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Abstract: A simple and efficient method was developed for the one-pot synthesis of 3-aryl deriva-
tives of ortho-carborane with sensitive functional groups using 3-iodo-ortho-carborane and aryl zinc
bromides that were generated in situ. A series of 3-aryl-ortho-carboranes, including those containing
nitrile and ester groups, 3-RC6H4-1,2-C2B10H11 (R = p-Me, p-NMe2, p-OCH2OMe, p-OMe, o-CN,
p-CN, o-COOEt, m-COOEt, p-COOEt) was synthesized using this approach. The solid-state structures
of 3-RC6H4-1,2-C2B10H11 (R = p-OMe, o-CN, and p-CN) were determined by single crystal X-ray
diffraction. The intramolecular hydrogen bonding involving the ortho-substituents of the aryl ring
and the CH and BH groups of carborane was discussed.

Keywords: ortho-carborane; 3-aryl derivatives; synthesis; Co/Pd catalysis; X-ray diffraction; intramolecular
hydrogen bonds

1. Introduction

Aryl derivatives of icosahedral carboranes C2B10H12 are of interest for a variety of
applications, from the development of new materials [1–12] to the design of pharmaceu-
ticals [13–17]. This dictates the need to develop convenient methods for their synthesis.
Methods for the synthesis of C-arylcarboranes have been well developed and are widely
used in the synthesis of a wide variety of aryl derivatives [18]. The general method includes
the reaction of decaborane nido-B10H14 with Lewis bases L (L = SR2, NR3, MeCN), resulting
in the 6,9-arachno-B10H12L2 derivatives. These derivatives react with arylacetylenes to form
the corresponding C-aryl-ortho-carboranes [19]. However, this reaction gives very low
yields when used with some sterically hindered alkynes, especially those containing two
aromatic moieties [10,20–25], and it cannot be used with arylacetylenes that have acidic
or easily reducible substituents. This method is also unsuitable for use in the synthesis
of the aryl derivatives of meta- and para-carboranes. Therefore, for the synthesis of aryl
derivatives of meta- and para-carboranes, the Ullmann-type copper-coupling reactions are
used. In this way, C-mono and C,C’-diaryl derivatives of meta- and para-carboranes can be
obtained, as well as C-aryl derivatives of ortho-carborane [20,26–30]. An alternative method
is based on the Ni-catalyzed cross-coupling reactions of aryl iodides with carboranyl Grig-
nard reagents. In this way, both monoaryl and diaryl derivatives of ortho-carborane can be
prepared [31–33].

The synthesis of the B-aryl derivatives of carboranes is mainly based on the Pd-
catalyzed cross-coupling reactions of their iodo derivatives with aryl Grignard reagents
(Kumada cross-coupling). In this way, various 9-aryl and 9,12-diaryl derivatives of ortho-
carborane, 9-aryl and 9,10-diaryl derivatives of meta-carborane, and 2-aryl derivatives
of para-carborane were synthesized [34–42]. However, the available substituents on the
aromatic ring in these reactions are strictly limited due to the high reactivity of the Grignard
reagents. Mild B-arylation of carboranes via the Suzuki cross-coupling reactions of aryl
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boronic acids with 9-iodo-meta- and 2-iodo-para-carboranes were reported [43,44]. These
cross-coupling reactions can be used for the direct introduction of functionalized aryl
substituents that are not compatible with the Kumada reaction conditions. However, this
approach turned out to be ineffective for ortho-carborane because in order to facilitate the
transmetallation step in the Suzuki cross-coupling reactions, inorganic bases such as F− or
OH− are usually used, which are strong nucleophiles that can lead to the deboronation of
the ortho-carborane cage.

4,5-Diphenyl- and 3,6-diphenyl-ortho-carboranes were obtained from the Pd- and
Rh-catalyzed B-H activation reactions that started from ortho-carborane derivatives con-
taining removable carboxylic- [45] and imine-directing [46] functional groups, respec-
tively. 3,6-Diphenyl-ortho-carborane was prepared as well by the Ir-catalyzed borylation
of ortho-carborane via direct B-H activation followed by the Pd-catalyzed Suzuki cross-
coupling of the resulting 3,6-(Bpin)2-ortho-carborane with phenyl bromide [47]. 3-Phenyl-
ortho-carborane and some its C-substituted analogues can be obtained via the insertion
of a BPh fragment into the nido-carborane cage by the reaction with PhBCl2 under basic
conditions [48–50]. However, this approach cannot be applied to the synthesis of a wide
range of 3-aryl derivatives due to the practical unavailability of many ArBCl2 reagents, as
well as because of their high reactivity, which excludes the use of aryls with sensitive func-
tional groups. 3-Phenyl- and 3-(9-anthracenyl)-ortho-carboranes were prepared by the Pd-
catalyzed cross-coupling of 3-iodo-ortho-carborane with the corresponding aryl Grignard
reagents [51]. However, the range of available substituents on the aromatic ring in these
reactions is also very limited due to the high reactivity of the Grignard reagents. Moreover,
it was found that reactions 3-iodo-ortho-carborane with organometallic reagents, which are
“hard” nucleophiles, in the presence of a catalytic amount of [Pd(PPh3)4] can lead to the loss
of a halogen with the formation of 1,3-dehydro-ortho-carboryne [52], whereas the reaction
with an equimolar amount of [Pd(PPh3)4] in the presence of K2CO3 in DMF proceeds
with the decapitation of the carborane cage resulting in nido-carborane [7,8-C2B9H12]−

as the final product [53]. The preparation of 3-phenyl-ortho-carborane by the reaction of
the diazonium derivative of ortho-carborane [3-N2-1,2-C2B10H11]BF4 with the Grignard
reagent was reported [54]; however, in our hands these reactions led exclusively to the
3-arylazo derivatives of ortho-carborane [55]. The attempt to use the Suzuki cross-coupling
reaction of 3-iodo-ortho-carborane with aryl boronic acids only gave good results for aryls
containing electron-donating substituents, while reactions with aryl boronic acids con-
taining electron-withdrawing substituents (-CN, -NO2) only led to the desired carboranes
in low yields [56]. Recently, the direct arylation of ortho-carborane via Pd-catalyzed B-H
activation has been reported, but this approach has been optimized for the synthesis of the
3,6-diaryl derivatives rather than the 3-aryl derivatives [57]. A series of 3-aryl derivatives of
ortho-carborane were prepared by Pd-catalyzed B-H activation reactions with aryl iodides
under functional group assistance; however, these reactions are currently only of academic
interest rather than real synthetic methods [58,59]. Recently, we proposed a convenient
and mild one-pot method for the synthesis of 9-aryl- and 9,12-diaryl-ortho-carboranes
with sensitive functional groups, including esters and nitriles, using sequential Co- and
Pd-catalyzed reactions [60].

In this contribution, we describe the application of this method for the synthesis of a
series of 3-aryl-ortho-carboranes, including those containing sensitive functional groups.

2. Results and Discussion

The method proposed is based on the mild generation of aryl zinc reagents followed
by their Pd-catalyzed cross-coupling with 3-iodo-ortho-carborane. The aryl zinc reagents
were prepared via the Co-catalyzed reaction of aryl bromides containing various functional
groups with zinc dust [61–63]. The organozinc compounds that are obtained in this way
can be easily coupled with various aryl iodides in the presence of a catalytic amount of
(Ph3P)2PdCl2 [63]. Previously, we had successfully used this approach for the synthesis of



Molecules 2021, 26, 7297 3 of 13

9-aryl-ortho-carboranes containing functional groups that were sensitive to organolithium
and organomagnesium reagents [60].

Aryl zinc bromides containing various substituents, including sensitive functional
groups (-CN, -COOEt), were prepared by the reaction of the corresponding aryl bromides
with allyl zinc chloride/bromide that was generated from allyl chloride and zinc metal
in the presence of 25 mol.% of CoBr2 and a catalytic amount of trifluoroacetic acid in
acetonitrile at ambient temperature (Scheme 1).
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The synthesized 3-aryl-ortho-carboranes were characterized by 1H, 13C and 11B NMR 
spectroscopy. The 1H and 13C NMR spectra of all compounds contain signals of the corre-
sponding aryl substituents as well as the signals of the carborane cage. It should be noted 
that the signals of the aromatic hydrogens in the 1H NMR spectra of 3-aryl-ortho-car-
boranes in CDCl3 are noticeably shifted to the downfield region in comparison with the 
signals of the corresponding 9-aryl-ortho-carboranes [60], with a difference in the 
weighted average chemical shift of aromatic hydrogens in the range of 0.11 to 0.34 ppm. 
This is in agreement with the transition from the markedly electron-donating ortho-car-
boran-9-yl group to the slightly electron-accepting ortho-carboran-3-yl group [64]. In gen-
eral, the chemical shift of the carborane CH groups depends slightly on the presence of 
electron-donating (3.65–3.69 ppm) or electron-accepting (3.74–3.77 ppm) substituents in 
the aromatic ring. However, most notable is the strong downfield shift of the CH car-
borane signals in the case of ortho-substituted aryl groups (4.38 and 4.37 ppm for 3-(2′-
EtOOCC6H4)-1,2-C2B10H11 (8) and 3-(2′-NCC6H4)-1,2-C2B10H11 (6), respectively). In the first 
case, it can be explained by the formation of a hydrogen bond between the carborane CH 
group and the ester carbonyl group. It is known that the chemical shifts of the CH groups 
of carboranes and metallacarboranes are very sensitive to the formation of intramolecular 

Scheme 1. In situ synthesis of aryl zinc bromides.

The reactions of the prepared aryl zinc bromides with 3-iodo-ortho-carborane in the
presence of 2 mol.% of [(Ph3P)2PdCl2] in acetonitrile at room temperature results in the
corresponding 3-aryl-ortho-carboranes (Scheme 2).
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The synthesized 3-aryl-ortho-carboranes were characterized by 1H, 13C and 11B NMR
spectroscopy. The 1H and 13C NMR spectra of all compounds contain signals of the
corresponding aryl substituents as well as the signals of the carborane cage. It should be
noted that the signals of the aromatic hydrogens in the 1H NMR spectra of 3-aryl-ortho-
carboranes in CDCl3 are noticeably shifted to the downfield region in comparison with the
signals of the corresponding 9-aryl-ortho-carboranes [60], with a difference in the weighted
average chemical shift of aromatic hydrogens in the range of 0.11 to 0.34 ppm. This is in
agreement with the transition from the markedly electron-donating ortho-carboran-9-yl
group to the slightly electron-accepting ortho-carboran-3-yl group [64]. In general, the
chemical shift of the carborane CH groups depends slightly on the presence of electron-
donating (3.65–3.69 ppm) or electron-accepting (3.74–3.77 ppm) substituents in the aromatic
ring. However, most notable is the strong downfield shift of the CH carborane signals
in the case of ortho-substituted aryl groups (4.38 and 4.37 ppm for 3-(2′-EtOOCC6H4)-1,2-
C2B10H11 (8) and 3-(2′-NCC6H4)-1,2-C2B10H11 (6), respectively). In the first case, it can be
explained by the formation of a hydrogen bond between the carborane CH group and the
ester carbonyl group. It is known that the chemical shifts of the CH groups of carboranes
and metallacarboranes are very sensitive to the formation of intramolecular hydrogen
bonds [65,66]. On the other hand, the signals of the carbonyl group in the 13C NMR
spectra are also sensitive to the formation of hydrogen bonds [67,68]. Indeed, the signal
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of the carbonyl group in 3-(2′-EtOOCC6H4)-1,2-C2B10H11 (8) (170.0 ppm) demonstrates a
significant downfield shift compared to those found in 3-(3′-EtOOCC6H4)-1,2-C2B10H11
(9) (166.5 ppm) and 3-(4′-EtOOCC6H4)-1,2-C2B10H11 (10) (166.4 ppm), as well as in 9-(2′-
EtOOCC6H4)-1,2-C2B10H11 (161.5 ppm) [60], which is a clear confirmation of the formation
of an intramolecular hydrogen bond. It is also worth noting that the mass spectrum of
8 in the negative mode, in contrast to the mass spectra of other 3-aryl-ortho-carboranes,
exhibits a peak which, in addition to the loss of the carborane proton, corresponds to the
abstraction of the ethanol molecule. This is caused by the attack of the carbonyl group by
the nucleophile, which is formed upon the loss of the carborane CH proton, leading to
intramolecular cyclization with the elimination of ethanol and the formation of carboranyl
fluorenone 1,3-µ-C(O)C6H4-1,2-C2B10H10. In the case of 3-(2′-NCC6H4)-1,2-C2B10H11, the
nature of the interactions involving the carborane CH group is less clear.

This prompted us to perform an X-ray diffraction study of the synthesized 3-aryl-ortho-
carboranes. The solid-state structures of carboranes 3, 5–7, 9 and 10 were determined by
single crystal X-ray diffraction (Figure 1). The most characteristic feature of the structure of
3-aryl-ortho-carboranes is the deviation of the exo-polyhedral B-C bond from the B(3)-B(10)
axis of the carborane cage towards the carborane C(1)-C(2) bond (See Table 1).

This can be related to the fact that the B(3)-C bonds are somewhat shorter than the
B(3)-B bonds, as well as to the participation of the aryl substituents in intermolecular
interactions. The orientation of the aryl ring with respect to the carborane cage in the
obtained derivatives is different. For compounds 3, 5, 7, and 9, the projection line of the
phenyl ring onto the C2B3 plane passes through the B(7) or B(4) atom and the center of the
opposite B-C bond, while for compounds 6 and 10, it passes through the C(2) atom and the
center of the B(4)-B(8) bond. As shown in Figure 1, a Cphen-H· · ·H-B(C) contact is observed
in all of the compounds. In some cases, it is slightly longer than the sum of the van-der-
Waals radii (2.4 Å [69]), while it is somewhat shorter in the other cases. The shortest distance
(2.18 Å) is observed for compound 6 with an ortho-cyanophenyl substituent. In structures
5 and 7, there are no short contacts between the aryl ring and the carborane cage, while
in structure 6 the aryl ring is rotated in such a way that leads to the formation of a short
(2.174 Å) C(2)H· · ·HC(8) contact between the aryl and carborane hydrogens. It should be
noted that the presence of such contacts was previously found in the structure of 1-phenyl-
ortho-carborane [70]. In addition, there is a slightly shortened contact of the B-H· · ·π(N≡C-)
type between the B(4)-H group of carborane and the cyano group of the aryl substituent. It
should be mentioned that the existence of the intramolecular B-H· · ·π(N≡C-) hydrogen
bonds in the nido-carborane derivative 10-N≡CCH2(Me)S-7,8-C2B9H11 was postulated
earlier based on the NMR spectroscopy data [71].

In order to understand in more detail the observed differences in molecular conforma-
tion, we carried out a comparative quantum chemical study for compounds 7 and 6, which
have para- and ortho-cyanophenyl substituents and significantly differ in their molecular
conformation and intramolecular contacts. The calculation was done using the GAUSSIAN
program [72] at the PBE0/def2tzvp level of theory that was shown to provide realistic
geometrical and energetic properties for different types of compounds [73–75]. In order to
search for preferential molecular conformation, the aryl substituent was rotated about the
B(3)-C(3) bond with a step of 5◦. The results are shown in Figure 2.
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Table 1. Some selected angles in 3-aryl-ortho-carboranes 3, 5–7, 9 and 10.

Compound
Selected Angles, ◦

C(3)-B(3)-B(10) C(3)-B(3)-C(1) C(3)-B(3)-C(2) C(3)-B(3)-B(8)

3 173.72(9) 121.84(9) 122.88(9) 128.70(9)
5 171.88(12) 120.71(12) 120.91(11) 130.56(11)
6 171.08(10) 120.91(9) 119.28(9) 130.81(9)
7 168.2(3) 117.2(3) 117.5(2) 133.5(3)
9 170.0(2) 118.4(2) 120.0(2) 132.0(2)

10A 173.3(2) 122.2(2) 121.4(2) 128.7(2)
10A′ 172.7(2) 120.8(2) 122.1(2) 129.3(2)
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Figure 2. Dependence of conformational energy on C(2)-B(3)-C(3)-C(4) torsion angle for compounds
6 (black curve) and 7 (blue curve).

As expected, for the para-cyanophenyl derivative (7), the barrier to rotation is small
and the conformational curve is symmetrical with respect to the plane passing through
the B(3) and B(8) atoms and the center of the C(1)-C(2) bond. The experimental structure
corresponds to the global minimum. In the case of the ortho-cyanophenyl derivative (6),
there are two equivalent local minima and a global minimum, which probably corresponds
to structure 6 in solution, and which is ~5 kcal/mol lower in energy. Using the geometries
of the local and global minima as starting points, we carried out an additional optimization
without any restrictions. Both optimizations converged to true minima, global and local,
respectively. The QTAIM theory [76] was utilized to analyze the intramolecular noncovalent
interactions. A search for the bond critical points (using the AIMALL program [77]) revealed
the presence of two intramolecular attractive interactions between the carborane cage and
the aryl substituent for both local and global minima (Figure 3). The energies of the
observed noncovalent interactions were estimated using the empirical correlation between
interaction energy and potential energy density at the bond critical point (E = 1/2V(r)) [78],
which is frequently utilized for energetic analysis [73,79,80].
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The stabilization of the global minimum was provided by the B-H· · ·H-Cphen
(−1.6 kcal/mol) and Ccarb-H· · ·π (−3.8 kcal/mol) nonbonded interactions, while Ccarb-
H· · ·H-Cphen (−2.4 kcal/mol) and B-H· · ·π (−1.3 kcal/mol) contacts were observed for
the local minimum which, evidently, was weaker. At the same time, the experimentally ob-
served solid-state structure of compound 6 corresponds to the local minima which should
be caused by the crystal-packing influence. Indeed, in the crystal structure of 6, a rela-
tively strong intermolecular hydrogen bond C(2)-H(2)· · ·N(1) is formed (Figure S1 in the
Supplementary Materials). Such an interaction cannot exist for a molecular conformation
corresponding to the global minima due to steric reasons.

Based on these results we can suggest that experimental molecular conformation
of compound 10, for which intramolecular Cphen-H· · ·H-Ccarb shortened contacts are ob-
served, is also influenced by the crystal-packing effect (Figure S2 in the
Supplementary Materials).

In summary, the efficient method for the one-pot synthesis of 3-aryl-ortho-carboranes
with sensitive functional groups using sequential Co- and Pd-catalyzed reaction was
proposed. A series of functional aryl derivatives, including esters and nitriles, were
synthesized and characterized by methods of the NMR spectroscopy and single crystal
X-ray diffraction.

3. Experimental Part
General Synthetic Procedure and Characterization of 3-Aryl-ortho-carboranes

Allyl chloride (82 µL, 77 mg, 1.00 mmol) and trifluoroacetic acid (25 µL, catalytic
amount) were added to a blue mixture of zinc powder (490 mg, 7.50 mmol) and an-
hydrous cobalt dibromide (55 mg, 0.25 mmol) in 2.5 mL of fresh distilled acetonitrile.
The resulting dark orange mixture was stirred at room temperature for 15 min. Then
corresponding aryl bromide (2.50 mmol) was added, and reaction was stirred at room tem-
perature for an additional 1 h. Then, 3-iodo-ortho-carborane (1) (270 mg, 1.00 mmol) with
bis(triphenylphosphine)palladium dichloride (14 mg, 0.02 mmol) were added. The reaction
was stirred at room temperature overnight. After the removal of volatiles under reduced
pressure, the residue was washed with water (25 mL), dichloromethane (3 × 25 mL) and
acetone (until no trace of carborane appeared on TLC). The organic phases were combined,
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dried over Na2SO4 and concentrated under reduced pressure. The crude product was puri-
fied by column chromatography on silica to give the corresponding 3-aryl-ortho-carborane.

3-(4′-Methylphenyl)-ortho-carborane (2): 4-methylphenyl bromide (315 µL, 435 mg,
2.50 mmol) was used; diethyl ether was used as the eluent for column chromatography; a
pale-yellow crystalline solid was obtained (195 mg, yield 83%). 1H NMR (400 MHz, CDCl3):
δ 7.49 (2H, d, J = 7.7 Hz, CHAr), 7.19 (2H, d, J = 7.7 Hz, CHAr), 3.69 (2H, br s, CHCarb), 2.37
(3H, s, CH3) ppm; 11B NMR (128 MHz, CDCl3): δ −2.4 (2B, d, J = 148 Hz), −5.0 (1B, s, B-C),
−8.5 (1B, d, J = 145 Hz), −12.9 (3B, d, J = 162 Hz), −13.7 (3B, d, J = 174 Hz) ppm; 13C NMR
(100 MHz, CDCl3): δ 139.7 (CAr-CH3), 133.2 (CArH), 129.2 (CArH), 56.8 (CCarbH), 21.5 (CH3)
ppm. MS (DUIS): m/z for C9H18B10: calcd. 233.2 [M−H]−, obsd. 233.2 [M−H]−.

3-(4′-N,N-Dimethylaminophenyl)-ortho-carborane (3): 4-N,N-dimethylaminophenyl
bromide (500 mg, 2.50 mmol) was used; a mixture of chloroform and hexane (3:1, v/v) was
used as the eluent for column chromatography; a pale-pink crystalline solid was obtained
(150 mg, yield 57%). 1H NMR (400 MHz, CDCl3): δ 7.46 (2H, d, J = 8.5 Hz, CHAr), 6.72
(2H, d, J = 8.5 Hz, CHAr), 3.65 (2H, br s, CHCarb), 3.00 (6H, s, N(CH3)2) ppm; 11B NMR
(128 MHz, CDCl3): δ −2.7 (2B, d, J = 149 Hz), −4.0 (1B, s, B-C), −8.6 (1B, d, J = 150 Hz),
−13.1 (3B, d, J = 152 Hz,), −13.7 (3B, d, J = 164 Hz) ppm; 13C NMR (100 MHz, CDCl3):
δ 151.5 (CAr-N), 134.3 (CArH), 117.4 (CAr-B), 112.0 (CArH), 56.8 (CCarbH), 40.3 (N(CH3)2)
ppm. MS (DUIS): m/z for C10H21B10N: calcd. 262.3 [M−H]−, obsd. 262.3 [M−H]−; calcd.
305.3 [M+H+MeCN]+, obsd. 305.3 [M+H+MeCN]+.

3-(4′-Methoxymethoxyphenyl)-ortho-carborane (4): 4-methoxymethoxy bromide (381 µL,
543 mg, 2.50 mmol) was used; a mixture of chloroform and hexane (3:1, v/v) and a mixture
of diethyl ether and hexane (1:2, v/v) were used as the eluent for column chromatography;
a pale-yellow solid was obtained (164 mg, yield 58%). 1H NMR (400 MHz, CDCl3): δ

7.52 (2H, d, J = 8.5 Hz, CHAr), 7.04 (2H, d, J = 8.5 Hz, CHAr), 5.20 (2H, s, OCH2O), 3.67
(2H, br s, CHCarb), 3.48 (3H, s, OCH3) ppm; 11B NMR (128 MHz, CDCl3): δ −2.5 (2B, d,
J = 149 Hz), −4.8 (1B, s, B-C), −8.5 (1B, d, J = 150 Hz), −13.0 (3B, d, J = 156 Hz), −13.6
(3B, d, J = 159 Hz) ppm; 13C NMR (100 MHz, CDCl3): δ 158.7 (CAr-O), 134.6 (CArH), 122.7
(CAr-B), 116.2 (CArH), 94.2 (OCH2O), 56.8 (CCarbH), 56.2 (OCH3) ppm. MS (DUIS): m/z
for C10H20B10O2: calcd. 279.2 [M−H]−, obsd. 279.3 [M−H]−. Crystallographic data
(CCDC number 2124596): C10H21B10N are monoclinic, space group P21/c: a = 12.9798(5) Å,
b = 9.8799(4) Å, c = 12.5908(5) Å, β = 109.130(2)◦, V = 1525.47(11) Å3, Z = 4, M = 263.38,
dcryst = 1.147 g·cm−3. wR2 = 0.1159 calculated on F2

hkl for all 3666 independent reflections
with 2θ < 56.0◦, (GOF = 1.074, R = 0.0417 calculated on Fhkl for 2986 reflections with
I > 2σ(I)).

3-(4′-Methoxyphenyl)-ortho-carborane (5): 4-methoxyphenyl bromide (312 µL, 468 mg,
2.50 mmol) was used; a mixture of diethyl ether and hexane (1:2, v/v) was used as the
eluent for column chromatography; a yellow solid was obtained (193 mg, yield 77%).
1H NMR (400 MHz, CDCl3): δ 7.52 (2H, d, J = 8.6 Hz, CHAr), 6.90 (2H, d, J = 8.6 Hz,
CHAr), 3.83 (3H, s, OCH3), 3.67 (2H, br s, CHCarb) ppm; 11B NMR (128 MHz, CDCl3):
δ −2.5 (2B, d, J = 149 Hz), −4.7 (1B, s, B-C), −8.5 (1B, d, J = 149 Hz), −13.0 (3B, d,
J = 156 Hz), −13.6 (3B, d, J = 159 Hz) ppm; 13C NMR (100 MHz, CDCl3): δ 161.1 (CAr-
O), 134.7 (CArH), 122.3 (CAr-B), 114.0 (CArH), 56.8 (CCarbH), 56.1 (OCH3), 55.4 (CCarbH) ppm.
MS (DUIS): m/z for C9H18B10O: calcd. 249.2 [M−H]−, obsd. 249.3 [M−H]−. Crystallo-
graphic data (CCDC number 2118711): C9H18B10O are orthorhombic, space group P212121:
a = 9.5602(2) Å, b = 11.2642(3) Å, c = 12.9598(3) Å, V = 1395.62(6) Å3, Z = 4, M = 250.33,
dcryst = 1.191 g·cm−3. wR2 = 0.0857 calculated on F2

hkl for all 3377 independent reflec-
tions with 2θ < 56.0◦, (GOF = 1.048, R = 0.0308 calculated on Fhkl for 3200 reflections with
I > 2σ(I)).

3-(2′-Cyanophenyl)-ortho-carborane (6): 2-cyanophenyl bromide (455 mg, 2.50 mmol)
was used; a mixture of chloroform and hexane (1:1, v/v) was used as the eluent for col-
umn chromatography; a pale-yellow crystalline solid was obtained (88 mg, yield 36%).
1H NMR (400 MHz, CDCl3): δ 8.14 (1H, d, J = 7.6 Hz, CHAr), 7.69 (2H, m, CHAr), 7.54
(1H, dd, J1 = 7.6 Hz, J2 = 7.5 Hz, CHAr), 4.37 (2H, br s, CHCarb) ppm; 11B NMR (128 MHz,
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CDCl3): δ −2.4 (2B, d, J = 149 Hz), −7.0 (1B, s, B-C), −8.6 (1B, d, J = 153 Hz), −10.7
(1B, d, J = 152 Hz), −12.1 (2B, d, J = 161 Hz), −13.0 (2B, d, J = 150 Hz), −13.9 (1B,
d, J = 176 Hz) ppm; 13C NMR (100 MHz, CDCl3): δ 138.3 (CArH), 133.8 (CArH), 132.8
(CArH), 130.0 (CArH), 119.7 (CN), 113.5 (CAr-CN), 55.6 (CCarbH) ppm. MS (DUIS): m/z
for C9H15B10N: calcd. 244.2 [M−H]−, obsd. 244.3 [M−H]−. Crystallographic data
(CCDC number 2118710): C9H15B10N are monoclinic, space group P21/c: a = 6.7263(3) Å,
b = 19.8472(8) Å, c = 10.5592(4) Å, β = 105.7989(17)◦, V = 1356.38(10) Å3, Z = 4, M = 245.32,
dcryst = 1.201 g·cm−3. wR2 = 0.1139 calculated on F2

hkl for all 3247 independent reflec-
tions with 2θ < 55.9◦, (GOF = 1.045, R = 0.0406 calculated on Fhkl for 2535 reflections with
I > 2σ(I)).

3-(4′-Cyanophenyl)-ortho-carborane (7): 4-cyanophenyl bromide (455 mg, 2.50 mmol)
was used; a mixture of chloroform and hexane (3:1, v/v) was used as the eluent for
column chromatography; a pale-yellow crystalline solid was obtained (221 mg, yield 90%).
1H NMR (400 MHz, CDCl3): δ 7.69 (2H, m, CHAr), 7.63 (2H, m, CHAr), 3.74 (2H, br s,
CHCarb) ppm; 11B NMR (128 MHz, CDCl3): δ −2.0 (2B, d, J = 149 Hz), −6.3 (1B, s, B-C),
−8.5 (1B, d, J = 151 Hz), −11.4 (1B, d, J = 148 Hz), −13.0 (5B, d, J = 164 Hz) ppm; 13C
NMR (100 MHz, CDCl3): δ 133.8 (CArH), 131.7 (CArH), 118.5 (CN), 113.6 (CAr-CN), 56.6
(CCarbH) ppm. MS (DUIS): m/z for C9H15B10N: calcd. 244.2 [M−H]−, obsd. 244.3 [M−H]−.
Crystallographic data (CCDC number 2118709): C9H15B10N are monoclinic, space group
P21/n: a = 7.1000(10) Å, b = 17.782(2) Å, c = 10.7239(14) Å, β = 93.146(5)◦, V = 1351.9(3) Å3,
Z = 4, M = 245.32, dcryst = 1.205 g·cm−3. wR2 = 0.2020 calculated on F2

hkl for all 2949
independent reflections with 2θθ < 54.2◦, (GOF = 1.323, R = 0.0792 calculated on Fhkl for
2335 reflections with I > 2σ(I)).

3-(2′-Ethoxycarbonylphenyl)-ortho-carborane (8): 2-ethoxycarbonyl bromide (398 µL,
573 mg, 2.50 mmol) was used; a mixture of chloroform and hexane (2:1, v/v) was used as
the eluent for column chromatography; a colorless oil was obtained (100 mg, yield 34%).
1H NMR (400 MHz, CDCl3): δ 8.24 (1H, d, J = 7.5 Hz, CHAr), 7.81 (1H, dd, J3 = 7.8 Hz,
J4 = 1.3 Hz, CHAr), 7.55 (1H, ddd, J3

1 = 7.5 Hz, J3
2 = 7.5 Hz, J4 = 1.3 Hz, CHAr), 7.46 (1H, ddd,

J3
1 = 7.8 Hz, J3

2 = 7.5 Hz, J4 = 1.3 Hz, CHAr), 4.38 (2H, br s, CHCarb), 4.33 (2H, q, J = 7.1 Hz,
OCH2CH3), 1.40 (3H, t, J = 7.1 Hz, OCH2CH3) ppm; 11B NMR (128 MHz, CDCl3): δ −3.3
(2B, d, J = 147 Hz), −6.1 1B, (s, B-C), −8.2 (1B, d, J = 148 Hz), −11.2 (1B, d, J = 134 Hz),
−11.9 (2B, d, J = 163 Hz), −13.9 (3B, d, J = 169 Hz) ppm; 13C NMR (100 MHz, CDCl3):
δ 170.0 (CO), 139.8 (CArH), 134.5 (CAr-CO), 131.3 (CArH), 130.3 (CArH), 129.2 (CArH), 62.0
(OCH2CH3), 57.0 (CCarbH), 14.3 (OCH2CH3) ppm. MS (DUIS): m/z for C11H20B10O2: calcd.
245.2 [M−H−EtOH]−, obsd. 245.3 [M−H−EtOH]−.

3-(3′-Ethoxycarbonylphenyl)-ortho-carborane (9): 3-ethoxycarbonyl bromide (401 µL,
573 mg, 2.50 mmol) was used; a mixture of chloroform and hexane (2:1, v/v) was used as the
eluent for column chromatography; a pale-yellow crystalline solid was obtained (161 mg,
yield 55%). 1H NMR (400 MHz, CDCl3): δ 8.17 (1H, s, CHAr), 8.08 (1H, d, J = 7.8 Hz, CHAr),
7.85 (1H, d, J = 7.6 Hz, CHAr), 7.46 (1H, dd, J1 = 7.8 Hz, J2 = 7.6 Hz, CHAr), 4.39 (2H, q,
J = 7.1 Hz, OCH2CH3), 3.77 (2H, br s, CHCarb), 1.40 (3H, t, J = 7.1 Hz, OCH2CH3) ppm; 11B
NMR (128 MHz, CDCl3): δ−2.2 (2B, d, J = 149 Hz),−5.5 (1B, s, B-C),−8.6 (1B, d, J = 150 Hz),
−12.0 (1B, d, J = 134 Hz), −12.9 (2B, d, J = 154 Hz), −13.4 (3B, d, J = 168 Hz) ppm; 13C
NMR (100 MHz, CDCl3): δ 166.5 (CO), 138.1 (CArH), 133.5 (CArH), 130.9 (CArH), 130.5
(CAr-CO), 128.6 (CArH), 61.4 (OCH2CH3), 56.8 (CCarbH), 14.5 (OCH2CH3) ppm. MS (DUIS):
m/z for C11H20B10O2: calcd. 291.2 [M−H]−, obsd. 291.3 [M−H]−. Crystallographic data
(CCDC number 2124597): C11H20B10O2 are monoclinic, space group P21/n: a = 7.0480(7)
Å, b = 10.3342(10) Å, c = 21.972(2) Å, β = 90.515(5)◦, V = 1600.3(3) Å3, Z = 4, M = 292.37,
dcryst = 1.214 g·cm−3. wR2 = 0.1601 calculated on F2

hkl for all 3144 independent reflections
with 2θ < 52.0◦, (GOF = 1.149, R = 0.0512 calculated on Fhkl for 2555 reflections with
I > 2σ(I)).

3-(4′-Ethoxycarbonylphenyl)-ortho-carborane (10): 4-ethoxycarbonyl bromide (408 µL,
573 mg, 2.50 mmol) was used; a mixture of chloroform and hexane (1:5, v/v) and diethyl
ether were used as the eluent for column chromatography; a pale-yellow crystalline solid
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was obtained (126 mg, yield 43%). 1H NMR (400 MHz, CDCl3): δ 8.01 (2H, d, J = 8.0 Hz,
CHAr), 7.67 (2H, d, J = 8.0 Hz, CHAr), 4.39 (2H, q, J = 7.1 Hz, OCH2CH3), 3.75 (2H, br s,
CHCarb), 1.40 (3H, t, J = 7.1 Hz, OCH2CH3) ppm; 11B NMR (128 MHz, CDCl3): δ −2.2 (2B, d,
J = 150 Hz), −5.7 (1B, s, B-C), −8.5 (1B, d, J = 149 Hz), −11.8 (1B, d, J = 146 Hz), −12.9 (5B,
d, J = 157 Hz) ppm; 13C NMR (100 MHz, CDCl3): δ 166.4 (CO), 149.9 (CAr-B), 133.2 (CArH),
132.9 (CAr-CO), 129.2 (CArH), 61.3 (OCH2CH3), 56.7 (CCarbH), 14.5 (OCH2CH3) ppm. MS
(DUIS): m/z for C11H20B10O2: calcd. 291.2 [M−H]−, obsd. 291.3 [M−H]−. Crystallo-
graphic data (CCDC number 2124598): C11H20B10O2 are monoclinic, space group P21/n:
a = 16.8494(13) Å, b = 7.0272(6) Å, c = 28.549(2) Å, β = 105.387(2)◦, V = 3259.2(5) Å3, Z = 8,
M = 292.37, dcryst = 1.192 g·cm−3. wR2 = 0.1266 calculated on F2

hkl for all 7113 independent
reflections with 2θ < 54.2◦, (GOF = 1.006, R = 0.0503 calculated on Fhkl for 4786 reflections
with I > 2σ(I)).

Supplementary Materials: The following are available online. Figure S1: H-bonded chain in the
crystal structure of compound 6. Figure S2: Fragment of the crystal packing of compound 10.
Reagents and equipment used for the synthesis and characterization of 3-aryl-ortho-carboranes, NMR
and mass-spectra of compounds 2–10. References [54,81–85] are cited in the supplementary materials.
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