were absent from the HGMD

database (public version, as of July 2019, Stenson et al., 2017), the

literature and all other publicly accessible MYH9‐RD databases at

the time of the analysis (Table 1). Of the novel variants, three affect the

SH3/MD interface of the globular MYH9 head, including a new c.97T>G

transversion in exon 2, leading to p.Trp33Gly amino acid change, an in‐
frame deletion p.Asp37_Ser39del and one missense variant p.Phe41Ser

caused by the c.353T>C transition. In silico protein modeling predicts

that these three variants may disturb the hydrophobicity of the SH3/

MD interface (Figure S1). We also found eight novel variants localized in

the coiled‐coil domain. These include one missense variant p.Glu921Lys

and a nonsense variant p.Gln890Arg*, leading to a premature stop

codon causing the formation of a shorter MYH9 protein of 890 amino

acids, both in exon 22; one in‐frame insertion p.Gln1068_Leu1074dup in

exon 25 and five missense variants, p.Ser1195Leu in exon 27,

p.Glu1421Ala and p.Gln1434His in exon 31, p.Asp1649Gly and

p.Met1678Val in exon 33. In the nonhelical tail domain of the protein,

we found one further novel variant and a frameshift leading to a

premature stop in the protein, p.Gly1938Alafs*10. The read coverage of

whole genome sequencing (WGS) and targeted sequencing results for

the 12 novel variants (in 11 patients) are shown in Figure S2.

3.2 | Variant pathogenicity and contribution to
phenotype

The MDT assigned pathogenicity and contribution to phenotype to each

variant according to the clinical features of each patient following the

ACMG Standards and Guidelines (Richards et al., 2015; shown in

Table 1). The choice of the transcript for variant reporting was based on

transcript and protein lengths, and expression in blood cells according to

the Blueprint data (Javierre et al., 2016). Eleven MYH9 transcripts are

expressed in the different blood cells, but only three of them are protein

coding. ENST00000216181 (NM_002473, LRG_567t1) is the longest

transcripts (7,501 base pairs (bp), corresponding to a protein with the

expected 1,960 amino acids (aa) length), with an equivalent in the RefSeq

F IGURE 1 Schematic representation of the heavy chain A of nonmuscle myosin class IIA (NMMHC‐IIA) and variants position. (a) Schematic
representation of NMMHC‐IIA protein. Nonmuscle myosin II A shows a hexameric structure consisting of two heavy chains, namely
NMMHC‐IIA, and two pairs of light chains. Each heavy chain includes a N‐terminal globular head domain (HD), a neck region which binds the
light chains, and a C‐terminal α‐helical coiled‐coil tail domain (TD), which ends with a nonhelical tail domain (NHTD) involved in the subcellular

localization of the protein. The HD includes four subdomains: the N‐terminal SRC‐Homology 3 like motif (SH3), the upper and lower 50 kDa
subdomains, that together form the motor domain (MD), and the converter subdomain. In green the globular HD, in violet the neck domain and
in blue the coiled coil TD with the NHTD at the 3′‐UTR in orange. (b) Affected exons and variants identified. The most affected exons are

highlighted with red stars. The novel variants are shown in bold and the number in brackets is the patient ID number. Colors reflect protein
domains. All variants described were confirmed by Sanger sequencing. The * indicates the two mutations identified in the same patient (39).
#*,^,°,// represent members of the same family. 3′‐UTR, 3′‐untranslated region
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database (NM_0024736). This is the most expressed transcript in

platelets, while its expression is lower in neutrophils and megakaryocytes

and much lower in erythroblasts. Of the two remaining protein coding

transcripts, ENST00000401701 is much shorter (789 bp, 218aa) and

markedly less expressed; ENST00000456729 is also shorter (449 bp,

103aa) and absent (log2(FPKM) <1) in blood cells (Figure S3). For these

reasons, ENST00000216181 (NM_002473) was used for variant report-

ing. This is also the transcript subsequently selected by LRG (LRG_567t1).

The MDT classified the novel variants as follows: the three variants in

exon 2 found in patients 1, 2, and 3, as likely pathogenic (in patient 1) and

variant of uncertain significance (VUS; in patients 2 and 3) with full

contribution to phenotype. The stop gain p.Gln890Arg*, in patient 20,

was classified as VUS with full contribution to the phenotype. Based on

the high impact of the variant on the MYH9 protein causing a premature

stop, the variant might be considered to be likely pathogenic. However,

we have not been able to perform any functional tests due to the

difficulties of recalling the 86‐year‐old patient, thus we remained

conservative and classified this variant as VUS. The in‐frame insertion

Gln1068_Leu1074dup and the frameshift variant, p.Gly1938Alafs*10,

were considered VUS and likely pathogenic with full contribution to the

phenotype, respectively. The six novel missense variants (present in

patients 28‐29‐37‐39‐40) identified in the coiled‐coil domain of the

MYH9 protein were classified as VUSs with full contribution to

phenotype. The referring clinicians of these five patients with a VUS

variant, were re‐contacted to arrange cosegregation studies. Pedigree

analysis was possible only for two of these patients. This has confirmed, in

patient 28, the absence of the variant in the nonaffected mother and in

patient 39 the presence of the same variant in the daughter affected with

mild thrombocytopenia. The pathogenicity and contribution to phenotype

assigned to the remaining nonnovel variants are listed in Table 1.

For all the variants identified in this study we investigated the

evolutionary conservation in the MYH9 protein domains. We found

that all pathogenic, likely pathogenic and VUS variants affect highly

conserved amino acid residues providing further confidence that the

variants identified have an impact on MYH9 protein function and

consequently on the patients’ phenotypes (Figure 2).

3.3 | Immunofluorescence analysis

At enrollment, the presence of Döhle‐like inclusion bodies was

reported only in 21 (42%) of the 50 patients analyzed. Given that the

Döhle‐like bodies are reported to be invariably present in MYH9‐RD
patients, at least when analyzed by immunofluorescence, we recalled

the remaining 29 patients, initially labeled as Döhle‐like bodies

negative, for a centralized blood smear analysis (Table S3). Of these

29 patients, we obtained a fresh blood smear from 18 patients. An

abnormal neutrophils MYH9 distribution was found in all 18 (100%)

patients when analyzed by immunofluorescence and in 11 patients

(61%) when analyzed by the MGG staining, in accordance with

previous results (Balduini et al., 2011).

F IGURE 2 Evolutionary conservation variant analysis. From the outer to the inner circle. MYH9 protein domains: in green the N‐terminal

globular head domain (HD), in purple the neck domain, in blue the C‐terminal α‐helical coiled‐coil tail domain (TD) and in orange the 3′‐UTR.
Evolutionary conserved regions in the MYH9 protein in gray. All the pathogenic, likely pathogenic and VUS variants affect highly conserved
amino acid residues. Variant minor allele frequency (MAF) in gnomAD database is represented by green bars. Smaller is the green bar lower is

the allele frequency. Variants present in ClinVar and LOVD are represented by blue bars. The height of each blue bar represents the number of
patients previously described with the same variant. Variants in this cohort previously seen in the literature include ‘pathogenic’ and ‘likely
pathogenic’ variants, in red and orange, respectively. Novel variants in this cohort include ‘likely pathogenic” variants and VUS in orange and
black, respectively. 3′‐UTR, 3′‐untranslated region
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Immunofluorescence was performed for all the 11 patients with

novel variants, except for those in which the Döhle‐like bodies were

previously identified (patients 2, 3, 21, and 50) and in patients 37 and 39

not available for further analysis. In the remaining five patients, we

obtained the following results: in patients 1 and 20, neutrophils had

circular to oval shaped cytoplasmic spots that have been classified as

type II inclusions. In patients 28 and 40, neutrophils had speckled

inclusions and in patient 29 inclusions resembled small dots scattered

throughout the cytoplasm inclusions were classified as type III.

In conclusion, 33% of the all the 18 patients re‐analyzed had type

II inclusions and 67% type III myosin IIA inclusions (Table S3). An

example of the altered NMMHC‐IIA distribution in neutrophils in

patients with a pathogenic variant and VUS is shown in Figure 3.

3.4 | Phenotypic description of the MYH9‐RD
cohort and genotype–phenotype correlation

Our cohort includes 21 males and 29 females from 44 unrelated

pedigrees. The median age at diagnosis was 20 years (range 1‐76). Over

a third (19) of the patients were enrolled with a diagnosis of

‘unclassified platelet disorder’ while the remaining (31) had a suspected

(11) or known (20) but unconfirmed MYH9‐RD, based on family history,

presence of large/giant platelets, thrombocytopenia, presence of Döhle‐
like bodies and/or extra‐hematological symptoms.

Macrothrombocytes were present in all patients, while thrombo-

cytopenia, with various degrees of severity, was present in all but

two patients (17 and 40). The median platelet count was 54 × 109/L

(8‐220 × 109/L) from automated measurements and 48.5 × 109/L by

microscopic assessment, although the latter was only available for

eight patients (Table S4). The mean platelet volume (MPV) values are

shown in Table S5. Three cases had a normal MPV when measured by

automatic blood cell counting, however, macrothrombocytes were

noticed upon examination of their blood smears (Greinacher et al.,

2017; Kunishima et al., 2001a). Hematological and non hematological

symptoms are shown in Figure 4. Bleeding symptoms, mostly mild

mucocutaneous bleeding, were reported in 82% of the patients (41

out of 50). Bleeding scores, calculated by the MCMDM‐1 VWD

Bleeding Assessment Tool, are shown in Table S6. Of the 29 females

F IGURE 3 Döhle‐like inclusion bodies localization by NMMHC‐IIA immunofluorescence or MGG staining. Light microscopy and

immunofluorescence analyses of granulocytes in a healthy control (control), in patients (32 for immunofluorescence and 43 for light microscopy)
with a pathogenic variant (pathogenic) and in three patients (28, 29, and 40) with a variant of uncertain significance (VUS). The analysis was
performed by two independent centres: Panels I–V show results obtained by centre 1; Panels VI–X show results obtained by centre 2. Both

centres used rabbit antihuman NMMHCIIA Ab followed by Alexa‐Fluor 488‐conjugated secondary antibody. Results between the two centers
were highly comparable. The patient’s sample in which a pathogenic variant was identified shows circular to oval shaped cytoplasmic punctuate
spots, classified as type II inclusions (panels II and VII). Patients’ samples in which VUSs were identified show a speckled staining (panels III and
VIII and panels V and X, respectively), and many small dots scattered throughout the cytoplasm (panels IV and IX) classified as type III inclusions.

Panels XI–XV show May–Grünwald–Giemsa staining. Panels XII and XV show the presence of Döhle‐like bodies (arrowhead) in patients’
samples with a pathogenic variant (XII) and a VUS (XV). NMMHCIIA, nonmuscle myosin of class IIA; VUS, variant of uncertain significance
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enrolled, 11 (38%) had menorrhagia, one of the most common

symptoms reported by women with congenital platelet disorders.

Genotype–phenotype correlations were analyzed by plotting the

seven HPO terms representing the major MYH9‐RD clinical features

against the exons in which both previously described and novel

MYH9 variants were found (Figure S4). We first investigated the

correlation between the position of variants in the MYH9 protein and

the degree of thrombocytopenia, by dividing patients into two groups

according to the platelet count being below (severe/moderate) or

above 50 × 109/L (mild). We found that 39% of the patients with

severe thrombocytopenia have a variant affecting exons in the HD

and 61% of the individuals had a variant in the coiled coil domain

instead. Genotype–phenotype correlations were also studied for the

extra‐hematological manifestations of MYH9‐RD. Details on how

patients were screened for hearing impairment, renal dysfunction,

and liver enzymes alteration are summarized in Table S7. Nephro-

pathy was reported in patients 8 and 17, who carry p.Ser96Leu and

p.Arg718Trp variants, respectively. Patient 8 also has hearing

impairment. However, five other patients (10% of this cohort), two

unrelated individuals carrying the same variant, p.Ser96Leu (patients

7 and 9), and three pedigree members of case 17, carrying the

p.Arg718Trp, did not present any of these nonhematological

features. Hearing impairment was present in 22% of the patients:

8% with variants involving the HD, as expected, and 14% involving

the coiled‐coil and the NHT domains (Balduini, Pecci, & Noris, 2012;

Pecci et al., 2014, 2008b). Variants observed in patients with

bleeding symptoms were randomly distributed across the MYH9

domains, confirming a lack of genotype–phenotype correlation for

the bleeding phenotype (Pecci et al., 2014; Saposnik et al., 2014).

Moreover, no correlation was found even between platelet count and

bleeding tendency (Figure S5).

4 | DISCUSSION

MYH9‐RD, although rare, is considered the most frequent inherited

macrothrombocytopenia. In Italy, where a large active patient registry

was established in 2006, MYH9‐RD has an estimated frequency of 1 in

312,000, representing 12% of the inherited thrombocytopenias (Balduini

et al., 2012; Pecci et al., 2014). The complexity and variability of patients’

phenotypes can make the diagnosis ofMYH9‐RD rather challenging, even

by skilled clinicians at specialist centres. As a consequence, a significant

number of patients with MYH9‐RD are initially misdiagnosed as immune

thrombocytopenic purpura (ITP), and thus subjected to ineffective and

potentially harmful treatments, or classified as inherited platelet disorder

of unknown origin. In this scenario, HTS techniques may represent a

reliable method for the diagnosis of MYH9‐RD.
The present study represents the first systematic analysis of

MYH9 variants by HTS analysis in a large cohort of patients and

controls enrolled from over 100 centres worldwide. Here, we report

50MYH9‐RD patients with 28 rare variants inMYH9 found in a group

of 3,031 patients (of whom 764 were classified as having

thrombocytopenia) and over 13,000 controls.

F IGURE 4 Cohort Phenotype. (a) HPO terms coded for hematological and (b) nonhematological symptoms. Y axis: HPO terms; X axis:
patient ID number (from 1 to 50). Red box: the presence of the phenotypic feature; green box: the presence of NMMHC‐IIA aggregates
identified only after centralized immunofluorescence analysis; and blue box: data not available. Pale yellow box: the absence of phenotypic

feature. NMMHCIIA, nonmuscle myosin of class IIA
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In agreement with previous studies, 75% of the variants identified

(21 out of 28) are annotated in the most commonly affected MYH9

exons (Pecci et al., 2014, 2008b; Saposnik et al., 2014).

We identified 12 novel variants affecting MYH9 in highly

conserved amino acid residues, including eight missense variants

(one in a previously described amino acid residue but with a different

nucleotide change (Jang et al., 2012; Kahr et al., 2009), one in‐frame

deletion, one stop gain, one in‐frame insertion, and one frameshift.

Patients carrying the eight missense variants did not show extra‐
hematological symptoms, had a platelet count ranging from 15 to

96 × 109/L and three of them (1, 20, and 21) had a history of

excessive bleeding. The in‐frame deletion, Asp37_Ser39del, was

found in a 31‐year‐old man with no bleeding symptoms, moderate

thrombocytopenia and no extra‐hematological symptoms. The new

pathogenic stop codon in the coiled‐coil domain, Gln890Arg*, leading

to removal of 1,070 amino acids in the MYH9 protein was found in an

86‐year‐old man who was originally diagnosed as having an

“unclassified platelet disorder”, with mild thrombocytopenia

(88 × 109/L), no extra‐hematological manifestations and a pathologic

bleeding score due to major bleeding after surgery. We have not

been able to test the presence of the truncated MYH9 protein in this

patient’s cells, and a non classical distribution of NMMHC‐IIA, with

just small punctuate clusters (Althaus & Greinacher, 2009) was

observed by IF‐ and MGG‐staining in granulocytes (Figure S6). We

also report the first in‐frame insertion, Gln1068_Leu1074dup. The

same amino acids were previously described to be involved in an in‐
frame deletion in two patients (Ishida, Mori, Ota, Inaba, & Kunishima,

2013; Saposnik et al., 2014). This was found in a young girl who

presented with moderate thrombocytopenia (70 × 109/L), large

platelets and moderate/severe bleeding (Bleeding score 7), similarly

to the previously published cases, but with no current extra‐
hematological symptoms. In contrast, the two patients previously

described present several extra‐hematological features like hearing

loss since childhood, congenital cataracts and mild proteinuria in a 59

year‐old woman (Saposnik et al., 2014) and end‐stage renal disease

and bilateral hearing loss in a 27‐year‐old woman (Ishida et al., 2013).

The novel frameshift, Gly1938Alafs*10, located in a known muta-

tional hot spot, was found in a patient with severe thrombocytopenia

(16 × 109/L), large platelets and mild bleeding.

All the variants were discussed in MDT meetings and pathogeni-

city and contribution to phenotype assigned according to the ACMG

Guidelines. The novel variants were labeled as pathogenic or likely

pathogenic when supported by strong evidence, including the impact

of the variant on the protein, the presence of strong MYH9‐RD
phenotype and/or another MYH9‐RD feature and, when possible, by

pedigree analysis. In all the remaining cases, the novel variants were

classified as VUS. Previously reported variants were classified mainly

as pathogenic. One variant, initially classified as VUS, was re‐
classified as benign (patient 71 in Table S2), one variant initially VUS

to a likely pathogenic (in patients 18 and 19) and four initially likely

pathogenic as pathogenic (in patients 5, 6, 12, and 13).

We have previously shown that HTS technologies can success-

fully be applied to diagnose inherited bleeding, platelet and

thrombotic disorders (Simeoni et al., 2016). In the present study, a

total of 23 patients, 12/19 initially coded as “unclassified platelet

disorder” and 11/11 for whom only a suspicion of MYH9‐RD was put

forward with no conclusive diagnosis, received a molecular diagnosis

of MYH9‐RD because a likely pathogenic or pathogenic variant in

MYH9 was found.

Our data confirm that the presence of Döhle‐like bodies is an

invariable feature ofMYH9‐RD. Indeed, Döhle‐like bodies were found

in all 18 patients that were re‐analyzed by immunofluorescence (in 9

patients with a pathogenic, in 5 patients with a likely pathogenic, and

in 4 patients with a VUS variant) and in 11/18 by MGG (in 6 patients

with a pathogenic, in 4 patients with a likely pathogenic, and in a

single patient with a VUS variant) bringing the percentage of patients

positive for Döhle‐like bodies inclusion and with a variant in the

MYH9 to 100%. Interestingly, we noted that 52% (11 out of the 21)

of the patients in which Döhle‐like bodies were reported at

enrollment by MGG staining had a variant in the tail or in the S2

fragment, which are the regions of the MYH9 protein that, when

mutated, are associated with the presence of type I inclusions, the

most visible at MGG staining and more easy to identify. Our attempt

to identify genotype/phenotype correlations in this cohort of patients

generally confirms previously published data (Pecci et al., 2014,

2008b; Saposnik et al., 2014), although with some exceptions. Our

study confirms that variants in the HD are frequently associated with

more severe thrombocytopenia and higher risk of other organ

involvement contrarily to variants in the TD. In fact, two patients

(cases 8 and 10) with severe/moderate thrombocytopenia, kidney

disease and hearing impairment had variants in the HD (exon 2 and

17, respectively), while most of the cases with variants in the TD

showed mild thrombocytopenia and no extra‐hematological organ

involvement. Regarding the exceptions, three patients in our series

carrying variants in the HD (patients 11, 12, and 13) had only mild

thrombocytopenia, very mild or absent bleeding symptoms, and no

other extra‐hematological manifestations, except hearing loss in

patient 12. Moreover, four patients in our cohort (cases 28, 30, 33,

and 50) with variants in the TD had severe thrombocytopenia

(≤20 × 109/L). Also patients carrying the same variant (p.Ser96Leu

and p.Arg718Trp) did not share the same extra‐hematological

phenotype, showing that the risk of developing deafness or renal

failure may be variable among patients carrying the same variant.

The risk to develop these phenotypes is known to increase with age.

In our cohort we did not observe a clear age‐dependency for the

development of an extra‐hematological phenotype, however, it must

be considered that our patients are mostly relatively young. For

instance, patients 12 and 13 with the p.Arg702Cys variant are 7 and

11 years old, respectively. Their health care management will take in

consideration the high risk of developing extra‐hematologic features

by age of 40 due to this known pathogenic variant.

Our cohort confirms that the presence of macrothrombocytes is an

invariable feature of this disorder while thrombocytopenia, although

highly frequent, may be absent (Pecci et al., 2014; Saposnik et al., 2014).

This is the case for patients 17 and 40, with a platelet count of 187 and

220 × 109 /L, respectively. Patient 17 shares the same variant with her
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sister (patient 14), her nephew (patient 15) and her mother (patient 16)

who have all three mild thrombocytopenia. Unfortunately, we could not

investigate further patient 40. Thus, this cohort confirms that a wide

platelet count variability is a feature ofMYH9‐RD (Balduini et al., 2011).

In conclusion, our study expands the number of variants causingMYH9‐
RD, highlights the heterogeneity of the MYH9‐RD phenotypes and,

despite supporting previous correlation studies, shows that exceptions

exist in genotype/phenotype correlations. The application of HTS‐based
strategies revealed to be a reliable and fast method to reach a

conclusive diagnosis ofMYH9‐RD and exclude other thrombocytopenias

with potential susceptibility to malignancies and may represent the first

line of investigation for this disorder, even after preliminary expert

evaluation.
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