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In circuit theory, it is well known that a linear feedback shift register (LFSR) circuit generates pseudorandom bit sequences
(PRBS), including an M-sequence with the maximum period of length. In this study, we tried to detect M-sequences known
as a pseudorandom sequence generated by the LFSR circuit from time series patterns of stimulated action potentials. Stimulated
action potentials were recorded from dissociated cultures of hippocampal neurons grown on a multielectrode array. We could
find several M-sequences from a 3-stage LFSR circuit (M3). These results show the possibility of assembling LFSR circuits or its
equivalent ones in a neuronal network. However, since the M3 pattern was composed of only four spike intervals, the possibility
of an accidental detection was not zero. Then, we detected M-sequences from random spike sequences which were not generated
from an LFSR circuit and compare the result with the number of M-sequences from the originally observed raster data. As a result,
a significant difference was confirmed: a greater number of “0–1” reversed the 3-stage M-sequences occurred than would have
accidentally be detected. This result suggests that some LFSR equivalent circuits are assembled in neuronal networks.

1. Introduction

The brain is recognized as a very large-scale network system
in which the basic element is a neuron [1–4]. In recent
studies of the memory mechanism in the brain, investigating
a formation of information communication is more essential
than specifying the region of memory in the brain [4].

The basic study of communication method in the brain
is to clarify the coding mechanism of information. Therefore
varieties of coding for neuronal information, for example,
rate code, were proposed in previous studies [5–15]. The first
theory of information architecture is cell-assembly theory
proposed by Hebb in 1949 [16, 17]. Abeles postulated
that “synfire chains” of spike with relatively fixed intervals
could travel through the brain representing information
and various behavioral states [18–21]. Rolston and others
have observed a robust set of spontaneously repeating

spatiotemporal patterns of neuronal activity using a template
matching algorithm [22].

Then, the question arises as to how the data com-
munication is controlled and what and how the form of
controlled data communication is constructed. This question
is essential to investigate the mechanism, how information
is communicated in more detail. To resolve this question,
decoding sequence pattern in one block of spike activity
(analyzing time series patterns of firing), not a rate of spike
or waveform of action potential, is necessary. However,
in previous studies, the main discussion of information
assemblies in neuronal network is propagation of firing rate
or synchronization of firing timing in neuronal network in
the broad view of spike activity; decoding sequence pattern
such as described above has not been considered; therefore,
there are few clues to understand the mechanism used in the
brain for coding neuron spikes and communicating data.
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Figure 1: 3-stage LFSR circuit, the operation at the ring sum
is an exclusive-OR such as 1 + 0 = 1 and 1 + 1 = 0. (a)
A basic circuit with feedback [2, 3] generates an M-sequence
as 10111001011100. . .(basic pattern). (b) A mirror circuit of (a)
with feedback [1, 3] generates a time course of reversed-order M-
sequence, as 11101001110100. . ..

In circuit theory, a binary counter with n-bit logical
elements (registers) can count up to 2n−1. With an adequate
feedback link, the loop circuit becomes equivalent to a binary
counter, the output of which becomes an M-sequence with
length 2n−1 and is called the period; here, “M” stands
for maximum length. If this resulting M-sequence is used
as an intrinsic code of its own loop, 2n−1 loops can be
discriminated [23]. For example, a 3-stage linear feedback
shift register (LFSR) generates a 7-bits period M-sequence,
as shown in Figure 1.

M-sequences perform most efficiently in synchronous
communication and they are used for the control of
data transmission, including code division multiple access
(CDMA) for cell phones [23]. We assume that some LFSR
circuits are assembled in neuronal networks to control data
communications using M-sequences. Although this assump-
tion has already been demonstrated by computer simulation
in our previous study [24], physiological verification of this
assumption has not been performed. Thus, the purpose of
this study is to investigate LFSR circuits in neuronal networks
in order to physiologically verify this assumption.

Cultured, small-scale neuronal networks on multielec-
trode arrays (MEAs) are feasible for analysis of network
assemblies. MEAs can be used to apply stimulation pulse
into neurons with sufficient flexibility and have been used to
identify functional connections in neuronal networks [25–
28].

In this study, we investigate M-sequences from the time
course of stimulated action potentials in neuronal networks
grown on an MEA and discuss the LFSR circuit assemblies in
neuronal networks from the detected M-sequence patterns.

2. Methods

2.1. Cell Cultures. Cell cultures of hippocampal neurons
were dissected from Wistar rats on embryonic day 18.
The procedure was performed in accordance with protocols

Figure 2: Micrograph of cultured hippocampal neurons in an MEA
black rectangles are electrodes. The size of each electrode is 50 ×
50 μm and the electrode spacing was 150 μm.

approved by the Institutional Animal Care and Use Com-
mittee of AIST. Hippocampi were dissociated with 0.1%
trypsin (Invitrogen, Tokyo, Japan) in Ca2+-free and Mg2+-
free phosphate-buffered saline minus at 37◦C for 15 min. The
dissociated neurons were planted at a density of 3.3 × 105

cells/mm2 in polyethyleneimine-coated MEA dishes (MED-
P515A, Alpha MED Scientific, Kadoma, Osaka, Japan) with
8 × 8 planar microelectrodes. The size of each electrode was
50 × 50 μm and the electrode spacing was 150 μm. To locate
neuronal networks in the central area of each MEA dish, we
used a cloning ring with an inner diameter of 7 mm. The
ring was removed the following day. Neurons adhered to the
substrate of the MEAs covering all electrodes.

Neurons were maintained at 37◦C in a humidified
atmosphere that contained 5% CO2 and cultured for 21–
40 days in Dulbecco’s Modified Eagle’s Medium (Invitrogen)
that contained 5% horse serum and 5% fetal calf serum
with supplements of 100 U/mL penicillin, 100 μg/mL strep-
tomycin, and 5 μg/mL insulin. Half of the culture medium
was renewed twice per week.

Figure 2 shows a micrograph of cultured neurons in an
MEA.

In this study, we prepared 6 cultured cell samples at 22–
50 days in vitro (DIV) and named them cultures 1–6.

2.2. Stimulated Spike Recording. Stimulated spikes were
recorded by an extracellular recording system with 64
channels (MED64, Alpha MED Scientific). The sampling rate
of the recording was 20 kHz and the recording time was
3 s. Stimulation was applied at a particular channel (one
electrode) 5 ms after the recording started. Stimulation was
produced using a current-controlled bipolar pulse (positive,
then negative) with a strength of 10 μA and a duration of
100 μs.

We tried template matching on some electrode on some
cultures. Almost only one pattern of spike form was detected.
Therefore, we did not do spike sorting [27] because there
were few possibility that the action potentials originate from
multiple neurons in our experiment.

2.3. M-Sequence Detection in Stimulated Spike Responses.
The method we used to detect M-sequences in stimulated
spike responses is as follows.
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Table 1: Average number of stimulated spikes on a channel (Num) and the time length for which stimulated spike response was observed (L).

Culture 1 Culture 2 Culture 3 Culture 4 Culture 5 Culture 6

Num 26.9± 11.1 27.7± 9.47 45.7± 11.6 29.9± 10.7 17.8± 2.89 31.5± 17.9

L 160 ms 160 ms 240 ms 160 ms 75 ms 300 ms

First, a raster plots were obtained by detecting peaks from
recorded spike responses with a prespecified threshold on
each channel [28] with a sampling frequency of 10 kHz.

Threshold was determined by trial and errors. In our
experiments and most suitable threshold was 5 times of
the RMS of noise (about 0.016∼0.024 mV), which is able
to reduce noise almost completely without reduceing action
potential. This threshold was also reported as suitable in [28].

Then, the raster plot data was divided into the particular
width of the time bins. The state of a bin was recognized as
“1” if a spike existed; otherwise, it was recognized as “0.” If
two spikes were detected in a bin, it was neglected. Then, the
raster plot was converted to a time course of binary data in
order to investigate sequence patterns.

Interval of spikes is dispread variously. So it is crucial to
determine the bin size of M-sequences detection. Some prob-
lems of fixed bin always exist [29]. We consider that these
problems were resolved practically by a statistical analysis on
the number of detected M-sequences on multielectrode on
multiculture as described in Chapter 4.

The maximum interval is about 30 ms in every culture.
While, the minimum size of LFSR is 3 stage which generates a
7-bits (6 bins) period M-sequence [23] practically. Therefore,
the maximum bin size of M-sequence is considered about
5 ms.

Considering various bin size of M-sequence as described
above and sampling period of raster plot data (0.1 ms), time
bins (discrete bit length of M-sequence) with multi-widths
from 0.1 ms to 5 ms by increasing 0.1 ms step at a time
were applied. Detection results on each time bin width were
superimposed and plotted on a time axis. Then, it was able to
detect various interval lengths of M-sequences though often
with overlapping.

Considering that the data communication must begin at
state “1” because the start of communication could not be
identified at state “0,” the detection of M-sequence patterns
was started from state “1.”

The conversion of the data into a raster plot, converting
the raster plot into a time course of binary data, and M-
sequence detection were performed on a personal com-
puter using detection programs implemented with MATLAB
(MathWorks Japan, Tokyo, Japan).

3. Results

Stimulated spike activities appeared in the duration of 100–
300 ms and then completely disappeared after the duration
of the time.

A reverberation which seemed to be caused by potential
energy of stimulation pulse was observed for 0.5 ms after
stimulation. Figure 3(a) shows the spike response on chan-
nels (ch) 2 and 3 for culture 1. Table 1 shows the number

of spikes evoked when the stimulation was activated and the
time length when the stimulated spike response was observed
for each culture.

50–55 channels, whose number of spike by the stimu-
lation, was more than 20 with 100 ms after the stimulation
were selected for analyzing M-sequence.

We could detect several 3-stage M-sequences (M3),
including those generated by mirror circuits and “0-1”
reversed-state sequences (Rev. M3). Furthermore, although
we attempted to find 4-stage M-sequences (M4) as
100110101111000. . ., we could not detect them in all the
cultures that were part of this study. Table 2 summarizes
the M-sequence patterns detected from all the cultures in
this study. Figure 3(b) shows the result of the M-sequence
detection on channels 8, 9, and 10 for culture 1. As shown
in this figure, various patterns and interval lengths of M-
sequences were detected. Based on the detection results, the
total number of detected M-sequences (sum of all patterns)
discriminating between non-Rev. M3 and Rev. M3 was
counted for each channel, as shown in Figure 4.

Considering the possibility that some neurons might
belong to plural circuits that could generate M-sequences
simultaneously, we counted each sequence independently
even if some sequence patterns were overlapped as shown in
Figure 3(b).

4. Analysis and Discussions

From the detection results, as previously described, some M-
sequences were detected from the stimulated spike response.
However, there is room for doubt whether this result shows
the existence of LFSR circuits that generate M-sequence
in neuronal networks. In this section, we provide a more
detailed analysis on the detected sequence pattern and
discuss the analysis in order to resolve these doubts.

4.1. Rate of the Number of Rev. M3 Patterns among Detected
M-Sequences. As shown in Table 2, 12 types of M-sequences
were detected from the analysis results, among which 8 types
were of non-Rev. M3 and 4 types were of Rev. M3 patterns.

Assuming that the sequence of non-Rev. M3 and Rev.
M3 patterns shown in Table 2 are randomly generated, the
probability of Rev. M3 pattern detection should be about
33.3%. However, from the analysis results, we noticed that
the rate of the number of Rev. M3 patterns was significantly
higher than this probability value, which was 73.4 ± 7.23%
(the mean and standard division) for all cultures.

4.2. Significance of the Estimation of M-Sequence Detection
Probability. Detected M3 patterns were relatively simple,
constructed by only 4 interval patterns such as 11, 101,
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Figure 3: Stimulated spike response and results of M-sequence detection for culture 1. (a) The raw recording spike data (0-1 s). A stimulated
spike response was observed from 5 ms (applied stimuli) to 150 ms on channels 2 and 3. (b) The raster plot and detected M-sequences on
channels 8, 9, and 10.

1001, and 10001, and the number of spike intervals on
each channel ranged from 20 to 40. Therefore, the pos-
sibility of an accidental detection of M-sequence patterns
(without LFSR circuits generating M-sequences) is not zero.
To resolve this doubt, we performed a hypothesis test to
estimate the significant detection probability of M-sequences
in observed stimulated spike sequences as follows.

First, we generated a shuffled spike-interval sequence
from the original observed raster data, called an interval
shuffle, on each channel (Figure 5) [30]. The shuffled raster
plot has the same number of state “1” and spike intervals
as the original raster plot, but it can be considered to be a
random sequence without LFSR.

Incidentally, there are some controversy about the
shuffling method, using only one shuffling method is not
enough to estimate the significant detection probability of
M-sequences exactly [21, 31, 32]. However, most shuffling
methods, for example, channel shuffling, spike shuffling
across cells, spike exchange across cells [21], and so forth,
involve breaking number of spike on each channel and spike
interval, the confidence of the test result was lost except for
the interval shuffle.

Therefore, in order to estimate the significant detection
probability of M-sequences exactly, we performed the inter-
val shuffle 20 times (created 20 shuffled interval data from
an original spike data) instead of multiple shuffling methods.
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Figure 4: Number of detected M-sequences for (a) Culture 1, (b) Culture 2, (c) Culture 3, (d) Culture 4, (e) Culture 5, and (f) Culture 6.

Table 2: M-sequence patterns detected from all cultures. ∗Indicates
generated by mirror circuit.

Type Pattern

M3

1011100

1110010

1100101

1001011

1110100 ∗

1001110 ∗

1101001 ∗

1010011 ∗

Rev. M3

1101000

1000110

1011000 ∗

1100010 ∗

These shuffled interval data were considered the population
as described below in detail.

Moreover, we also tested for some of the raster plots
created from two random noise data; one of them was
the raster plots obtained by detecting peaks from recorded
noise responses of medium (without cell cultures) with
threshold 0.01 (mV) and the other is a sequence data created
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Figure 5: Process of interval shuffle (a) original raster plot data (b)
shuffled raster plot data.

from random numbers, to compare with raster data from
stimulated spikes.

After the interval shuffle, the significant difference in
the mean number of detected M3 patterns on one channel
between the original observed raster data and interval shuffle
data of each culture (population) was tested using a z-test on
the assumption as follows.

(i) The total number of detected M3 on each channel is
considered individual.

(ii) The population is the group of individuals on the
interval shuffle (20 times).

(iii) The sample is the group of individuals on the original
raster data.

(iv) The standard deviation of the sample is equal to that
of population.
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(v) Both sample and population are normal distribu-
tions.

The null hypothesis H0 and alternative hypothesis H1 are
as follows.

H0: The number of detected M-sequences from the
original raster data is not larger than the number
detected from the interval shuffle data.

H1: The number of detected M-sequences from the
original raster data is larger than the number detected
from the interval shuffle.

The mean number of detected M3 per channel in population
μ0 is defined by the equation as follows:

μ0 =
20∑

t=1

⎧
⎨
⎩

chnumt∑

ch=1

(
mnumst,ch

chnumst

)⎫⎬
⎭, (1)

where t is the shuffled time, chnumst is the number of
channels detected M3 on shuffled time t, and mnumst,ch is
the number of detected M3 on shuffled time t, chnum ch.

The standard deviation of population σ is defined as

σ =

√√√√√ 1
∑20

t=1 chnumst − 1

20∑

t−1

⎧
⎨
⎩

chnumst∑

ch=1

(mnumst,ch − μ0)2

⎫
⎬
⎭.

(2)

Then, equation for the value of z is

z = mnumo− μ0

σ/
√

chnumo
, (3)

where mnumo is the mean number of detected M3 per
channel and chnumo is the number of channels that detected
M3 on original data.

We tested by using the sum of Rev. M3 patterns and non-
Rev. M3 patterns individually because we noticed a higher
detection rate of Rev. M3 patterns, as previously described.

From results of test, we confirmed that a significantly
greater number of Rev. M3 patterns were detected from the
original data than from the interval shuffle in all cultures
except culture 2 as shown in Figures 6(a) and 6(c), while
no significantly greater number of Rev. M3 patterns was
detected in random noise data as shown in Figures 6(b) and
6(d) when we set P < 0.05 (estimated from z value). In
cultures 1, 3, 4, and 5, significantly greater numbers were
detected when we set P < 0.01 also.

4.3. Discussion of Analysis Results. M-sequence patterns
detected from interval shuffle were recognized as accidental
detections, and they were not generated from LFSR circuits.

Detected number of Rev. 3 was above chance in the
stimulated spike activity, while detected number of Rev. 3 was
not above chance in random noise.

By assessing these results, we determined that the
detected Rev. M3s from the original raster plot of cultures
were generated by some 3-stage LFSR circuits assembled
equivalently in a neuronal network except culture 2.

In the meanwhile, the fact that detected Rev. M3s from
random noise were not much above accident indicates no
assembly of LFSR. Moreover, a few non-Rev. M3 patterns
detected from the culture data are not generated by LFSR
also because the number of detected non-Rev. M3 in original
raster plot was not larger than in the interval shuffle data as
shown in Figure 6(c).

Incidentally, the reason why Rev. M3, not non-Rev. M3,
is generated especially is still unclear; we consider there is
a possibility that a stable state, (transmitting/accepting less
energy signals to/from other neurons) which has negative
voltage of electric potential of neuron, is realized by state “0”
and this fact causes the reversing “0” and “1.”

4.4. Model of Equivalent LFSR Circuit in Neuronal Network.
To conclude the previous discussions, we recognize the
existence of some 3-stage LFSR circuits that generate M3
patterns (especially Rev. M3 patterns) equivalently, which
suggests the possibility that this phenomenon might be
related to the data communication in neuronal networks.
Abeles denoted that there are synchronizations of spike
pattern in 3 neurons in “synfire chain theory” [18]. We
consider the fact suggests that the reason of that 3-stage
LFSR circuits, not 4-stage, 5-stage and so forth, are assembled
mainly at least in the early stage of development of neuronal
network.

Then, the question that neurons can function as a
logical element (shift register and XOR shown in Figure 1)
arises. Considering the fact that a neuron is able to become
excited when the neuron has multiple connections with other
neurons and spikes from these neurons arrived at simul-
taneously, it seems unlikely that one neuron corresponds
to one element of LFSR (shift resister) because one-to-one
connection of neuron pair is not effective to excite a neuron.

To resolve the contradiction as described above, we
propose two types of equivalent 3-stage LFSR model in
neuronal network as follows.

The first model is that spikes of multiple neurons in
a neuron group propagate to another neuron group as
shown in Figure 7(a). A neuron group corresponds to a
shift resister. This propagation mechanism is similar to the
theory of synfire chain [18–20]. We assume that neurons in
the same neuron group evoke simultaneously and all pair
of neurons are equal in their synaptic delay. Then synaptic
delay corresponds to clock period of LFSR. From analysis
results, the average time length of detected Rev. M3 is about
10 ms (Max. more than 30 ms, Min. 1 ms); therefore, the
average clock period is about 1.67 ms (Max. more than
5 ms). These values do not contradict the value of synaptic
delay (more than 1 ms) [31]. Collating the theory of synfire
chain, we consider that these assumptions are proper. In
the meanwhile, Izhikevich proposes a network model with
a different synaptic delay [33]. We consider that there is a
possible chance that an equivalent LFSR circuit is assembled
when the spike timing delay of each neuron in a same
neuron group and synaptic delay between neuron groups are
coordinated even if pair of neurons are not equal in their
synaptic delay.
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Figure 6: Mean number of detected M3 patterns. Error bar shows the standard deviation of the number of detected M3 patterns for each
culture. (a) Rev. M3 from spike data. There were significant differences between the original and interval shuffle data in all cultures except
culture 2 (P < 0.05). (b) Rev. M3 from random noise data. Noise 1 is the raster plots obtained by detecting peaks from recorded noise
responses of medium (without cell cultures) with threshold 0.01[mV]. Noise 2 is random sequence data created from random numbers. (c)
non-Rev. M3 from Spike data (d) non-Rev. M3 from Noise data.

The second model is that “mainneurons” which are
connected with some “sub neurons” to excite “mainneurons”
constructed LFSR as shown in Figure 7(b). This model also
needs simultaneous spike timing of subneurons.

Then, we omit a XOR function in Figure 7, some XOR
circuit models constructed by neurons are already shown in
previous study [34].

Considering that patterns of network are an astronom-
ically spread figure, there is a possibility that both types of
circuit model as described above are assembled in neuronal
network. There is a possibility that other types of models
are assembled also. It is still unclear which type of model is
appropriate.

5. Conclusion

We detected a significantly greater number of Rev. M3
patterns from the time series stimulated spike response
than from the random series (interval shuffle) data in
neuronal networks formed on MEAs. In conclusion, this
result suggests that some equivalent 3-stage LFSR circuits are
assembled in neuronal networks; detected M-sequences are
generated by these circuits; they are not accidental potentials;
and they are used for data communication in neuronal
networks. We also proposed equivalent LFSR circuit in
neuronal network.

Our future work will aim to identify the location and
type of equivalent LFSR circuit, to resolve the reason why



8 Computational Intelligence and Neuroscience

Group A Group B

Group C

(a)

Group A
Group B

Group C

Main neuron

Subneuron
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Figure 7: An equivalent 3-stage LFSR. (a) Model 1: spikes of multiple neurons in a neuron group propagate to another neuron group like
synfire chain. Although we assume that neurons in the same neuron group evoke simultaneously and all pair of neurons are equal in their
synaptic delay, there is a possibility that an equivalent LFSR circuit is assembled when the spike timing delay of each neuron in a same neuron
group and synaptic delay between neuron groups are coordinated even if pair of neurons are not equal in their synaptic delay. (b) Model 2:
the framework of LFSR is constructed by “mainneurons” and “sub neurons” are connected with “mainneurons” to excite them. Although, we
omit a XOR function in both figures, some XOR circuit models constructed by neurons are already shown in previous study.

the major types of detected sequences are a Rev. M3
pattern by investigating data communications, to analyze
the correlation between the culture term and the number
of detected M-sequences to investigate growth process of
equivalent LFSR, and to analyze the correlation between the
scale of neuronal networks and the number of detected M-
sequences.

Although we could find only M3 patterns in this study,
there is a possibility that larger types of M-sequences can be
detected in large-scale networks, for example, M4 and M5
patterns (generated on 5-stage LFSR circuits), which would
be different from the small and early stages of cell cultures
used as samples in this study.

Our studies suggest a new field of “computational brain
architecture,” which can be applied to studies in brain
physiology, brain machine interface, and related fields.
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