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Abstract

The interaction between organisms and their environment is central in functional morphology.

Differences in habitat usage may imply divergent morphology of locomotor systems; thus,

detecting which morphological traits are conservative across lineages and which ones vary under

environmental pressure is important in evolutionary studies. We studied internal and external

morphology in 28 species of Neotropical anurans. Our aim was to determine if internal morphology

(muscle and tendons) shows lower phylogenetic signal than external morphology. In addition, we

wanted to know if morphology varies in relation to the habitat use and if there are different functional

groups. We found differences in the degree of phylogenetic signal on the groups of traits.

Interestingly, postaxial regions of the forelimb are evolutionarily more labile than the preaxial

regions. Phylomorphospace plots show that arboreal (jumpers and graspers) and swimmer frogs

cluster based on length of fingers and the lack of sesamoid, also reflected by the use of habitat.

These functional clusters are also related to phylogeny. Sesamoid and flexor plate dimensions to-

gether with digit tendons showed to be important to discriminate functional groups as well as use of

habitat classification. Our results allow us to identify a “grasping syndrome” in the hand of these

frogs, where palmar sesamoid and flexor plate are absent and a third metacarpal with a bony knob

are typical. Thus, a lighter skeleton, long fingers and a prensile hand may be key for arboreality.
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How an organism interacts with its environments has important

implications for the selective forces shaping the phenotypes of the

species. The potential association between morphology and func-

tional performance at different levels (individual, population and

species) may yield differences in fitness providing the raw material

for natural selection to act upon (Arnold 1983; Kingsolver and

Huey 2003). In this sense, the relationship between morphology,

locomotor performance and habitat use is one of the most studied

aspects of evolutionary phenotypic variation (Losos and Sinervo

1989; Losos 1990a, 1990b; Bonine and Garland 1999; Van Damme
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and Vanhooydonck 2002; Goodman et al. 2008; Irschick et al.

2008). It was observed that differences in habitat occupation under-

lie divergent evolution of the morphology of locomotor systems in

numerous taxa (Irschick et al. 2005; Calsbeek and Irschick 2007).

Among the studies on this issue, research on reptiles certainly out-

number those in other groups; for example, many studies have inves-

tigated the relationship between limb morphology and habitat use in

Anolis, liolaemids and tropidurine lizards (Losos 1990a, 1990b,

1990c; Kohlsdorf et al. 2001; Irschick et al. 2005; Calsbeek and

Irschick 2007; Grizante et al. 2010; Tulli et al. 2009, 2011, 2012a,

2012b). However, these associations are not always clear (Tulli

et al. 2012b, 2016). In a broad evolutionary context, convergent

evolution of traits in species from different regions can lead to simi-

lar body shape among them, although they could be phylogenetical-

ly unrelated (Donley et al. 2004; Moen et al. 2013). Alternatively,

despite the dispersal of lineages, relevant ecological traits may be

conserved during and after separation (Losos, 1990a, 1990b, 1990c;

Stephens and Wiens 2004; Moen et al. 2013). For these reasons,

detecting which morphological traits are conserved across lineages

and which ones vary under environmental pressure is an important

aspect of evolutionary studies.

Several studies made interesting observations on the variation of

muscles across different taxonomic groups of amphibians (Dunlap

1960; Davies and Burton 1982; Burton 1983, 1996a, 1996b, 1998,

2001, 2004; Liem 1970; Manzano and Lavilla 1995; Manzano 2000;

Faivovich 2002; Manzano et al. 2008; Salgar et al. 2009; Hoyos et al.

2014; Hoyos and Salgar 2016; Blotto et al. 2017). In addition, it has

been observed that in the palmar surface of the hand of some lizard

and anuran taxa, the flexor tendon connecting the forearm muscles

with the digits present an embedded palmar sesamoid (Abdala et al.

2009; Ponssa et al. 2010) that prevents the palmar flexion of the hand

and consequently restricts its movement (Abdala et al. 2009; Sustaita

et al. 2013; Fontanarrosa and Abdala 2014, 2016). Some studies on

the palmar sesamoid and myotendinous structures in Squamata

(Haines 1950; Moro and Abdala 2004; Abdala et al. 2009; Tulli et al.

2012b; Fontanarrosa and Abdala 2014, 2016), marsupials (Abdala

et al. 2006) and placental mammals (Carrizo et al. 2014) showed that

these structures can be associated with ecological aspects of the

studied animals, such as habitat use or locomotor modes (Abdala

et al. 2006; Tulli et al. 2012b; Carrizo et al. 2014).

Anuran morphology has been studied in association with loco-

motor mode in several cases (Rand 1952; Zug 1972, 1978; Emerson

1978, 1988; Gomes et al. 2009; Jorgensen and Reilly 2013; Vidal-

Garcı́a et al. 2014). The remarkable abilities of frogs to swim, hop,

walk, climb, dig and even glide allow them to occur in almost all avail-

able environments and make them an interesting group to highlight

relationships between morphology and ecology (Soliz and Ponssa

2016; Soliz et al. 2017). In the past, hind limb morphology has been

studied in relation to the mentioned locomotor modes, because of the

biomechanical role of the limbs as the propulsive agent (Zug 1972).

As such, strong jumpers are known to exhibit proportionately longer

hind limbs and longer tibio-fibulae (Zug 1972; Emerson 1978, 1985).

Comparatively, variations in the forelimb anatomy of frogs has

received less attention (but see Gillis et al. 2014).

Here, we studied the comparative anatomy of the forelimb in

28 species of Neotropical anurans focusing on the muscle-tendinous

system. We postulate that muscle-tendinous structures can also

reflect the evolutionary history of a group, acting as anatomical

descriptors and showing adaptive changes to lifestyle (Burton 1998).

Considering the relevance of the palmar sesamoid in the manual

abilities of tetrapods (Abdala et al. 2009; Sustaita et al. 2013;

Fontanarrosa and Abdala 2014, 2016), we also included this struc-

ture in our study. We test whether the external and muscle-

tendinous morphologies of anuran forelimbs differ among taxa that

exhibit different locomotor modes or habitat use. We also test

whether such patterns can be explained solely by the phylogenetic

relationships between the species examined or by another underly-

ing factor. It should be noted that the muscle-tendinous structures

have been seldom considered in ecomorphological studies of verte-

brates (Abdala et al. 2008, 2014; Tulli et al. 2012b; Fabrezi et al.

2014; Carrizo et al. 2014; Fratani et al. 2018). We hypothesize that:

a) internal morphology (muscle and tendons) will show a higher

phylogenetic signal pattern than external morphology as was shown

in previous studies on other tetrapod taxa (Tulli et al. 2012a;

Carrizo et al. 2014); b) morphological traits of terrestrial species

will differ from arboreal ones because climbing ability is associated

with the position of the center of gravity; thus, arboreal species need

different morphological arrangements to compensate the potential

problem of a displaced center of gravity (Cartmill 1985; Tulli et al.

2009) and c) arboreal graspers and jumpers will show different

morphology compared with walker jumpers and swimmer frogs that

tend to exhibit a morphological continuum (Soliz et al. 2017).

Specifically, we predict that the grasping anurans will exhibit a

“grasping syndrome” as described by Fontanarrosa and Abdala (2016).

Material and Methods

We dissected the forearm and manus of 156 adult specimens belong-

ing to 28 species of 7 anuran families: Bufonidae, Leptodactylidae,

Hylidae, Phyllomedusidae, Telmatobiidae, Odontophrynidae, and

Microhylidae (Figure 1, Supplementary Material) that occur in

Northwestern Argentina, Paraguay, South of Bolivia and Brazil. The

choice of the species aimed to maximize representation of habitat

use and locomotor modes in the sample of species occurring in simi-

lar habitats, such as Chaco (arid, semiarid and wet) and Monte

(Cabrera and Willink 1980). In addition, we aimed for a balanced

phylogenetic representation of different clades within each studied

family, with the exception of one Telmatobius species. Sample sizes

for each species ranged from 3 to 9 specimens according to availabil-

ity (Supplementary Material). Because sample size might be small

and variable, we measured the variation coefficient (VC, given in

percentage) for snout-vent length within each species (as this is the

most variable trait) obtaining variation coefficients from 3% to

11% (mean VC for the entire sample was 6.17% and set point

4.24–8.87%). A broad intraspecific variation may be an important

source of uncertainty that can influence our results and may lead to

misinformed conclusions (Garamszegi and Møller 2010); however,

our data did not show a broad dispersion. For each individual we

made dissections of the palmar sesamoid and myological and tendin-

ous traits related to the forelimb and manus under a binocular

microscope (Nikon SMZ645), for details see Abdala et al. (2006,

2008). Muscle-tendinous variables were measured with a digital

caliper (Mitutoyo CD-15B; 6 0.01 mm, Japan). Species means and

the number of individuals per species used are included as support-

ing information (Supplementary Material).

Following the protocol of Abdala et al. (2006), Tulli et al.

(2012b), and Carrizo et al. (2014), we studied the variability be-

tween muscle and tendon dimensions of the structures directly impli-

cated in manual burrowing, grasping, walking, jumping, and

swimming. External characters are shown in Figure 2A, B; muscles

and tendons measured are shown in Figure 2C, D. All of the muscles

analyzed exhibit a parallel-fibered arrangement. In addition to
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length, maximum width of muscles was also recorded to obtain an

estimate of the morphometric variation of each muscle as a whole to

allow testing if there exists correlation between aponeurosis and ten-

don dimensions that are associated with these muscles.

The different categories of habitat use and locomotor modes

were considered after Cei (1980), Wells (2007), Jorgensen and

Reilly (2013) and personal observations. Therefore, we obtained 4

habitat use categories (fossorial, terrestrial, arboreal and aquatic),

and 6 locomotor mode categories (terrestrial walker, terrestrial

jumper, terrestrial burrower, arboreal jumper, arboreal grasper-

walker and swimmer; Figure 1).

Because species have a shared history (Figure 1), data of traits

corresponding to these species cannot be considered as independent

data-points (Harvey and Pagel 1991) and phylogenetically informed

statistical analyses are required. For this purpose, we used a compos-

ite tree of the phylogenetic relationship based on Pyron and Wiens

(2011) tree and because branch lengths (BL) were not available, we

used arbitrary branch lengths (e.g., all BL equal to one, BL trans-

formed with Grafen method and BL transformed with Pagel

method). We tested the adequacy of each one of these 3 arbitrary

branch lengths following Garland et al. (1992), by plotting the abso-

lute value of each standardized independent contrast versus its

standard deviation. We used Mesquite v2.74 (Maddison and

Maddison 2015) and the PDAP PDTREE v1.15 modules (Midford

et al. 2009) and searched for significant differences. After plotting

trees and BL for all traits, we found that the tree with BL equal to

one was the more adequate arrangement (BL ¼ 1 showed 4 out of

26 significant plots, while Pagel BL transformation showed 8/26 and

Grafen 11/26 significant relationships).

Mean values of all morphological variables (Supporting

Information Supplementary Material) were log10 transformed for

further analyses. We then tested the data for phylogenetic signal

(i.e., the consistency in trait values with the phylogeny); for this pur-

pose, we used the Pagel’s k value estimator for each variable (Pagel

1999) that varies between 0 and 1, where 0 means no phylogenetic

signal and 1 means that a variable is highly dependent of the phylo-

genetic structure. In addition, a randomization analysis was per-

formed for each variable to determine the probability of the

estimator.

As the morphological variables studied here showed to be highly

correlated with body size (r2 > 0.8), and to consider the phylogenet-

ic context of this study, we proceeded with phylogenetic size correc-

tion (Revell 2009). Through this, we obtained the residuals of each

target morphological trait (least squares regression analysis trait vs.

body size - snout-vent length, SVL) while simultaneously controlling

for phylogenetic independence. Then, we used the residuals in subse-

quent analyses as size-corrected morphological measurements.

We studied 23 different morphological variables (Supplementary

Material, Table S2). Since this amount of information is difficult to

analyze, we reduced the number of variables by running a phylogen-

etically based principal component analysis (phyl.pca). We collected

the scores of each principal component from the phylogenetically

informed PCA. We considered the first 4 principal components that

attained for 84% of the accumulated variance of the total analyses.

We also plotted the phylomorphospace and the contribution of all

morphological variables; for this descriptive purpose, we used the

command phylomorphospace from the program Phytools (Revell

2012).

Figure 1. Composite tree of the species studied here. Colored circles on the right show the functional groups (left) and habits categories (right) these species

have.
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We tested if internal or external variables showed variability in

relation to the 6 functional groups considered here (fossorial

walkers, terrestrial walkers, terrestrial jumpers, arboreal jumpers,

arboreal walker or graspers and aquatic swimmers) as well as for

the type of habitats these frogs use (e.g., burrows, terrestrial, arbor-

eal and aquatic). In this case we used phylogenetic MANOVA by

running Geiger program (Harmon et al. 2008), we concatenated the

internal or external variables in relation to the different factors

(functional groups or habitat types) as a formula to compute the

analyses. Finally, for testing if there were differences in each one of

the different morphological traits (in total 23 external and internal

traits) among species as a function of their habitat use (aquatic, ter-

restrial, arboreal or fossorial) a phylogenetically based analysis of

variance was performed (phylANOVA of Phytools, Revell 2012)

with 1000 iterations. Similarly, we used the same 23 traits to deter-

mine whether there were differences due to the specie�s locomotor

modes; these analyses were conducted through a phylogenetically

informed ANOVA too. All these analyses were performed including

phylogenetic information through the following functions; phylosig,

phyl.resid, phyl.pca, phylomorphospace, phylANOVA of the

Phytools package version 6.0 (Revell 2012) in the open access envir-

onment R (Version 3.4.0, R Core team 2017).

Results

In all dissected specimens the m. flexor digitorum communis origi-

nates from the humerus distal condyle, through a wide and short

tendon from the aponeurosis covering the elbow. The m. flexor

carpi ulnaris originates on the medial epicondylus of the humerus,

with some fibers connected to the m. flexor digitorum communis.

All specimens present a superficial and a deep fascia that can be col-

ored (Figure 2C, D). Bufonidae, Leptodactylidae, Telmatobiidae,

Figure 2. External characters. (A) body and arm external measurements, (B) manus external measurements (C) muscle and tendons showing sesamoid and flex-

or plate, (D) tendons and muscles where no flexor plate or sesamoid are present (drawings courtesy S. De Oliveira Lagôa).
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Odontophrynidae, and most of Microhylidae present a flexor plate

with an embedded palmar sesamoid, over which a palmar aponeur-

osis is distinguishable (Figure 2C); conversely, hylids,

Phyllomedusidae and some microhylids lack a palmar sesamoid

(Figure 2D). From the flexor plate originate the flexor tendons of

digits III, IV, and V that insert onto the basal portion of the distal

phalanx of each digit (Figure 2D).

In the case of bufonids, a tendinous sheet between the mm. flex-

or digitorum longus and mm. opponens of digit II are distinguish-

able. In leptodactylids, telmatobiids, and odontophrynids, there is

an aponeurosis between the flexor plate and the muscles of digit II.

In Leptodactylus fuscus, the flexor tendon of digit II is visible and

originates from the flexor plate inserting into the basal portion of

the distal phalanx. The tendon is covered by fascias and the mm.

opponens and flexor digitorum II longus. Some microhylids, such as

Dermatonotus muelleri present a flexor tendon of digit II. In

Hylidae and Phyllomedusidae, the m. flexor digitorum communis is

where the flexor tendons of digits III, IV and V originate, then they

insert in the basal portion of the distal phalanx of each digit. The

pennation angle is lower than 45� in all analyzed species.

Depending on the source of the data (external or internal morph-

ology), we found different degrees of phylogenetic signal on the

group of traits. Snout-vent length (SVL) showed no significant

phylogenetic signal, whereas among the external morphology traits,

only arm length showed a significant phylogenetic signal (Table 1).

For the internal morphology traits (muscles and tendinous systems),

8 out of 16 traits showed significant phylogenetic signal based on

the values of the k estimate (Table 1). Finally, the distribution of spe-

cies in different types of habitats and their locomotor modes also

showed high values of phylogenetic signal estimators (0.999,

Table 1).

Phylogenetic PCA showed that the following variables contrib-

uted most (based on higher absolute eigenvalues) to the principal

components functions (Table 2): sesamoid length, sesamoid width,

digit IV and V tendon length and width (respectively), flexor carpi

ulnaris tendon length and width (internal morphology variables;

Table 2); similarly, forearm width and hand length show high load-

ings in the PCA (Table 2). In addition, phylomorphospace plots con-

sidering external and internal morphology characters show that all

arboreal (jumpers and graspers) and one swimmer species cluster

according to the length of finger tendons and sesamoid (Figure 3A),

which is reflected by the use of habitat where aquatic (partially) and

arboreal species clearly differ from terrestrial and burrower species

(Figure 3B). These clusters are probably due to phylogeny, since

Figure 3C shows the same pattern and also because of the high

phylogenetic signal observed in the most informative traits of PC1

(see Table 2). With respect to the habitat use groups, both arboreal

jumpers and walkers (Hylidae and Phyllomedusidae) are different

from other functional groups in their flexor plates (Figure 3A).

However, it must be taken into account that there is an important

component of phylogeny in these results as the phylogenetic signal

and phylomorphospace analyses show (see Table 1 and Figure 3C).

The phylogenetic MANOVAs with locomotor modes as factor

revealed that, according to the Wilks’ statistic, only internal traits

differed in response to habitat use (Table 3). However, phylogenetic

MANOVA of external traits showed significant differences when

considering functional groups only (Table 3). The detailed phylo-

genetic ANOVA revealed that external traits do not show significant

variation in any of the cases (functional groups or habitat types).

Table 1. Phylogenetic signal using Pagel’s lambda estimate

k P

External Measures

Snout-vent length 0.152 0.653

Arm length 0.587 0.047

Forearm length 0.126 0.697

Forearm width <0.001 1

Palm length 0.171 0.584

Palm width 0.272 0.375

Hand length 0.335 0.301

Internal Measures

Sesamoid length 0.958 <0.001

Sesamoid width 0.931 <0.001

Flexor plate length 0.999 <0.001

Flexor plate width 0.999 <0.001

Finger III tendon length 0.682 0.042

Finger IV tendon length 0.694 0.026

Finger V tendon length 0.999 <0.002

Finger III tendon width 0.446 0.045

Finger IV tendon width 0.120 0.613

Finger V tendon width 0.291 0.663

Flexor carpi ulnaris muscle length 0.484 0.145

Flexor carpi ulnaris muscle width 0.335 0.149

Flexor digitorum communis muscle length 0.275 0.367

Flexor digitorum communis muscle width <0.001 1

Flexor carpi ulnaris tendon length 0.317 0.105

Flexor carpi ulnaris tendon width 0.314 0.123

Ecology

Function 0.999 <0.001

Habitat 0.999 <0.001

Boldface denotes the presence of phylogenetic signal in the variable.

Table 2. Phylogenetic PCA analysis on external and internal morph-

ology variables

Variable PC1 PC2 PC3 PC4

External measures

Arm length 0.078 0.122 �0.465 0.799

Forearm length �0.206 0.246 �0.466 0.515

Forearm width �0.047 0.275 0.342 0.424

Palm length �0.315 0.196 �0.112 �0.049

Palm width �0.045 0.116 0.003 0.219

Hand length �0.095 0.235 0.663 0.112

Internal Measures

Sesamoid length �0.880 0.365 �0.101 �0.040

Sesamoid width �0.946 0.091 �0.149 �0.001

Flexor plate length �0.954 0.202 �0.072 �0.022

Flexor plate width �0.975 0.014 0.011 �0.044

Finger III tendon length 0.200 �0.338 �0.804 �0.185

Finger IV tendon length 0.243 0.057 �0.767 �0.216

Finger V tendon length 0.433 �0.199 �0.780 �0.043

Finger III tendon width �0.405 �0.194 0.428 0.087

Finger IV tendon width �0.172 �0.346 0.122 0.137

Finger V tendon width 0.070 �0.171 0.545 0.010

Flexor carpi ulnaris muscle length �0.042 0.026 �0.854 0.186

Flexor carpi ulnaris muscle width 0.028 0.301 0.641 0.575

Flexor digitorum communis m. length �0.001 0.053 �0.787 0.291

Flexor digitorum communis m. width �0.543 0.077 0.303 0.096

Flexor carpi ulnaris tendon length �0.238 20.958 0.049 0.034

Flexor carpi ulnaris tendon width �0.252 20.957 0.008 0.103

Cumulative contribution to variance 35.6 63.6 78.31 84.42

Boldface denotes most informative variables in the morphospace after abso-

lute values of eigenvalues.
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When examining internal traits, sesamoid width and length showed

significant differences, as well as flexor plate dimensions. Terrestrial

and burrowing species formed a homologous group, separated from

the aquatic and arboreal species after Holm post hoc test (Table 4).

The results for functional groups after the phylogenetic ANOVA of ses-

amoid and flexor plate dimensions show that terrestrial (jumpers and

walkers), burrowers and swimmers species form a homogeneous group

different from the arboreal species (walker and jumpers, see Table 4)

that exploit vertical habitats. Tendon width also shows significant dif-

ferences in the functional groups: swimmers, arboreal jumpers, and ar-

boreal walkers or graspers form a group separated from terrestrial

(burrowers, jumpers, and walkers) species (Table 4). When considering

habitat use, phylogenetic ANOVA showed that for sesamoid and flex-

or plate, tendon width of finger V and tendon length of finger VI, ter-

restrial and burrower species form a group and arboreal and aquatic

species were segregated (Table 4). Noticeably, Hylidae and

Phyllomedusidae species mostly belong to the arboreal habitat use cat-

egory (except for Pseudis platensis) segregated by Holm post hoc test

(Figure 3B, C, Table 4). Finally, the flexor digitorum communis muscle

width showed significant differences in habitat type used, although no

homogeneous group was formed (Table 4). These results highlight the

importance of the palmar sesamoid and the flexor plate in the exploit-

ation of vertical dimensions of the habitat.

Discussion

Our data show an important pattern of phylogenetic signal: half of the

internal morphology traits show high phylogenetic signal estimator val-

ues (Table 1). The effect of the phylogeny on the internal morphology

was also verified in other tetrapod groups, such as lizards and anurans

(Tulli et al. 2012a; Abdala et al. 2014; Fratani et al. 2018). Interestingly,

digit tendons length was additionally an important trait that segregated

arboreal and swimming species showing that this morphology–lifestyle

relationship probably arose from features clustered in phylogenetic

groups with the same habitat use (Vanhooydonck and Van Damme

1999). This niche conservatism (Wiens and Graham 2005) was also ap-

parent among microhylids that exhibit a strong conservatism in ecology,

morphology and performance (although, not in body size). This is espe-

cially remarkable, given that these species have been separated for more

than 65 million years (Moen et al. 2013). Taken together these data

Figure 3. Phylomorphospace plots of (a) functional groups (terrestrial walker,

jumper, and burrower; swimmer and arboreal walker and jumper); (b) habitat

use (terrestrial; fossorial, swimmer, and arboreal) and (c) family level

(Microhylidae, Hylidae, Leptodactylidae, Odontophynidae, Bufonidae,

Telmatobiidae) among the 28 anuran species. Axes correspond to PC1 35.6%

of variance (increase of finger tendon [III, IV, and V] length, decrease of ses-

amoid and flexor plate size) and PC2 28.0% of variance (increase of flexor

carpi ulnaris—FCU muscle and sesamoid length and decrease of FCU tendon

size).

Table 3. Phylogenetic MANOVA of external and internal variables

grouped as a function of locomotor mode (terrestrial walker, ter-

restrial jumper, fossorial walker, arboreal jumper, arboreal grasper

or walker, and aquatic swimmer) and habitat use (fossorial, terres-

trial, arboreal, aquatic)

Locomotor mode

df Wilk’s F P

External 5 22 0.111 1.707 0.034

Internal 5 22 <0.001 3.926 <0.001

Habitat use

df Wilk’s F P

External 3 24 0.405 1.132 0.349

Internal 3 24 0.005 2.692 0.003

Boldface denotes significant differences.
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support our first hypothesis, since internal morphology traits tended to

have higher phylogenetic signal than external ones.

Among external morphology traits, only arm length exhibited a

phylogenetic pattern indicating that this trait is somehow more

unique to each lineage among the species studied here. Traits exhib-

iting strong phylogenetic signal suggest gradual changes over time

(e.g., Brownian Motion model of evolution), and traits with no

phylogenetic signal may be highly labile on the time scale of phyl-

ogeny, or may not change at all (Revell 2008).

Other traits that showed low phylogenetic signal were the width

and length of the tendon of the flexor carpi ulnaris that also played

an important role in our phylomorphospace figures. These traits

may segregate the jumper species from the rest (particularly among

the terrestrial species), but we need more detailed information to

corroborate this assumption. The low phylogenetic signal in the

flexor tendons width of digits IV and V, and flexor carpi ulnaris

muscle suggests that the postaxial regions of the forelimb are evolu-

tionarily more prompted to vary than the preaxial regions. These

results are interesting as the postaxial region corresponds to the pri-

mary axis that passes through digit IV in early limb development

(Fabrezi et al. 2007) and it would be expected a more stable config-

uration to this crucial limb zone. However, it should be considered

that those variables related to length of the postaxial (ulnar) struc-

tures show a strong phylogenetic pattern, decoupled thus of their

width, which exhibit a lower phylogenetic signal, contrasting with

the observations of Herrel et al. (2014) for hind limb kinematics of

Xenopus tropicalis. These authors found that hind limb length in

females were good descriptors of the peak resultant jumping force,

compared with longer iliums and the length of the longest toe in

males. This probably indicates the different roles fore and hind limb

may play in locomotion (Wang et al. 2014). Previous studies have

shown that toads use their forelimbs almost exclusively to decelerate

and control the body at the moment of impact (Gillis et al. 2014),

our results suggest that the postaxial region of the forelimbs could

exert a differential role in landing deserving special consideration,

particularly in jumping species (all leptodactylid frogs and some

hylids).

Our phylogenetic informed MANOVA and ANOVA show that

some of the selected morphological variables are clearly related to

the arboreal locomotion mode and may be characterized by the mor-

phological pattern of the forelimb, such as lack of sesamoid bone

and flexor plate. Forearm structures in arboreal anurans show that

they present in their manus the same pervasive trend exhibited for

all lineages of grasping tetrapods (Sustaita et al. 2013; Manzano

et al. in press). A vertical position in terrestrial environments

requires that the animals stay in balance by pulling their fore-feet to-

ward the substrate, while their hind feet push on the substrate (Tulli

et al. 2011). This ability allows organisms to balance over a vertical

substrate and requires that the organisms maintain their center-of-

mass aligned with their support. This can be achieved by developing

an adhesive or suction force between their body and the contact sur-

face (Cartmill 1985) or grabbing a narrow stem of the surface, as

most arboreal anurans and other grasping tetrapods do (Sustaita

et al. 2013; Manzano et al. in press). These morphological descrip-

tors of the arboreal habitat use in the studied frogs allow us to up-

hold our second and third predictions. Previous studies across many

organisms have shown a strong relationship between ecology (e.g.,

microhabitat use and diet) and morphology (see reviews in

Wainwright 2007). Far fewer have considered performance (e.g.,

Losos 1990a, 1990b, 1990c; Herrel et al. 2014; Tulli et al. 2011,

Table 4. Phylogenetic ANOVA of external and internal variables as a function of locomotor mode (Tw ¼ terrestrial walker, Tj ¼ terrestrial

jumper, Bw ¼ fossorial walker, Aj ¼ arboreal jumper, Aw ¼ arboreal grasper or walker, and S ¼ aquatic swimmer) and habitat use (F ¼ fos-

sorial, T ¼ terrestrial, Ar ¼ arboreal, Aq ¼ aquatic)

Functional group Habitat type

F P posthoc F P posthoc

External Measures

Arm length 1.138 0.429 1.244 0.768

Forearm length 4.081 0.549 0.192 0.98

Palm length 4.084 0.545 0.974 0.808

Palm width 0.874 0.941 0.735 0.868

Hand length 1.631 0.848 2.851 0.549

Internal Measures

Sesamoid length 21.012 0.009 TwTjBwS AjAw 31.285 0.005 BT Aq Ar

Sesamoid width 19.37 0.022 TwTjBwS AjAw 29.282 0.008 BT Aq Ar

Flexor plate length 28.184 0.007 TwTjBwS AjAw 47.078 0.001 BT Aq Ar

Flexor plate width 26.408 0.007 TwTjBwS AjAw 46.606 0.001 BT Aq Ar

Finger III tendon length 8.664 0.211 14.114 0.061

Finger IV tendon length 5.193 0.451 9.168 0.16

Finger V tendon length 13.318 0.071 23.448 0.019 BT Aq Ar

Finger III tendon width 19.914 0.021 TwTjBw SAjAw 30.836 0.007 BT Aq Ar

Finger IV tendon width 4.898 0.454 5.878 0.262

Finger V tendon width 3.173 0.651 1.675 0.712

Flexor carpi ulnaris muscle length 1.561 0.866 0.864 0.828

Flexor carpi ulnaris muscle width 3.774 0.587 1.424 0.707

Flexor digitorum communis m. length 0.327 0.995 0.186 0.975

Flexor digitorum communis m. width 10.579 0.14 18.326 0.036 BT Aq Ar

Flexor carpi ulnaris tendon length 2.982 0.67 2.064 0.613

Flexor carpi ulnaris tendon width 2.835 0.701 1.833 0.647

Boldface denotes significant differences and post hoc (Holm method) shows the homogeneous groups formed between groups (when underlined together).
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2012a), which forms the link between ecology and morphology

(Wainwright 1991). In addition, Moen et al. (2013) found that frog

species using the same microhabitat had both similar morphology

and performance, regardless of geographical location.

A recent study on morphology and habitat use also found that

frogs that live in the bush and swim and jump, exhibit modifications

in the postcranial skeleton such as broad proximal sacral diapophy-

ses, broad vertebral bodies, and longer urostyles that relate their

morphology and habits (Soliz and Ponssa 2016). These authors also

suggest that a slender body would be better adjusted to face any

challenging locomotor modes, which is typical of hylid frogs that

possess slender hands too. In addition, arboreal and walker species

have smaller and shorter vertebral bodies in their column, weaker

coracoids and clavicles compared with jumper and swimmer species

(Soliz and Ponssa 2016). Likewise, some features found in

Odontophoridae frogs suggest a functional relationship of some

morphological features, as they present a typical configuration of

burrowing frogs (Reilly and Jorgensen 2011). However, our data are

not strong and clear enough to support a specific hypothesis related to

this burrowing group of frogs (Blotto et al. 2017), despite the fact that

we the studied 5 species belonging to 2 different families.

A nested clade (Hylidae and Phyllomedusidae) showed a particu-

lar and different composition of limb anatomy, which caused them

to be clustered together in a separate group from the rest of the spe-

cies in our phylomorphospace figure. Our results also showed that

the traits that differentiate these anuran species exhibiting an arbor-

eal locomotor mode are the palmar sesamoid and the flexor plate

(Table 3). These traits allow us to identify a “grasping syndrome”

(Fontanarrosa and Abdala 2016) in the hand skeleton of these frogs,

characterized by no palmar sesamoid, no flexor plate and the third

metacarpal bone with a bony knob (Dang et al. 2018); supporting

our third hypothesis. Previous studies have shown that a large pal-

mar sesamoid embedded in a large flexor plate is a clear impairment

for flexing the hand and, consequently, prevents the acquisition of

manual dexterity (Abdala et al. 2009; Sustaita et al. 2013;

Fontanarrosa and Abdala 2014, 2016). In addition, a large palmar

sesamoid appears to obstruct tendon travel, thereby preventing flex-

ion of the digital joints (Sustaita et al. 2013).

Reduction or loss of the palmar sesamoid allows other possibil-

ities to exploit the habitat, for example, arboreality, as the hands

can hold narrow branches through grasping. This ability has been

reported in hylids and in all members of the Phyllomedusidae family

(Manzano et al. 2008, 2018; Sustaita et al. 2013) and the anatomic-

al requirements of a grasping hand were extensively reported in sev-

eral tetrapod species (Manzano et al. 2008, 2018; Abdala et al.

2009; Sustaita et al. 2013; Fabre et al. 2013). Similarly, it was

shown that in hylids, the bony knob of the third metacarpal has

evolved independently from phylogeny resulting in a significant cor-

relation with the arboreal habitat use (Dang et al. 2018). These

authors also show that a muscle is adhered to this bony knob, sug-

gesting that this could be an additional attachment point for muscles

related with grasping (Dang et al. 2018).

The absence of the palmar sesamoid in Pseudis indicates that dis-

tribution of this character is mainly linked to the phylogenetic his-

tory in these taxa, since they belong to the Hylidae clade (Pyron and

Wiens 2011), as the phylogenetic signal clearly shows. In fact, ses-

amoid absence is common for species with different locomotor

modes (walkers and jumpers and swimmers) and habitat use (arbor-

eal and aquatic), allowing the interpretation that the lack of this

bone and flexor plate in hylids and phyllomedusa (Sustaita et al.

2013) is an exaptation (Gould and Vrba 1982) for grasping of

narrow branches or twigs (Manzano et al. in press). Aquatic frogs

such as Xenopus with a large palmar sesamoid suggest that their

presence is owed more to phylogeny than to ecological reasons.

However, recent studies suggest that Xenopus, a genus lacking

grasping syndrome, exhibits also considerable manual abilities,

including an intermediate or scissor grip (Anzeraey et al. 2017). This

report defied the pervasive link between arboreality and manual

grasping and requires a new perspective to explain the genesis of

grasping among anurans (Manzano et al. in press). In addition, it

has to be noted that the palmar sesamoid may be ambiguously pre-

sent or absent (Ponssa et al. 2010); consequently, our results should

be taken with caution because of a possible taxon sampling prob-

lem, probably as a consequence of choosing species that may coexist

as they occur in Chaco and Monte biogeographic provinces

(Cabrera and Willink 1980).

Supplementary Material

Supplementary material can be found at https://academic.oup.com/cz.
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