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ABSTRACT

Motivation: Molecular recognition features (MoRFs) are short
binding regions located within longer intrinsically disordered regions
that bind to protein partners via disorder-to-order transitions.
MoRFs are implicated in important processes including signaling
and regulation. However, only a limited number of experimentally
validated MoRFs is known, which motivates development of
computational methods that predict MoRFs from protein chains.
Results: We introduce a new MoRF predictor, MoRFpred, which
identifies all MoRF types (α, β, coil and complex). We develop a
comprehensive dataset of annotated MoRFs to build and empirically
compare our method. MoRFpred utilizes a novel design in which
annotations generated by sequence alignment are fused with
predictions generated by a Support Vector Machine (SVM), which
uses a custom designed set of sequence-derived features. The
features provide information about evolutionary profiles, selected
physiochemical properties of amino acids, and predicted disorder,
solvent accessibility and B-factors. Empirical evaluation on several
datasets shows that MoRFpred outperforms related methods:
α-MoRF-Pred that predicts α-MoRFs and ANCHOR which finds
disordered regions that become ordered when bound to a globular
partner. We show that our predicted (new) MoRF regions have
non-random sequence similarity with native MoRFs. We use
this observation along with the fact that predictions with higher
probability are more accurate to identify putative MoRF regions.
We also identify a few sequence-derived hallmarks of MoRFs. They
are characterized by dips in the disorder predictions and higher
hydrophobicity and stability when compared to adjacent (in the chain)
residues.
Availability: http://biomine.ece.ualberta.ca/MoRFpred/;
http://biomine.ece.ualberta.ca/MoRFpred/Supplement.pdf
Contact: lkurgan@ece.ualberta.ca
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The existence of disordered proteins challenges the classical
structure-to-function paradigm, which states that a unique 3D
conformation of a given protein determines its interactions with
other molecules. While this paradigm is true for many proteins,
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disordered proteins (i.e. proteins without a defined structure in
isolation) can also be involved in complex interaction networks.
There are several examples of protein–protein and protein–nucleic
acid interactions that involve coupled folding and binding, i.e.
disorder-to-order transition upon binding. Such interactions are
significant since they often enable binding diversity, and yet
they are specific and reversible due to lower binding strength
compared with classical binding. This is especially beneficial in
signaling and regulation where highly specific yet dispensable/weak
interactions are needed (Uversky and Dunker, 2010). Here, we
focus on molecular recognition features (MoRFs), which are short
(5–25 residues) binding regions located within longer intrinsically
disordered regions. Although in their unbound state MoRFs might
or might not have residual structure, they bind to protein partners
typically via disorder-to-order transitions resulting in α-helix
(α-MoRFs), β-strand (β-MoRFs), coil (γ -MoRFs) or mixtures of
these (complex–MoRFs) (Mohan et al. 2006) often with partner-
dependent conformational differences (Oldfield et al., 2008).

These short binding regions have been studied using two
computational approaches: as features observed in disorder
predictions (Callaghan et al., 2004; Cheng et al., 2007; Dosztanyi
et al., 2009; Garner et al., 1999; Mészáros et al., 2009; Oldfield
et al., 2005) and as sequence patterns called short sequence motifs
(Obenauer et al. 2003) or linear motifs (Davey et al., 2006;
Puntervoll et al., 2003).

Long disordered binding regions (more than 30 residues) can
also associate with globular partners. These long disordered binding
sequences are typically conserved, so they often show up in
databases derived from hidden Markov models such as Pfam or
SMART (Chen et al., 2006a, b). The terms ‘conserved predicted
disorder regions’ (Chen et al., 2006a, b) and ‘disordered domains’
(Tompa et al., 2009) have been used to describe these long
disordered binding regions.

Only two related predictors are available: α-MoRF-PredII (Cheng
et al., 2007) that supersedes α-MoRF-PredI (Oldfield et al., 2005)
and ANCHOR (Dosztányi et al., 2009; Mészáros et al., 2009).
α-MoRF-PredII is a neural network-based predictor which is limited
to prediction of α-MoRFs. ANCHOR predicts binding regions that
undergo a disorder-to-order transition upon binding to a globular
protein partner, some of which include MoRFs regions.

To this end, we develop a novel sequence-based MoRF predictor.
Our approach converts an input sequence into a feature vector
that represents various relevant characteristics of this chain, which
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is next inputted into a machine learning classifier that generates
predictions. Three novel aspects contribute to a good predictive
performance offered by our method. First, we use a large dataset
of annotated MoRF regions to design and to empirically compare
our predictor. Second, we use a comprehensive set of features that
encode previously unexplored characteristics of the protein chain
and we utilize a well-performing Support Vector Machine (SVM)
classifier. Third, we extend our design by combining the SVM-based
predictions with annotations generated using sequence alignment.
We use our model to describe several sequence-derived hallmarks
of MoRF regions and we show that it generates plausible putative
short disordered binding sites.

2 METHODS

2.1 Datasets
We collected 4289 protein complexes, which concern interaction between
a protein and a small peptide, from Protein Data Bank (PDB) (Berman
et al., 2007) of March 2008. Each peptide is a putative MoRF that has
between 5 and 25 residues, which is consistent with the related work
(Cheng et al., 2007; Oldfield et al., 2005). Next, we removed complexes for
which the interaction between the two amino acid chains is not significant
enough to be considered as biologically relevant. We measured whether
a biologically relevant interaction occurs by calculating the change of
accessible surface area (�ASA) between unbound and bound states. We used
BALL library (http://www.bioinf.uni-sb.de/OK/BALL/) to calculate �ASA
and we considered an interaction as spurious if its �ASA <400 Å2 (Jones
and Thornton, 1996; Vacic et al., 2007). The cutoff is intended to be small
enough to catch small interfaces between the two chains and, at the same time,
large enough to remove spurious contacts. As a result, 452 complexes were
removed. Of the remaining complexes, 3148 that include globular partners
with more than 70 amino acids (Jones et al., 1998) were kept. The cutoff
at 70 amino acids was chosen to avoid discarding shorter folded domains.
The remaining MoRFs were mapped to the UniProtKB/Swiss-Prot v56.8 and
UniProtKB/TrEMBL v39.8 (Jain et al., 2009) with FASTA algorithm (http://
fasta.bioch.virginia. edu/fasta_www2/fasta_down.shtml) using e-value of
1000 (Pearson and Lipman, 1988). 1805 MoRF segments were successfully
mapped to their parent sequences; in the remaining cases the MoRFs were
too short to uniquely map to the UniProt or could not be found. A total of
842 MoRFs were left after removing duplicates and MoRFs that include
ambiguous amino acids, such as X. We evaluated whether these 842 MoRFs
are disordered when unbound. The analysis based on the protocol described
in (Gunasekaran et al., 2004) shows that all MoRFs are disordered in
isolation, see Figure S1 in the Supplement. The amino acids that form these
MoRFs were annotated in the parent sequences and these sequences were
used to develop and assess our predictor. We divided the dataset into two
parts: TRAINING and TEST set, such that chains in the training and test
sets share low sequence similarity. We used CD-Hit (Huang et al., 2010)
with default parameters and sequence identity cutoff at 30% to cluster
sequences in the entire dataset. This resulted in 427 clusters where 274 of
them include only one sequence. We then assigned each cluster to either
training or test set at random. This assures that training and test sets have
similar number of chains and that similarity between sequences in these two
datasets is <30%. The training dataset was used to develop the method (to
perform feature selection and parameterize the prediction algorithm) and
test dataset was used to evaluate and compare our method with the existing
predictors. Two chains were removed from the test dataset since we could not
generate DISOclust predictions, which are needed as inputs for our method,
for them. Thus, the training and test datasets have 421 and 419 chains,
respectively.

We collected two more test sets: TEST2012 that includes MoRFs
annotated using the same protocol, PDB entries deposited between January

1 and March 11, 2012 and UniProtKB release from February 22, 2012; and
EXPER2008-12 that includes proteins with MoRFs in regions that were
experimentally verified to be disordered in isolation. Exper2008-12 was
created using works published between 2008 and 2012. The initial 74 chains
from test2012 were screened using (Gunasekaran et al., 2004) and 72 of
them with MoRFs that were determined as disordered when unbound were
kept. Next, test2012 and exper2008-12 were filtered with CD-Hit to remove
chains that share >30% similarity with sequences in the training set. As a
result, exper2008-12 and test2012 include 8 and 45 proteins, respectively.

We also developed a negative dataset that includes proteins that (are
likely to) have no MoRFs. We selected crystal structures deposited to PDB
between January 1, 2010 and March 19, 2012 that have resolution <2.5 Å.
We selected only single chain apo structures to eliminate targets which could
be disordered in unbound state. Next, we filtered the dataset to keep chains
that are at most 30% similar with each other (to evenly sample the sequence
space) and removed proteins that had any REMARK 465 annotation, i.e.
any annotated disorder. We removed one chain for which disorder predictors
failed to generate predictions and proteins for which the amount of disorder
predicted with MD (Schlessinger et al., 2009) or Spine-D (Zhang et al.,
2012) was greater than 30%. These two disorder predictors are not used in
our MoRFpred. The final set consists of 28 proteins.

The datasets are summarized in Table S1 in the Supplement and are
available at http://biomine.ece.ualberta.ca/MoRFpred/

MoRFs were classified into one of the four types: α (helix), β (strand),
γ (coil) or complex based on the largest percentage value of their secondary
structure types assigned by DSSP (Kabsch and Sander, 1983). MoRFs that
have no clear preponderance of any secondary structure type (at least 1%
greater than the other two types) are categorized as a complex MoRFs.
Only the residues in the interface were counted in the secondary structure
classification. Among the 840 MoRFs in the training and test datasets, there
are 181 helical, 34 strand, 595 coil and 30 complex MoRF regions. We also
annotated MoRF segments in the training and test datasets as those associated
with an immune response and others. We used text mining of HEADER,
TITLE and KEYWDS records in each corresponding PDB entry to find the
following keywords: histocompatibility, MHC, IgG, antigen, antibody, HLA,
T cell, B cell, heavy chain, light chain, FAB fragment and cycophilin. We
identified 120 immune response-related MoRFs.

The annotated MoRF regions in the training, test and test2012 sets were
used to identify full chains in the UniProt and the remaining amino acids
in these chains (all amino acids except the residues that compose MoRFs)
were by default assumed as non-MoRFs. We anticipate that some of the non-
MoRFs could in fact correspond to MoRFs, i.e. our MoRF annotations are
incomplete. We address this issue when we design and evaluate our method.

2.2 Test and evaluation protocols
Prediction of MoRFs is performed for each amino acid in the input chain.
Each prediction includes a numerical score P that quantifies propensity
(probability) of a given amino acid to form a MoRF segment and a binary
value that categorizes this amino acid as MoRF or non-MoRF. We compare
predictions for a given sequence with its native annotation using two types
of assessment: (i) per residue assessment which evaluates predictions for
individual amino acids; and (ii) per sequence assessment that looks at the
sequence as a whole. Detailed definitions of all evaluation measures are
provided in the Supplement.

We use success rate as the per sequence measure. This is motivated by
the fact that there might be some un-annotated MoRF regions in our dataset
which, if predicted, would count as false positives. The success rate was
designed to deal with a similar incompleteness of B-cell epitope predictions
(Rubinstein et al., 2009). This measure is a real value in the [0, 1] range
where 0 and 1 mean that all proteins were predicted incorrectly and correctly,
respectively. A higher value indicates a better prediction quality.

For the per residue evaluations, we use three criteria to assess binary
predictions: accuracy, true-positive rate (TPR) and false-positive rate (FPR).
Another per residue measure is based on the receiver operating characteristic
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Fig. 1. Architecture of the MoRFpred method

(ROC) curve that examines the predicted probabilities/propensities. We use
the area under the ROC curve (AUC) to quantify the predictive quality.

We calculate the measures (success rate, accuracy, TPR, FPR and AUC)
using full protein chains. To accommodate the potential incompleteness of
the annotations of MoRFs, we also perform the same evaluation on specific
regions in a chain that are arguably less likely to contain unannotated MoRF
residues. Since MoRF regions are defined as small segments in a larger
segment of disorder, we hypothesize that the sequence surrounding a given
MoRF region is less likely to contain unannotated MoRFs when compared
to the remaining parts of the chain. Figure S2 in the Supplement shows that
the difference between the amino acid composition in these flanking regions
and MoRF residues is larger than the difference between all non-MoRF and
MoRF residues, which supports our hypothesis. Consequently, we perform
a ‘second’ evaluation using a fragment of protein sequence that consists of
the MoRF region that has n amino acids and n flanking amino acids on each
side of this region. We call this evaluation on the flanking region.

To guarantee an unbiased assessment of our method we use the training
dataset for design and the independent test sets for the evaluation. The test
datasets include sequences that are dissimilar, i.e. they share <30% identity,
to sequences in the training dataset. The design, which includes feature
selection, parameterization of the SVM and selection of the final method,
uses the training set with the 5-fold cross validation protocol. We also use
4+1-fold cross validation on the training dataset. These cross validations are
explained in the Supplement.

2.3 Overall architecture
Figure 1 shows the overall architecture of our method, which is called
MoRFpred. The first step calculates a feature set that represents each residue
in the input sequence using a sliding window, i.e. the calculation of the
features is based on a segment of residues centered over the input (to-be-
predicted) residue. The use of the window is a popular approach in the
design of similar sequence-based predictors (Kurgan and Disfani, 2011). In
the second step, a vector of 24 features is fed into a linear SVM to calculate
propensity of a given input residue to form a MoRF region. The choice
of SVM is motivated by its applications in prediction of disordered regions
(Ishida and Kinoshita, 2008; Mizianty et al. 2010) and B-factors (Chen et al.,
2007). Due to a large number of amino acids that need to be predicted, we use
a fast liblinear SVM (Fan et al. 2008) that was previously utilized in MFDp
(Mizianty et al. 2010), which is one of the top disorder predictors (Peng
and Kurgan, 2011). The output of our method is a real value that quantifies
probability of a given residue to form a MoRF region. These values are
binarized using a cutoff of 0.5; i.e. amino acids with P > 0.5 are assumed to
form MoRFs. Finally, in the third step, these propensities are merged with

results of alignment of the input protein against the MoRF-annotated proteins
in the training dataset to produce the final propensities.

2.4 Feature-based sequence representation
We calculate five types of features that are based on the alignment, amino
acid indices and predicted disorder, solvent accessibility and flexibility
(measured using B-factor). We utilize IUPredL and IUPredS (Dosztányi
et al., 2005), DISOPRED2 (Ward et al., 2004), DISOclust (McGuffin, 2008)
and MFDp (Mizianty et al. 2010) to predict disorder. Real-SPINE3 (Faraggi
et al., 2009) and PROFbval (Schlessinger et al., 2006) are used to predict
relative solvent accessibility and B-factors, respectively. The choice of the
disorder predictors is based on the results from a recent review (Kurgan and
Disfani, 2011). These predictions are based on standalone implementations
using default parameters. Since training data used by these methods may
intersect with our dataset, we validate our method on the test 2012 set that
includes depositions from 2012. We also calculate Position Specific Scoring
Matrix (PSSM) profiles generated with PSI-BLAST (Altschul et al., 1997).
These profiles were generated using the non-redundant (nr) database from
NCBI that was filtered using PFILT (Jones and Swindells, 2002) to remove
low-complexity regions, transmembrane regions and coiled-coil segments.
Finally, we represent various physiochemical properties of amino acids with
indices collected from the amino acid index database (Kawashima et al.,
2008). For each type we compute several per residue and aggregated features
as explained below. The total number of considered features is 1764.

For each residue in a given input chain, we include information about
the residue itself and its neighbors. To do so, we create a sliding window of
size 25 that is centered on the input residue and we extract information
from this window to calculate the feature set. For the residues on both
termini (ends) of the sequence where there are no neighboring residues on
the right or left side, we fill these positions with default values. Calculations
of the features for each position in the window was inspired by the previous
methods, α-MoRF-PredI and α-MoRF-PredII, which used predicted disorder
and secondary structure. However, we also use previously unexplored inputs
(relative solvent accessibility, B-factors, selected amino acid indices). When
calculating the features, we use the predictions in two forms: the probabilities
(propensities) and the corresponding binary values.

We also generate another, novel group of features which provide
information about a segment in the sequence rather than an individual
residue (a position in the window). These features are created by aggregating
raw values over a window of a certain size. Simple aggregations include
averaging over the window for real valued data or calculating the content
for binary valued predictions. We also aggregate by calculating a difference
between an average value in a smaller (inner) window and a larger (outside)
window. We utilize this aggregation to contrast the values calculated using
amino acids that are close to the input (to-be-predicted) residue against the
values associated with residues in a wider neighborhood in a sequence. This
is motivated by the fact that MoRF segments are usually surrounded by larger
disordered segments. While the size of the entire/sliding window is fixed at
25, the size of the inner window is adjusted.

Table S2 in the Supplement defines and summarizes the per-residue
(calculated for each position in the sliding window) and the aggregated
features for each feature type. We calculate the disorder-based features for
each of the five disorder predictors.

2.5 Feature selection and parameterization of SVM
Our datasets are heavily unbalanced, i.e. there is only one MoRF residue for
about more than 40 non-MoRF residues. This imbalance is likely to bias a
prediction method to under-predict or completely ignore the MoRF regions.
To avoid this, we undersample the non-MoRF residues when performing
feature selection, parameterization and training. We consider three ways to
undersample. As motivated in Section 2.2, in the first strategy we use the non-
MoRF residues that are the flanking the MoRF residues (local sampling);
this results in 2:1 ratio between non-MoRF and MoRF residues. We also use
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random sampling with the same 2:1 (two non-MoRFs for each MoRF) and
higher 3:1 ratios using the entire chain to select non-MoRFs.

Feature selection is used to select a subset of features relevant to the
prediction of MoRF regions. We perform feature selection in three steps
using the training dataset. First, a correlation-based score is used to rank the
features based on their relevance/relation to MoRF annotations in training
dataset. Second, features with lower ranks (below a certain threshold) are
removed. Third, a best first search is implemented to pick features that
improve predictive results based on cross validation on the training dataset.

We use biserial and φ coefficients, which are defined in the Supplement,
to rank the features in Step 1. These coefficients quantify the correlation
of a given input feature with the native (binary) annotation of MoRFs. We
perform this by calculating an average biserial/φ correlation over five training
folds using the training dataset. We use this average to sort the features in
the descending order.

We repeat feature selection nine times, considering three ranking functions
executed for the three sampling strategies. We rank the features in three
different ways based on:

• Their average (over five training folds) biserial correlations with
annotation of MoRFs using the complete training set, i.e. using
all residues in the training set (referred to as complete correlation
ranking)

• Their average (over five training folds) biserial correlations with
annotation of MoRFs for the MoRF and the flanking residues, i.e.
using the same residues as in the local sampling (local correlation
ranking)

• Their average success rate calculated when using a single feature
on training set to predict the annotation of MoRFs in 5-fold cross
validation on training dataset (success rate ranking). The predictions
are performed using a linear kernel SVM classifier with the default
complexity parameter C =5 (Fan et al. 2008).

We sort the features in the descending order for each of the three rankings
and we remove features with correlation <0.05 for the complete and local
correlation rankings and with success rate <0.5 in case of the success rate
ranking. We selected these thresholds to remove only the irrelevant/poorly
performing features. We then execute the best first search on the sorted list
of the remaining features. In this search we start with the top ranked feature
and we continue by adding one (next-ranked) feature at a time. A given
feature is added into the current feature set if it results in improved prediction
quality when compared with the methods that uses the current feature set.
The predictions are based on a linear kernel SVM classifier with the default
parameter C =5 and using our modified 4+1-fold cross validation on the
training dataset (see Supplement for details). We calculate the success rates
for both the 4-fold cross validation and the independent fifth fold in the 4+1-
cross validation and compare these with the currently best success rates. If
the newly added feature improves the success rate by at least 0.01 on both
tests then we add the feature. If the success rate improves in only one or none
of the tests we discard the feature and move on to the next ranked feature.

Table S3 in the Supplement summarizes the results of the cross validation
on the training set for the nine feature selection setups; 3 (sampling
strategies) × 3 (ranking methods). For each sampling, the last row of the
table also presents results of a model that uses a feature set that combines the
features selected by all three feature selection methods. We select the best
performing setup by considering predictive performance on both the flanking
region and the whole sequence. Considering the average (over the flanking
region and the whole sequence) AUCs and success rates (the last two
columns in Table S3 in the Supplement) we note that the model based on the
local sampling and combined features have the highest average AUC and a
reasonably high success rate. Thus, we select this setup to implement our
method.

Next, the selected feature set is used to parameterize the SVM model, i.e.
to optimize value of parameter C, utilizing the 4+1-fold cross validation on
the training dataset. We consider C =2x , where x=−13, −12, …, 8, 9 and

select C =2−6 which has the highest success rate on the independent test
fold, see Figure S3 in the Supplement. SVM generates results with similarly
high-quality for a wide range of values of C, between 2−8 and 28.

2.6 Alignment-based MoRF prediction
We align target proteins in a given test set (a test fold when using cross
validation on the training set) against chains from the training set, which are
annotated with MoRF regions, using PSI-BLAST with default parameters.
For each target chain we get a number of matching/similar sequences in
the training set, with their associated e-values that quantify similarity. These
matches indicate sequences in the training set that are (partly) aligned with
our target sequence. If the amino acids that are aligned between the target
and the training sequence contain a MoRF region, then we transfer these
annotations into the target sequence. We tested different thresholds for the
e-value using the training dataset by merging the results of the SVM with
the annotations transferred through the alignment. We picked e-value = 0.5
which provides the best AUC and success rate. We use the sequences with
e-value < 0.5 and discard the remaining alignments.

We add the annotations acquired from the alignment to the SVM
predictions by updating the probabilities generated by the SVM. For the
residues that are predicted as MoRFs by alignment and as non-MoRFs by
SVM (SVM generates P < 0.5), we add 1 to the probabilities generated
by SVM and divide the result by 2; consequently, these residues will be
predicted as MoRF residues. We use the probability generated by the SVM
for the remaining residues.

2.7 Prediction of MoRF regions by merging
SVM and alignment

We test our best selected setup, i.e. the SVM model with C =2−6 on
the locally sampled training set using the combined feature set, on the
independent test dataset (using the model built on the training dataset).
Table S4 in the Supplement presents results of prediction before and after
merging the alignment-based predictions. The results are slightly improved
after incorporating alignment; the AUC is higher by 0.01 and TPR by 3%.
We also evaluate the alignment-only-based results in the last row. Although
alignment helps to improve the predictive performance of the SVM, it cannot
be used alone as an accurate MoRF predictor. The potential reasons are that
the MoRF regions are relatively short, compared to the length of the entire
chain, and the fact that our training and test datasets share < 30% similarity.

3 RESULTS

3.1 Comparison with existing predictors
We empirically compare our MoRFpred method with the three
available related predictors: α-MoRF-PredI, α-MoRF-PredII and
ANCHOR. We evaluate results on the test set on the whole sequences
and the flanking region (MoRF region and its flanking areas; see
Section 2.2 for details). The α-MoRF-PredI and α-MoRF-PredII
predictors provide only the binary values, which means that
their AUC cannot be calculated. We also evaluate the statistical
significance of the improvements offered by MoRFpred. We
compare 10 paired results for success rate and AUC obtained
using the bootstrapping with 50% of randomly selected test chains.
We determine normality of a given measurement with Anderson–
Darling test at the 0.05 significance. For normal distributions, we
use paired t-test and otherwise we use Wilcoxon rank-sum test.
Finally, we measure significance of the differences at the 0.01 and
0.05 levels. The results are summarized in Table 1.

We observe a relatively large gap between the success rates
of α-MoRF-PredI and α-MoRF-PredII predictors and the results
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Table 1. Comparison of prediction results on the test dataset

Whole sequence Flanking region

Predictor ACC TPR FPR Success rate AUC ACC TPR FPR Success rate AUC

α-MoRF-PredI 0.946 0.123 0.037 0.158 ++ NA 0.668 0.123 0.065 0.129 ++ NA
α-MoRF-PredII 0.889 0.258 0.098 0.303 ++ NA 0.673 0.258 0.124 0.263 ++ NA
ANCHOR 0.740 0.389 0.253 0.611 ++ 0.600 ++ 0.640 0.389 0.237 0.659 ++ 0.590 ++
MD 0.612 0.485 0.386 0.480 ++ 0.598 ++ 0.437 0.485 0.586 0.308 ++ 0.449 ++
MoRFpred (SVM + alignment) 0.937 0.254 0.049 0.718 0.673 0.711 0.254 0.065 0.754 0.684
MoRFpred (to match the highest TPR) 0.854 0.389 0.137 0.718 0.673 0.696 0.389 0.153 0.754 0.684
MoRFpred (to match the lowest FPR) 0.948 0.222 0.037 0.718 0.673 0.711 0.254 0.065 0.754 0.684

The last two rows show results for MoRFpred where the binary predictions were calculated (by adjusting the threshold on probabilities) to match the highest TRP and FPR generated
by ANCHOR and α-MoRF-PredI and II. The two main columns list results when using the whole chain and only the flanking region (see Section 2.2). α-MorfPredII and II generate
only binary predictions and thus their AUC cannot be computed. Statistical significance of the differences in the success rates and AUC between the MoRFpred and the other three
methods is shown next to success rate and AUC values, where ++ and + denote that the improvement is significant at the P-value <0.01 and <0.05, respectively.

generated by ANCHOR and MoRFpred. This is since the former two
predictors were developed to identify MoRF regions that form only
α-helixes upon binding. Table 1 shows that MoRFpred outperforms
ANCHOR in terms of both AUC and success rate by 0.07 and
10%, respectively. These are relatively substantial improvements
considering that AUC ranges between 0.5 (which corresponds to
random predictor) and 1 and success rate between 0 and 1 (100%).
Both improvements are statistically significant at 0.01 for both
evaluations; i.e. using the whole chains and the flanking regions. We
note that ANCHOR was designed to find a different type of binding
regions that undergo a disorder-to-order transition, which explains
its lower performance on our MoRF-based datasets. The binary
predictions generated by our method are characterized by low FPR
and relatively high TPR. To compare the binary predictions side-by-
side, we added last two rows in Table 1 where we match MoRFpred’s
TPR and FPR to the highest TPR and lowest FPR of the other three
methods, respectively. We match these by adjusting the thresholds
on the predicted probabilities and we perform that separately for the
evaluations on the whole sequence and the flanking regions. These
results demonstrate that MoRFpred outperforms the related solutions
by providing substantially higher TPRs given similar FPRs, and
lower FPRs for comparable TPRs.

Figure 2 presents the ROC curves for MoRFpred and ANCHOR
on the test set. The curves zoom on FPR values <0.1, which is
motivated by the imbalanced nature of our dataset; i.e. higher FPR
would result in substantial over-prediction of MoRFs. We note a
large separation between MoRFpred and ANCHOR and the fact that
addition of the alignment into MoRFpred results in improvements
for all values of FPRs. Figure S4 in the Supplement shows the
ROC curve for the flanking region where MoRFpred also obtains
favorable results.

We also compare with modern disorder predictors, including the
five methods used by MoRFpred (IUPredL, IUPredS, DISOPRED2,
DISOclust and MFDp), MD (Schlessinger et al., 2009) and Spine-D
(Zhang et al., 2012) assuming that all predicted disordered residues
are MoRFs. Table 1 lists the results for the MD method that has
the highest AUC on the whole chains; Table S5 in the Supplement
gives the remaining results. As expected these methods overpredict
MoRFs; they have relatively high FPR. Based on their relatively low
success rates and AUCs we conclude that they could not be used to
accurately identify MoRFs.

Fig. 2. Comparison of ROCs for MoRFpred and ANCHOR on the test
dataset. The ROC curves are provided for the FPR < 0.1

Table S6 in the Supplement summarizes results on the test dataset
when using only the predicted disordered residues (excluding MoRF
residues) as the negatives. This allows us to evaluate how well the
MoRFs can be distinguished from other disordered amino acids.
We use a majority-vote based on the predictions from recent,
well-performing Spine-D, MD and MFDp to annotate disordered
residues. MoRFpred provides the most accurate results with success
rate and AUC = 0.68 and 0.65, respectively. The other methods
have AUCs below 0.5 and relatively high FPRs, except for MoRF-
PredI which has the same FPR and substantially lower TPR when
compared to MoRFpred. Overall, the results suggest that our
predictor can find MoRFs among disordered residues.

The comparison on the test2012 and exper2008-12 datasets
is presented in Table S7 in the Supplement. The results are in
agreement with the predictive performance on the test dataset. When
evaluated on the entire chains, MoRFpred obtains success rates
of 0.76 and 0.75 and AUC of 0.7 and 0.64 on the test 2012 and
exper2008-12 datasets, respectively. To compare, ANCHOR and
best performing disorder predictor MD have AUCs of 0.64 and 0.68
on the test2012 and 0.56 and 0.62 on exper2008-12, respectively.
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We note that the improvements (relative differences between
predictors) are consistent for the evaluations with the whole
sequences and the flanking regions. The differences in absolute
values of accuracy between these two evaluations are due to different
ratios of non-MoRF to MoRF residues.

Finally, we estimate FPR of different predictors on the negative
dataset. MoRFpred predicts 6.5% of residues in this dataset as
MoRFs compared to 0% for MoRF-PredI and α-MoRF-PredII and
0.5% for ANCHOR. We note that Spine-D and MD predict 7.4
and 3.1% residues in this dataset as disordered; there were no
chains where both MD and Spine-D predicted no disorder and
only 8 for which they predicted less than 5% of disordered amino
acids. The relatively high FPR of MoRFpred could be explained by
these residual amounts of predicted disorder and the fact that the
conformations of ordered segments are similar to the MoRFs when
they become ordered upon binding.

3.2 Evaluation for different MoRF types
We evaluate the considered methods separately for each MoRF type,
see Table S8 in the Supplement. The results show that MoRFpred
outperforms the other three methods with respect to the success
rates and AUC for the four MoRF types. The evaluation on the
α-MoRFs shows a visible improvement for α-MoRF-PredI and
α-MoRF-PredII when compared to their predictions on the other
MoRF types. This is expected since these methods were designed for
the prediction of the α-MoRFs. However, ANCHOR and MoRFpred
are still better than α-MoRF-Pred methods for all four MoRF types.
The success rates of MoRFpred are higher by 4%, 12% and >5%
than ANCHOR for the prediction of the α-, coil- and complex-
MoRFs, respectively. All methods perform relatively poorly for the
predictions of β-MoRFs, although MoRFpred still outperforms the
other solutions. However, we note relatively low numbers of the β-
and complex–MoRFs in our dataset, which could affect the validity
of our conclusions.

The alignment only-based predictions have low TPRs coupled
with very low (∼0) FPRs for all MoRF types. This shows that
alignment predicts a few MoRFs but with high quality. The
alignment contributes 3 to 6% to the TPR of the MoRFpred for
the α-, β- and coil MoRF types.

MoRFpred produces the most accurate results (high AUC and
success rate values) for the α-MoRFs. This likely originates from the
fact that helices are local (in the sequence) and thus they are easier
to capture using a window-based approach that is implemented by
our method. β-sheets can span over large stretches of sequence and
thus the window may not be sufficient to find them.

Table S9 in the Supplement contains evaluations for the immune
response-related MoRFs (which account for 18% of MoRFs in our
test dataset) versus the remaining MoRFs. Our method outperforms
the other approaches for the non-immune MoRFs. However, for the
immune response-related MoRFs, ANCHOR and MoRFpred offer
similar predictive performance. We note that all considered methods
perform relatively poorly for these MoRFs, which motivates further
research in this area.

3.3 Similarity analysis
We investigate a hypothesis that MoRF regions have non-random
similarity to each other. If true, this could be used to support our
claim that some of our ‘false positive’ MoRF predictions might

correspond to true MoRF regions. We create four different sets of
protein chain segments which are used to investigate the similarity:

• The native MoRF segments in the test dataset.

• Random segments generated from test dataset that have the
same length distribution and number when compared to the
set of the native MoRF segments.

• MoRF segments predicted by MoRFpred on the test set that
have at least 50% overlap with the native MoRFs in test set.

• MoRF segments predicted by MoRFpred on the test set that
have no overlap with the native MoRFs (predicted ‘false
positive’ MoRFs).

We use the native MoRFs in the training dataset as our reference
population against which we align the four abovementioned sets.
We measure the similarity using EMBOSS needle (Rice et al.,
2000) with default parameters. Each random, native, and predicted
MoRF segment is aligned against the 421 native MoRFs in the
reference population and we use the maximum score from the
421 similarities. We obtain four sets of scores for the native
MoRFs on the test set (called test), random set (called random),
predicted overlapping MoRFs (called overlapping predictions),
and predicted non-overlapping MoRFs (called non-overlapping
predictions). Using these scores, we generate distributions that
are fitted into the data using EasyFit (http://www.mathwave.com/
products/easyfit.html). We tried six commonly used distributions:
normal, log-normal, γ , β, Pearson 5 and Pearson 6. Their fit into the
data was evaluated using the Kolmogorov-Smirnov goodness of fit
test. We use the Pearson 5 distribution which provided the best rank
when considering the four sets of similarity scores.

Figure S5 in the Supplement depicts the distributions of the
four sets of similarities. The distribution of the similarities for the
native test group (using the native MoRFs) has a higher and longer
right tail when compared to the distribution of the random group
(for the randomly generated segments). This means that the native
MoRFs have higher similarity to each other when compared to their
similarity with randomly selected segments. This motivates the use
of the alignment in our MoRFpred. Moreover, both distributions for
the predicted MoRFs are also characterized by higher than random,
(i.e. higher than for the randomly chosen segments) similarity.
The shift to the right of the distribution for the overlapping (with
the native MoRFs) predicted MoRFs, when compared with the
distribution for the native test group, means that our overlapping
predictions tend to focus on MoRFs that are similar to the MoRFs
in the training set. This is likely due to the use of the sequence
alignment. However, this bias is relatively minor considering that
the two distributions are shifted by only 0.05. Importantly, the
distribution for the predicted non-overlapping MoRFs (predicted
‘false positives’) is shifted toward higher similarity when compared
with the random group. This suggests that some of our ‘false
positives’/putative MoRFs may correspond to native MoRFs.

3.4 Sequence-derived hallmarks of MoRFs
We describe a few sequence-derived markers of MoRF residues
based on the features that were selected to implement the MoRFpred.
MoRFpred uses 24 features which were selected using three feature
selection methods. To analyze the selected features, we sort them in
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the ascending order based on their average ranking generated by the
three selection protocols; see Section 2.5 for details. We calculate
the average values of the top ranked features for the native MoRF
and non-MoRF residues (in the flanking region), respectively. These
averages for the five top-ranked features are compared in Figure 3.
The values of these features have opposite signs for the native
MoRF and non-MoRF residues. However, the large and overlapping
standard deviations (denoted by error bars) show that they could
not be used individually to accurately find MoRFs. This is why we
employ multiple features in our predictor.

The three left-most sets of bars in Figure 3 represent the same
type of features, which is based on the average difference of
disorder probabilities (Table S2 in the Supplement) calculated
using predictions from IUPred with w=15 and from DISOPRED2
with w=5 and w=15, respectively. These features were designed
to contrast the value of the predicted disorder propensities in a
MoRF region (inner window) and the flanking segments (outside
window). According to Oldfield et al., (2005), MoRFs are short
segments inside a larger disordered segment. Therefore, we expect
a higher average of predicted disorder propensities in the outside
window when compared to inner window, which should result in
a positive value for our features for the native MoRF residues.
This is confirmed in Figure 3 where the three features have, on
average, positive values for the MoRF residues and negative (near
zero) values for the non-MoRF residues. This shows that MoRFs
are characterized by dips (lower values) in the predicted disorder
probabilities when compared with the surrounding residues.

The right-most two sets of bars in Figure 3 show average
difference-based features (features based on the differences in values
between the inner and outside windows) calculated using two amino
acid indices, which quantify stability (Zhou and Zhou, 2004) and
transfer energy that translates into hydrophobicity (Nozaki and
Tanford, 1971), respectively. The stability scale is a quantity used to
characterize the contributions of individual residues to stability of a
protein fold where higher values mean higher stability. We observe

Fig. 3. Analysis of the top-ranked features that serve as sequence-derived
markers of MoRFs. The average values of the top five ranked features
used by MoRFpred, which are shown on the x-axis, for the native MoRF
residues (light gray bars) and native non-MoRF residues (dark gray bars) are
compared. The corresponding standard deviations are shown using the error
bars. The selected five features represent an average difference of a given
quantity (predicted disorder, stability or transfer energy). Negative values
mean that average in the inner window of size w was higher than the average
in the flanking segments

that the average difference for residues in the native MoRF region
for the stability-based feature is negative. That means that residues
in the MoRF region have higher stability when compared to the
surrounding residues. This agrees with the underlying biology, since
MoRF residues should be more stable to transition into the structured
state when compared to the flanking residues that are likely to be
(more) disordered. The last feature is based on the hydrophobicity.
The negative value of this feature for the native MoRF residues
indicates that these residues are, on average, more hydrophobic than
the surrounding residues.

Our features reveal a few interesting sequence-derived markers
of MoRF residues. These residues are less disordered, more stable
and more hydrophobic when compared to the disordered residues
that surround them in a protein chain. This is in line with the
observations in (Mészáros et al., 2007; Vacic et al., 2007) that
the local increase in the hydrophobicity in a disordered segment
is a characteristic of binding sites in IDPs. Bastolla et al., (2005)
show a strong positive correlation between a hydrophobicity profile
and a contact matrix (i.e. the residue-residue contacts that quantify
stability), which describes stability of the protein structure. This
supports our result that also shows that increase in both stability
and hydrophobicity are indicative of MoRF residues. Importantly,
our model shows that these markers can be derived from sequence
based on the predicted (with IUPred and DISOPRED2) disorder and
two amino acid scales (Nozaki and Tanford, 1971; Zhou and Zhou,
2004).

3.5 Case studies
3.5.1 Case studies for true positive predictions Two case studies
are used to demonstrate MoRFpred predictions. They were selected
from the test dataset to represent two situations: when the MoRFs
are under-predicted and when they are potentially over-predicted.
Moreover, the first case concerns a long native MoRF segment, while
the second concerns a short segment.

The first case study is a 89 residues long H2A class histone
protein for which MoRF region was extracted from the 1ydp_P
complex from PDB. The native MoRF region in this protein folds
into irregular structure (coil), which is located near the C-termini and
is 9 residues long. Figure 4 shows that α-Morf-PredI and α-Morf-
PredII did not predict any MoRF residues in this sequence, which
is correct since these methods are designed to predict α-MoRFs.
MoRFpred predicted the native MoRF region and another ‘false
positive’ MoRF region, which was also predicted by ANCHOR. The
probability profiles of ANCHOR and MoRFpred are very similar
except for the C-terminus where the native MoRF is located. The
ANCHOR outputs probabilities that are > 0.5 threshold in a vicinity
of 55th position, but these predictions were removed through post-
processing used by this method. MoRFpred generated P < 0.5 in
that region.

The second case study is the transcriptional intermediary factor-2
isoform 2 protein that was collected from UniProt and for which
MoRF was extracted from the PDB complex 1m2z_B. This protein
has 1394 residues and contains a coil MoRF region which is 21
residues long. Figure S6 in the Supplement visualizes predictions
for this protein from the four considered predictors: α-MoRF-
PredI, α-MoRF-PredII, ANCHOR and MoRFpred. All methods
were able to (partially) identify the native MoRF region; however,
they also predicted additional MoRFs in this chain. MoRFpred
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Fig. 4. Prediction of MoRF residues for the Histone H2A protein by ANCHOR (blue lines), MoRFpred (orange lines), α-MoRF-PredI (thick red line) and
α-MoRF-PredI I (thick green line) predictors. The x-axis shows positions in the protein sequence. Probability values are only available for ANCHOR and
MoRFpred and are shown by thin blue and orange lines, respectively, at the top of the figure. The cutoff of 0.5 to convert probabilities into binary predictions for
ANCHOR and MoRFpred is shown using a brown horizontal line. The native MoRF regions are annotated using black horizontal line. The binary predictions
from ANCHOR, α-MoRF-PredI, α-MoRF-PredI I and MoRFpred are denoted using blue (at the −0.1 point on the y-axis), red (at the −0.2), green (at the
−0.3) and orange (at the −0.4) horizontal lines. Lack of red and green lines means that α-MoRF-PredI and α-MoRF-PredII did not predict MoRFs

predicts the smallest number of 89 of MoRF residues when
compared to α-MoRF-PredI with 171, α-MoRF-PredII with 306
and ANCHOR with 876 MoRF predictions. MoRFpred predictions
in these case studies were generated by the SVM (alignment did
not find MoRF regions), which confirms that the machine learning
classifier contributes beyond what can be found based on sequence
similarity.

3.5.2 Case studies for ‘false positive’ predictions In Section
2.1 we argue that our datasets may contain unannotated MoRFs
and thus some of the ‘false positive’ MoRF predictions might
correspond to native MoRFs. We also show that MoRFs predicted
by MoRFpred that have no overlap with the native MoRFs (‘false
positive’ predictions) have above-random similarity to the native
MoRFs. This led us to investigate the strongest ‘false positive’
MoRF predictions, i.e. predictions with the highest probability (see
Section 2.1 in the Supplement). We use average (over all residues in
the predicted segment) probability generated by MoRFpred to rank
‘false positive’ MoRFs. We use UniProt to annotate binding sites in
these regions. The following two cases (among others) have binding
regions in the predicted MoRFs.

The first case is P-selectin glycoprotein ligand 1 (PSGL-1)
protein (UniProt ID Q14242) for which the predicted ‘false positive’
MoRF has average probability of 0.85. This region (DDLTLHSFLP,
residues 393 to 402) is predicted by the SVM and was not found by
alignment. It implements a few interaction sites:

• The predicted MoRF region includes a site phosphorylated by
Polo-like kinase (DDLTLHS, residues 393–399).

• A part of the MAPK docking motif (REDREGDDLTL,
residues 387–397) that helps to regulate a specific interaction
in the MAPK cascade overlaps with the predicted MoRF
region.

• Our prediction is also close to the TRAF6-binding site
(PEPREDREG, residues 384–392), that acts as intracellular
adaptor recruited to different receptors through its C-terminal
TRAF domain.

ANCHOR predicts binding regions for about half of this protein,
which includes the above region; this could be correct since this
protein is known to bind multiple partners. α-MoRF-PredII predicts
this region as MoRF with only a moderate number of additional
MoRF predictions. This region was predicted to be disordered by
the majority-vote consensus of MFDp, MD and Spine-D.

The second case is putative uncharacterized protein
DKFZp459P0162 (UniProt ID Q5RDR1) for which the ‘false-
positive’ MoRF was predicted with average probability of 0.65. The
predicted region (SPAVPNKEVTP, residues 212–222) is associated
with the following binding sites:

• This region includes the subtilisin/kexin isozyme-1 (SKI1)
cleavage site (KEVTP, residues 218–222)

• The PAVPNK sub-segment (residues 213–218) is potentially
recognized by class II SH3 domains and is involved in
protein–protein interaction mediated by SH3 domains.

In contrast to the first case, this region is predicted by alignment
and none of the existing predictors were able to (fully) predict
it. ANCHOR, which predicts about one-third of this protein as
binding regions, predicts only parts of this region. The majority-
vote consensus of MFDp, MD and Spine-D predicts this region as
disordered. This supports our claim that this is a strong putative
MoRF.

These two case studies demonstrate that some of the ‘false
positives’ generated by MoRFpred may implement important
binding events that require a structured conformation.
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4 SUMMARY AND DISCUSSION
We introduce a new and accurate sequence-based predictor of
MoRFs. The improvements offered by MoRFpred, when compared
to prior methods, are due to the use of large dataset and novel
architecture that combines SVM-based predictions with alignment
and which uses a comprehensive and well designed feature-based
sequence representation. We utilize multiple disorder predictions,
predicted B-factors and RSA, evolutionary profiles and selected
amino acid indices to encode inputs to the SVM. We designed
a successful class of features to contrast the properties in the
immediate neighborhood of the predicted residues with its flanking
regions.

Our analysis reveals a few interesting sequence-derived markers
of MoRF regions. We also demonstrate that MoRFpred can be used
to identify putative MoRFs.
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