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Abstract

The conventional mean-field kinetic models describing the interplay of cancer and the
immune system are temporal and predict exponential growth or elimination of the popula-
tion of tumour cells provided their number is small and their effect on the immune system is
negligible. More complex kinetics are associated with non-linear features of the response of
the immune system. The generic model presented in this communication takes into account
that the rates of the birth and death of tumour cells inside a tumour spheroid can significantly
depend on the radial coordinate due to diffusion limitations in the supply of nutrients and/or
transport of the species (cells and proteins) belonging to the immune system. In this case,
non-trivial kinetic regimes are shown to be possible even without appreciable perturbation
of the immune system.
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Cancer occurs via initiation, tumour growth, and propagation of metastases. During these
stages, its development depends on the response of the immune system (reviewed in [1, 2])
and the enhancement of this response can be used as a basis for efficient anticancer therapies
[3]. The interplay of cancer and the immune system is complex and our understanding
of this interplay remains limited. At the conceptual level, this interplay can be illustrated
by using the corresponding kinetic models. Customarily, such models are temporal and
operate with the population of cancer cells forming a tumour and populations of the species
(cells and proteins) belonging to the immune system (reviewed in [4, 5]; see also recent
treatment [6]; for a more general perspective on the kinetic models of cancer, see reviews
[7-10]). In this framework, the growth or elimination of the population of tumour cells is
predicted to be described by the first-order equation and to be exponential provided their
number is small and their effect on the immune system is negligible, and accordingly the
emphasis is shifted towards the complexity related to non-linear features of the behaviour
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of the immune system. The effect of the immune system on the initial growth of tumour
cells was also theoretically analyzed [11] in the contexts of the experiments determining the
lifetime risk of cancer (Ref. [12]; briefly reviewed in [13]) and the interaction of tumours via
the immune system. The spatio-temporal aspects were, however, not treated there in detail.
In some of the recent multivariable models (see, e.g. [14—16]), these aspects are taken into
account to some extent, but the corresponding mathematical analysis is rather cumbersome
and the results reported do not allow one to see the physics behind. Herein, I (i) propose a
generic spatio-temporal model focused on the initial phase of the growth of a tumour in the
regime where its effect on the the populations of species belonging to the immune system
is negligible and (ii) show that even in this limit the kinetics are not necessarily reduced to
the exponential growth or elimination of the population of cancer cells.

To illustrate the general introduction above and to articulate the novelty of my report,
I recall one of the conventional temporal models ([17]; reviewed in detail in [4, 5]) and
show what it predicts in the situation when the effect of tumour cells on the the popula-
tions of species belonging to the immune system is negligible. The corresponding equations
for the populations of tumour cells (1), effector cells (ne) and interleukin-2 (n,) are as
follows [4, 17]:
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where k, we, wp, ke and kp are the birth and death rate constants and rates, n is the max-
imum population of tumour cells, y is the rate constant of elimination of tumour cells and
vy, V2, V3, m1, my and m3 are the other rate constants and parameters characterizing the
function of the immune system. The analysis of Eqgs. 1-3 can be simplified taking into
account that on the time scale of the tumour growth the response of the immune system is
rapid, and accordingly (2) and (3) can be solved in the steady-state approximation by set-
ting dne/dt = dnp/dt = 0. Describing the initial phase of the growth of a tumour, one can
in addition neglect the effect of tumour cells on the immune system. Mathematically, this
means that the third term on the right-hand part in Eq. 3 can be neglected, and accordingly

one has:
We

. “)
Ke — Vawp/(m2kp + wp)
Along this line, one can neglect n¢/n, in the first term and n¢ in the denominator of the
second term in Eq. 1. Then, using expression (4) for ne, Eq. 1 can be rewritten as:

dny _ (k ywe >nt. 5)

dt  milke — vawp/ (Makp + wp)]

This first-order equation predicts exponential growth or elimination of the population of
tumour cells depending on the sign of the combination of the parameters in the parentheses.
More complex kinetic features including non-trivial steady states are also possible in this
model but only provided the population of tumour cells is appreciable and the immune
system operates in a non-linear regime (i.e., provided the third term on the right-hand side
in Eq. 3 is not negligible).

In the model I use, the evolution of a tumour is described as:

dne e w (6)
dt_ b d»

np = wp/kp and ne =
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where 7, is the number of cells forming a tumour, and W}, and Wy are the rates of birth and
death of these cells. To calculate these rates, the tumour is assumed to be spherical with
radius R, and accordingly the population of tumour cells is expressed via its volume as:

ne = 47tR3/3v, @)

where v is the volume per cell.

The growth of the population of tumour cells is considered to be determined by the
nutrient distribution inside a tumour spheroid. The corresponding equation for the nutrient
concentration at r < R (r is the radial coordinate) is represented as:

ac Dl d ,0c @)
—_— — — r —_— —
ot r2 or or e

where D is the nutrient diffusion coefficient, and 7 is the rate constant associated with the
nutrient consumption by tumour cells. The boundary condition for this equation is:

c(R) = co, C))

where ¢, is the nutrient concentration outside the tumour. Taking into account that on the
time scale of the tumour growth the nutrient diffusion inside the tumour is rapid, Eq. 8
can be solved in the steady-state approximation by setting dc/d¢ = 0. The corresponding
textbook solution of Eq. 8 is given by:

_ Rsinh(r/2)

c(r) = mcoa (10)

where A = (D/n)'/2.
The local birth rate of tumour cells can be considered to be proportional to ¢(r). In this
approximation, the total birth rate can be represented as:

Wy = kn F(R/)\), (1)

where k is the birth rate constant (c, is considered to be included into this rate constant),
kny is the birth rate calculated assuming the diffusion limitations to be negligible, and

k 5 /<4nR3 ) 3 ( ,\)
F(R/A) = / c(rydmrdr ¢ | = — | coth(R/A) — — (12)
0 3 R R

is the factor taking the diffusion limitations into account. This factor is represented above as
a function of R/ for the convenience of its derivation as it is usually done in the literature
focused on the kinetics of catalytic reactions occurring inside grains (the corresponding
models of catalytic reactions can be tracked down to the seminal study by Thiele [18]). In
the context of tumour growth, R should be expressed via n; taking relation (7) into account,
i.e., Eq. 11 should be rewritten as:

Wo = knF (0" /30, (13)

where x = (47 /3v)!3.

The elimination of tumour cells is considered controlled by the species (cells or proteins)
belonging to the immune system. Mathematically, this process can be described in analogy
with Egs. 810 by replacing ¢, D, n and X by the corresponding parameters, c,, Dy, 1« and
Xse = (Dy/14)/?. Then, by analogy with Eq. 13, the death rate is represented as:

Wa = ynF (" /x0), (14)

where where y is the death rate constant, and x, = (47 /3v)1/ 3 s

@ Springer



398 V.P. Zhdanov

If the population of tumour cells is small (nt1 & <« min(x, x«)), the diffusion limitations
are negligible, i.e. F ~ 1, Wy, >~ kny, and Wy =~ kn, and accordingly (6) can be simplified
as:

dng

o = (k — y)n,. (15)

This equation predicts exponential growth or elimination of the population of tumour cells
atk > y and k < y, respectively.

If the population of tumour cells is larger (nt1 3 > min(x, xx)), the birth and death
rates of tumour cells are controlled by diffusion, i.e. F(nll/3/x) ~ 3)(/nt1/3, F(ntl/3/)(*) ~

3X*/ntl/3, Wy =~ 3))(knt2/3 and Wy >~ 3X*ynt2/3, and accordingly (6) can be simplified as:

dny 2/3
— =3(xk — xuIn”. (16)
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Fig. 1 Normalized birth and death rates of tumour cells [(13) and (14)] as a function of their number. a The
thick line shows the birth rate for x = 1. The thin lines represent the death rate for x, = 3 and y/k = 0.3,
0.4 and 0.5. In this case, the model predicts unlimited growth for y /k = 0.3 and existence of a stable steady
state for y/k = 0.4 and 0.5. b The same curves are used to illustrate the existence of a stable steady state.
In this case, the thick line shows the death rate for x, = 1, whereas the thin lines represent the birth rate for
x =3 and k/y = 0.3, 0.4 and 0.5. Under these conditions, the model predicts extinction for k/y = 0.3 and
existence of a unstable steady state for k/y = 0.4 and 0.5
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This equation predicts growth or elimination of the population of tumour cells at xk >
xxy and xk < x.y, respectively. It is of interest that the growth is algebraic rather than
exponential.

Comparing (15) and (16), one can conclude that the growth or death of the popu-
lation of tumour cells is predicted in both cases provided k > max(y, yx«/x) and
k < min(y, y x«/x), respectively. In other words, the model predicts unlimited growth or
extinction in this case. For min(y, y x«/x) < k < max(y, y x«/x), the situation is less
trivial because there is a stable or unstable steady state depending on whether x./x is larger
or smaller than unity as illustrated graphically in Fig. 1.

Thus, the model clearly shows that, with inclusion of spatial features, non-trivial kinetic
regimes of tumour growth may be possible even at relatively small populations of tumour
cells in the situations when the effect of tumour cells on the population of the species (cells
and proteins) belonging to the immune system is negligible. Physically, this is related to the
transition from the kinetically limited birth and death to diffusion-limited birth and death
with increasing population of tumour cells. For birth and death, this transition can easily
take place at different populations of cells, and it can result in the appearance of a non-trivial
stable or unstable steady state.

Finally, I can add that the model under consideration can be extended in different direc-
tions. For example, its current version implies that the tumour cells are of one type. In
reality, the population of tumour cells is well known to be heterogeneous [19, 20], and this
factor can easily be taken into account in the analysis presented. The model can also be
reformulated in the terms of chemotherapy, and accordingly it can be used in the latter area
as well.
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