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Abstract

several specific tri- and tetra-nucleotides.

Comparative genomics

Background: Meiotic recombination has traditionally been explained based on the structural requirement to
stabilize homologous chromosome pairs to ensure their proper meiotic segregation. Competing hypotheses seek to
explain the emerging findings of significant heterogeneity in recombination rates within and between genomes, but
intraspecific comparisons of genome-wide recombination patterns are rare. The honey bee (Apis mellifera) exhibits the
highest rate of genomic recombination among multicellular animals with about five cross-over events per chromatid.

Results: Here, we present a comparative analysis of recombination rates across eight genetic linkage maps of the
honey bee genome to investigate which genomic sequence features are correlated with recombination rate and with
its variation across the eight data sets, ranging in average marker spacing ranging from 1 Mbp to 120 kbp. Overall, we
found that GC content explained best the variation in local recombination rate along chromosomes at the analyzed
100 kbp scale. In contrast, variation among the different maps was correlated to the abundance of microsatellites and

Conclusions: The combined evidence from eight medium-scale recombination maps of the honey bee genome
suggests that recombination rate variation in this highly recombining genome might be due to the DNA configuration
instead of distinct sequence motifs. However, more fine-scale analyses are needed. The empirical basis of eight differing
genetic maps allowed for robust conclusions about the correlates of the local recombination rates and enabled the
study of the relation between DNA features and variability in local recombination rates, which is particularly relevant in
the honey bee genome with its exceptionally high recombination rate.
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Background

In most organisms, sexual reproduction is linked to the
formation of haploid gametes. The required reduction
from two sets of homologous chromosomes to one
recombined chromosome set per gamete occurs during
the first meiotic cell division. Accordingly, the initiation
of meiosis is characterized by the pairing of homologous
chromosomes, which involves their physical connection
and the induction of double strand breaks in the DNA.
The subsequent DNA repair results in a sister chromatid

* Correspondence: olav_rueppell@uncg.edu

Equal contributors

’Department of Biology, 312 Eberhart Building, The University of North
Carolina at Greensboro, 321 Mclver Street, Greensboro, NC 27402, USA
Full list of author information is available at the end of the article

( BioMed Central

exchange, a local gene conversion, or a recombination
event (crossover) between homologous chromosomes
[1]. One crossover per chromosome [2] or chromosome
arm [3] are considered necessary for proper chromo-
some segregation, providing a minimum requirement for
the number of crossovers [4]. Most species exhibit re-
combination rates close to this minimum requirement
and recombination rates across a wide range of species
are largely a function of physical genome size and
chromosome number [5]. However, variation in recom-
bination rates can be observed beyond this general pat-
tern, as recombination rates vary substantially between
species [3,6], within species [7], and within the same
genome among and within chromosomes [8].
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The western honey bee (Apis mellifera) exhibits an ex-
ceptional recombination rate and presumably presents
the most notable deviation from the general rule that ex-
plains genome wide recombination rates in many other
Eukaryotes. With twenty centi-Morgans per million
base-pairs (20 cM/Mb), honey bees have the highest rate
of recombination among Metazoans [9]. This high rate
may be a genus-wide phenomenon [10]. The recom-
bination rate varies substantially across the genome at
the scale of one Mb [11], but it is independent of
chromosome size [9]. Various explanations have been
proposed, mostly accounting for the observation that
other social species in the order Hymenoptera also
seem to exhibit an elevated genomic recombination
rate [9,12,13].

Two hypotheses that seek to explain the high recom-
bination rates in the social Hymenoptera are based on
the argument that recombination increases the genetic
diversity in social insect colonies, which may increase
the efficiency of division of labor among colony mem-
bers or disease resistance [10,12-15]. However, theoret-
ical studies show that the quantitative genetic variation
in a colony is not significantly increased by recombin-
ation [16]. Another effect of increased recombination
that may be beneficial is the reduced variation in genetic
relatedness across multiple loci among colony members,
which may reduce the potential for nepotism and kin
conflict [17,18]. In addition, general reasons for elevated
recombination rates that also apply to other taxa could
explain the findings for social insects if the underlying
selective forces are particularly strong in social insects:
Relative small effective population sizes of social insects
may promote the evolution of high recombination under
selection, especially in haplo-diploid species where re-
cessive alleles are expressed in the haploid sex [11].
Furthermore, social evolution may have exerted strong
and antagonistic selection on a multitude of genes and
the high recombination rates may be the result of di-
vergent directional selection for the different female
castes [19].

In contrast to these adaptive explanations, the high re-
combination rate might also be explained mechanistic-
ally. The GC content of the honey bee genome is only
33% on average with a strong bimodal distribution ran-
ging from 10-70% [20] and genes are overly abundant in
genome regions with lower than average GC content
[21]. Thus, DNA structure and accessibility may be one
mechanistic explanation [22]. Quantitative or qualitative
differences in the recombination apparatus may also
cause the overall excess of recombination in honey bees.
However, little is known about the molecular mecha-
nisms of recombination in honey bees and other social
insects, despite a relatively good understanding of the
process in other organisms [4]. Local, sequence-specific
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motifs also influence recombination rates [23] and sev-
eral previous studies have analyzed the patterns of re-
combination in the honey bee genome at different scales to
identify sequence motifs that drive honey bee recombin-
ation rate dynamics, as they do in several other species [24].

In selected 76 Mbp of the honey bee genome, recom-
bination rate was found to be positively associated across
125 kbp windows with GC content, simple repeats, and
the distance between genes, while negatively correlated
to the proportion of low-complexity sequences [9]. The
two smallest chromosomes were analyzed in more detail
at the scale of about 30 kbp, and a select 300 kbp win-
dow at 3.6 kbp resolution, to reveal that true recombin-
ation hotspots are probably absent from the honey bee
genome and that local variation in recombination rate is
influenced by GC content and the three specific motifs
CGCA, GCCGC and CCAAT [25]. At a yet finer scale
(<1 kbp), the analysis of 444 recombination events be-
tween adjacent SNPs revealed three sequence motifs
(CGCA, GCCGC, CCGCA) that were positively associated
with recombination [26]. These studies used a powerful
resolution but only a single data set for their analyses al-
though recombination patterns vary intra-specifically [7]
and theoretical reasons suggest recombination rate in honey
bees may be even more variable than in other species [27].

To generate robust results from multiple data sets, we
jointly analyzed genomic patterns of recombination rate
from eight different, medium-density linkage maps of
the honey bee and related recombination to genome se-
quence characteristics to contribute to a more conclu-
sive understanding of local recombination rates and
their variability in a genome with a globally elevated rate
of meiotic recombination. The marker density in the dif-
ferent maps varied and allowed for an analysis at an
intermediate scale, using 100000 base pair windows
across the genome for our analyses. The analyzed maps
were mostly derived from crosses of the North-
American Apis mellifera population which represents an
admixture of several ancestral populations [28] and over-
all similarities in the recombinational landscapes could
not explained by ancestry alone [29]. We found that the
local recombination rate was correlated to a large num-
ber of sequence features, which can best be explained by
these features’ relation to GC content. Although the
local recombination rates among maps were only mod-
erately correlated [29], the results were largely consistent
across maps. Furthermore, the variability of local recom-
bination rates among maps correlated with the abundance
of microsatellites and with some of the sequence motifs
that correlated with the average recombination rate.

Results
Based on eight medium-density linkage maps, we stud-
ied the relation between genome sequence features and
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local recombination rates. Overall, specific sequence
characteristics were more strongly associated with local
recombination rates than gene characteristics in our data
set (Table 1). The correlation results were relatively con-
sistent across the eight different maps, except for the
“HBC” and the “R5” maps that revealed no major corre-
lates of local recombination rate at all. Most of the DNA
features that correlated positively with local recombination
rate were also correlated with GC content. Independently,
the abundance of microsatellites was positively linked to
recombination rates. In the multi-factorial analysis, micro-
satellite abundance also correlated positively with the vari-
ance of recombination rate when the negative effect of the
abundance of low complexity sequences was statistically
accounted for (Table 1).

Many di-, tri-, or tetra-nucleotide sequence motifs cor-
related significantly with local recombination rate. How-
ever, no single motif from these sets of correlated motifs
emerged as a superior predictor of recombination rate.
Instead, several motifs showed similar correlation coeffi-
cients to local recombination rate. In general, a motif’s
correlation to recombination rate was influenced by its
relative GC content, with high GC content motifs cor-
relating positively to recombination rate. Most di-
nucleotides showed a positive correlation to recombin-
ation rate in most maps. In contrast, the four di-
nucleotides AA, AT, TA, and TT, were negatively corre-
lated to recombination rate in most maps. The ratio of
CG to GG, a specific indicator of DNA methylation [25],
was positively correlated to recombination rate in most
maps, although less so than CG or GC motifs on their
own (Table 2). Two principal components (PCs) explain-
ing a combined 96% of the variation were extracted from
the di-nucleotide variables that were related to average
recombination rate (Figure 1). The first PC was a posi-
tive predictor of average recombination rate (f = 0.19,
p < 0.001). It was highly correlated to motifs with 50%
and 100% GC content, the second PC was negatively asso-
ciated with recombination rate ( = -0.27, p < 0.001). The
second PC was positively correlated to di-nucleotide vari-
ables with 0% GC content and negatively correlated to
variables with 100% GC content. The effects of these PCs
were consistent between most maps with the exception of
the “HBC” and “R5” data sets that yielded non-significant
results. The second PC (p = -0.05, p = 0.022) but not the
first (B = 0.02, p = 0.382) was also related to the variation
of recombination rate among maps.

The local recombination rate was correlated to numer-
ous tri-nucleotide (Table 3) and tetra-nucleotide (Table 4)
motifs. The most strongly correlated motifs were all
positively associated with recombination rate. Many mo-
tifs exhibited very similar strengths of correlation in any
given map and across maps, although the overall
strength of correlation varied among maps, decreasing
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from the “VSH” and “Grooming” maps to the “HBC”
and “R5” maps. No single tri- or tetra-nucleotide motif
emerged as the main control of local recombination rate
or its variance but some motifs were consistently corre-
lated with recombination across data sets (Tables 3 and
4). These motifs were enriched for GC content (Figure 2).
In contrast, the tri- and tetra-nucleotide motifs most
negatively associated with recombination rate were ex-
tremely AT biased (“Grooming” map: TAA and AATA,
“HBC” map: TGA and ATCA, “LBC” map: ATA and
ACAT, “JH” map: TAA and AATA, “Solignac” map:
AAT and TTAA, “VSH” map: TAA and TATT, “R3”
map: TTA and TTAA, “R5” map: TCA and ATGA, re-
combination average: TAA and TTAA, and variance of
recombination among maps: TAA and TTAA).

The first two PCs of the tri-nucleotide data set to-
gether explained 91.7% of the variation. The first PC was a
positive predictor of average recombination rate (p = 0.22,
p < 0.001) and was highly correlated to most motifs with
at least one G or C nucleotide. The second PC was
negatively associated with recombination rate (p = -0.25,
p < 0.001) and was most positively correlated to pure AT
motifs and negatively correlated to pure GC motifs. The
first two PCs of the tetra-nucleotide data set explained
84% of the variation. The first of these PCs was a posi-
tive predictor of average recombination rate (f = 0.26,
p < 0.001). The 50 most correlated variables with this
PC consisted of 32 motifs with 50% GC content and 18
motifs with 75% GC content. The second PC was nega-
tively associated with recombination rate (p = -0.21,
p < 0.001). Among the top 50 correlated motifs to the
second PC were 15 with 100% and 35 with 75% AT
content, while all 16 possible 100% GC motifs were
among the twenty most negatively correlated motifs.

Discussion

We analyzed in parallel eight different, medium-density
recombination maps of the honey bee genome at an
intermediate scale. The maps represented a number of
different honey bee populations and sources and varied
significantly with regards to the similarity of their local
recombination estimates [29]. Nevertheless, our results
were quite consistent among maps, indicating that GC
content may be the most important determinant of local
recombination rates in the honey bee genome at the in-
vestigated scale. This finding corroborates the conclu-
sions of a previous study of 125 kbp windows [9] but
contrasts with results of a more recent study that was
performed at different scales [25].

The two exceptional maps in our data set were the
“R5” and “HBC” maps, which did not reveal any signifi-
cant patterns. This discrepancy is difficult to explain be-
cause each of these maps had one closely related
“sibling” map that were constructed with similar



Table 1 All significant* bivariate correlation coefficients and standardized regression coefficients (in brackets) between sequence features and local
recombination rate

Feature: Solig nac map Grooming map VSH map JH map HBC map LBCmap R3 map R5 map Average recombination rate Variance of recombination rate
GC content 0.11 (-0.18) 0.25 0.30 0.20 0.14 0.13 0.27 (-0.29)

CpG 0.14 (0.33) 0.27 (0.15) 0.33 (0.20) 0.23 (0.36) 0.17 0.16 (0.17) (0.07) 0.32 (0.59)

GCCGC 0.15 0.23 032 (0.14) 0.22 0.19 (0.31) 0.12 0.30

CCGCA 0.14 0.21 0.29 0.17 (-0.14) 0.17 0.12 0.27

ccreccr 0.14 0.25 0.29 0.20 0.10 (-0.13) 0.11 0.27

CCAATCA -0.05 (-0.06)

CCCCGCAC 0.09 0.14 (0.05) 0.12 0.06 0.09 0.13

TGGGAAAGA 0.06 0.07 0.06

Microsatellites 0.08 0.13 (0.07) 0.11 0.11 0.09 (0.10) 0.11 0.14 (0.05) (0.07)
Low complexity -0.10 -0.23 (-0.11) -0.23 -0.19 -0.09 -0.09 -0.24 (-0.06)
Gene number 0.14 (0.15)

Gene size -0.10

Gene distance

Intron size -0.10

*Significance at FDR < 0.05, FDR < 0.01 in bold for bivariate correlations; for multiple regression standard p < 0.05 is used and p < 0.01 shown in bold.
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Table 2 Bivariate correlation coefficients between recombination rate and all di-nucleotide motifs that were significantly*
correlated with local recombination rate in the eight different maps, its average and variance

Motif: Solignac Grooming VSH JH HBC LBC R3 R5 Average recombination rate Variance of recombination rate
map map map map map map map map
AA -0.10 -0.10 -0.15 -0.10 — — — — -0.13 —
AC 0.06 0.17 0.19 0.12 — 008 010 — 0.17 —
AG 0.09 0.21 024 0.17 — 0.09 0.10 — 0.22 —
AT -0.11 -0.16 -0.20 -0.15 — -0.09 -008 — -0.18 —_
CA — — — — — — — — — —
CcC 0.14 0.26 033 0.22 — 0.16 0.14 — 0.30 —
CG 0.14 0.27 033 023 — 0.17 0.16 — 0.32 —
cT 0.08 0.20 023 0.16 — 0.10 0.11 — 0.21 —
GA 0.09 0.24 026 0.19 — 0.11 0.11 — 0.24 —
GC 0.14 0.25 032 0.22 — 0.17 0.15 — 0.30 —
GG 0.14 0.27 033 023 — 0.16 0.14 — 0.31 —
GT 0.06 0.18 020 0.13 — 0.10 0.11 — 0.19 —
TA -0.11 -0.18 -0.22 -0.17 — -0.10 -009 — -0.20 —
TC 0.08 0.23 026 0.19 — 0.12 0.12 — 0.24 —
TG — — — — — — — — — —
T -0.10 -0.10 -0.14 -0.10 — — — — -0.12 —
CG/GC ratio  0.09 0.23 020 0.17 — 0.10 0.11 — 0.23 —
*Significance for FDR < 0.05; FDR < 0.01 is indicated in bold.
Recombination Rate|
3 | 1st Quartile
o 2ndQuartile
o 3dQuartile
o 4" Quartile
2]
1
[aV]
O ,
o 0
& ‘,; o0
03.;\' @3
-14 Y “,:x Tes
o
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-3 T T T T
-4 -2 0 2
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Figure 1 Due to the high collinearity of the local abundance of the different di-, tri-, and tetra-nucleotide motifs, two principal components
were extracted for each motif length that explained most of the variation in local recombination rates (see text). For the analysis of
di-nucleotides, shown here, both principal components differed significantly (p < 0.05) among genome intervals that exhibited low (first quartile),
medium (second and third quartile), and high (forth quartile) average local recombination rates. Individual data are shown here as small circles and the
95% confidence interval or the group means as the larger solid ellipses. The principal component analysis of tri- and tetra-nucleotides revealed almost
identical patterns.
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Table 3 Bivariate correlation coefficients between local recombination rate and the ten tri-nucleotide motifs that were

most correlated* with the average local recombination rate

Motif: Solignac map Groomingmap VSHmap JHmap HBCmap LBCmap R3 map R5 Average Variance of
map recombination recombination
rate rate
GCG 0.16 (2) 0.26 (12) 034 (1) 023 (9 — 0.18 (3) 017 (2) — 032 (1) —
CGC 0.16 (1) 0.26 (14) 0.33 (6) 0.23 (8) — 0.18 (4) 0.17 (1) — 032 (2 —
CGG 0.15 (3) 0.26 (13) 033 (2 023 (100 — 0.18 (2) 0.16 (7) — 0323 —
TCG 0.13 (17) 0.28 (1) 032(14) 023(5) — 0.16 (7) 0163 — 032 (4) —
CCG 0.15 (4) 0.25 (17) 033 4) 022 (14) — 0.18 (1) 0.16 (8) — 031 (5) —
GAG 0.14 (10) 0.28 (2) 0.32 (10) 0.24 (1) — 0.14 (20) 0.14(18) — 031 (6) —
CGA 0.13 (20) 027 (3) 032(15) 0234 — 015011  016(5) — 031 (7) —
GGC 0.15 (5) 0.26 (16) 033 (5) 0.23 (6) — 0.18 (6) 014 (16) — 031 (8) —
AGG 0.14 (9) 0.27 (10) 032(11) 0233 — 014 (23)  012(23) — 03109 —
crc 0.13 (16) 027 (4) 0329 0232 — 015(12) 014014 — 031 (10) —

*Correlation coefficients are given when significant for FDR < 0.01, with relative rank of correlation strength in the individual analyses in brackets.

methods and derived from genetically related sources.
Overall, the local recombination rates were more similar
between these pairs (“R3” and “R5”, “HBC” and “LBC”)
than between them and the other maps [29]. Yet, the
“R3” and “LBC” map analysis yielded results that con-
formed to the findings from the remaining four maps,
while “R5” and “HBC” map analysis did not. We cannot
explain this phenomenon, but note that these four maps
were constructed with relatively few markers. Thus, the
recombination profiles are less detailed and relatively
few changes may alter the overall results. The resolution
of the different maps generally increased the correlation
with specific DNA motifs and features, but the highest
resolution map (Solignac) did not exhibit the highest
correlation coefficients. We cannot exclude biological
reasons due to the European origin of the “Solignac”
map [11]. However, the phylogenetic distance between
mapping populations was only a poor predictor of their

overall similarity in local recombination rate [29] and a
methodological explanation seems more likely. Both
maps that were constructed solely based on chip-based
SNP genotyping [30,31] showed relatively high correla-
tions with the different variables despite their very differ-
ent population origin. Presumably, the results indicate a
superior accuracy of the maps that have been SNP-
genotyped. Other studies indicate that SNP genotyping
in general is more accurate than microsatellite genotyp-
ing [32,33]. Both SNP-based data sets in our study
showed the highest correlation coefficients with the dif-
ferent variables.

Common results emerge from six of the eight investi-
gated maps, and we can conclude that our findings are
largely independent of the specific recombination pat-
tern in each map and represent more general principles.
Limited by the resolution of the maps, our analysis can-
not be directly compared to comparative results in

Table 4 Bivariate correlation coefficients between local recombination rate and the tetra-nucleotide motifs that were

most correlated* with average local recombination rate

Motif: Solignac map Grooming map VSHmap JHmap HBCmap LBCmap R3 map R5map Average

Variance of

recombination recombination

rate rate
TCGG 015 (1) 0.27 (16) 034 (1) 023 (18) — 017 (15 018 (1) — 032 (1) —
GGAG  0.15 (10 0.28 (2) 033 4) 024 (1) — 014 (790 013(77) — 032 (2) —
CTCG  0.14 (46) 0.28 (1) 033(13) 024060 — 017 (23) 01620 — 032 (3) —
CGCG 016 (3) 0.25 (57) 033(0) 02320 — 018(13) 016(22) — 032 (4) —
GACG 015 (21) 0.28 (3) 03229 023(12) — 0.16 (40) 017 (11) — 032 (5) —
GCGT 0.5 (24) 027 (11) 033 (6) 0.20 (60) — 018 (11) 017 (16) — 0.32 (6) —
GCGC  017.(1) 0.25 (63) 032 (30) 023(16) — 0.19 4) 016 (29 — 032 (7) —
TCGC 0.5 (14) 0.26 (26) 033(19) 02233 — 017(27) 018(Q3) — 032 (8) —
CGAG  0.14 (63) 0.28 (5) 033 (8) 024 (2) — 016 (34 016(23) — 0329 —
AGCG 0.16 (4) 0.26 (38) 033 (5) 022 (53) — 017 (22) 01715 — 032 (10) —

*Correlation coefficients are given when significant for FDR < 0.01, with relative rank of correlation strength in the individual analyses in brackets.
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1.0+ Dinucleotides
Trinucleotides

Tetranucleotides

Bivariate Correlation Coefficient

be drawn for the variability of recombination rate (dashed lines).

Rank Order of Correlation Coefficient
between Motif and GC-Content

Figure 2 Di-, tri-, and tetra-nucleotide motifs were rank-ordered along the x-axis according to their correlation with GC content (dotted
lines). Their correlation with the average local recombination rate followed a similar pattern (solid lines). This result suggests that GC content
instead of specific nucleotide sequences is the most parsimonious explanation of local recombination rate in honey bees. Similar conclusions can

Drosophila that were performed at a much finer scale
[7]. Nevertheless, our conclusions about correlates of the
local recombination rates at the 100 kbp scale should be
robust. In addition, our analysis allowed an assessment
of whether specific DNA features are associated with
variability in local recombination rates, a question that is
particularly relevant in the honey bee genome with its
exceptionally high recombination rate [27].

Our results confirmed previous findings that GC con-
tent is a major correlate of local recombination rate in
honey bees [9,25]. This correlation may be due to biased
gene conversion that enriches areas of high recombin-
ation for GC [34]. In contrast to Drosophila [7,35],
biased gene conversion may be operational in honey
bees [36], even though the honey bee genome is rela-
tively AT-rich and experiences a high recombination rate
[20]. In the honey bee genome, GC content may also
cause higher local recombination rates because it is cor-
related to gene density [20] and thus accessibility of the
DNA [37], which increases local recombination rates in
other organisms [38]. However, gene density itself did
not emerge as a correlate of local recombination rate in
our study. Another factor that is related to GC content
is the density of CpG methylation sites. DNA methyla-
tion has been suggested as a negative regulator of re-
combination [25]. Contrary to what could be predicted,
the ratio of CpG to GpC, which represents an indicator
of methylation intensity [25], was positively correlated to
recombination rates. This finding suggests that methyla-
tion does not decrease local recombination rate in the
honey bee at the scale that we investigated.

We did not find that single tri- or tetra-nucleotide mo-
tifs were more correlated with recombination than GC
content or other, comparable tri- or tetra-nucleotide

motifs. Particularly at the tetra-nucleotide level, many
motifs exhibited very similar correlation coefficients,
with GC content conspicuously related to the motif’s
correlation to recombination. This relation was not
strictly linear because tetra-nucleotide motifs with one
A/T showed a stronger positive correlation to recombin-
ation rate than tetra-nucleotides that consisted solely of
G/Cs. Similar results were obtained for di- and tri-
nucleotides. This finding contrasts to studies at finer
scales [25,26] that identified several specific motifs, in-
cluding the tetra-nucleotide CGCA. The discrepancy
may reflect differences in scale or statistical evaluation,
or it may be due to biological differences. Overall, we
conclude from our data sets that the correlation of a
particular motif’s GC content to the overall GC content
of the DNA may explain the motif’s correlation to re-
combination rate. This interpretation also fits most of
the motifs identified in previous studies [25,26]. Any
particular motif might provide specific binding sites for
factors that facilitate chromatin access for the recombin-
ation initiation factors, resulting in recombination hot-
spots [22,37]. However, the honey bee genome seems to
be devoid of distinct hotspots [25], corroborating our in-
terpretation that no specific, cis-acting motifs control re-
combination rate in the honey bee genome.

Similar to a previous study of honey bee recombin-
ation at an intermediate scale [9], we found microsatel-
lites, a particular form of simple repeat sequences, to be
positively correlated to recombination rate. The abun-
dance of microsatellites together with low complexity se-
quences may also influence the variance of local
recombination rate in the bivariate analyses. Microsatel-
lites have been mechanistically linked to recombination
in-vitro [39], but our finding is the first that suggests
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that they may play a role in the evolutionary dynamics
of a eukaryotic recombinational landscape. The high al-
lelic diversity of microsatellites may cause intra-specific
variation in local DNA structure that in turn could influ-
ence the frequency of local recombination events. In
addition, several of the short sequence motifs that were
highly correlated with recombination in some but not in
other maps also correlated with the variance of recom-
bination rate. However, our study could not resolve the
question whether this observed variation in recombin-
ation rate is directly linked to variation in frequency of
these correlated motifs because we lack the specific gen-
ome sequence information from the individuals that
gave rise to our mapping populations.

Thus, we cannot rule out that evolution of specific
binding sites, such as those for the zinc-finger protein
PRDMY [24], is causing some of the variation and more
comparative analyses at a fine scale (e.g. [7]) will be
needed in the future. In our current study, at least a part
of the observed variation in recombination rate was due
to the different spatial resolution that the eight linkage
maps provide. However, we also observed considerable
variability between pairs of maps that were matched in
methodology and marker density. To date, surprisingly
little is known about the variation of local recombination
among genomes, although studies of this variability are
important for understanding the evolution of recombin-
ation rates [27]. In yeast, local recombination rates were
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found relatively conserved even at a very fine scale des-
pite overall differences in recombination [40] and no
DNA features were identified to account for the
remaining variation. In humans, variation in recombin-
ation hotspots have been linked to PRDM9 binding sites,
but a similar mechanism could not be confirmed in
Drosophila, probably due to multiple initiation processes
for recombination [41]. In the highly recombining gen-
ome of the honey bee, multiple processes that lead to
meiotic recombination also seem plausible, particularly
with selection for high recombination counteracting the
self-destruction of recognition motifs due to biased gene
conversion [27].

Conclusions

This study relied on eight recombination maps, which
suggested a dynamic recombinational landscape of the
honey bee genome, with a relatively low degree of con-
servation even at intermediate scales [29]. Our results
robustly relate local GC content of the genome to the
intra-genomic variation of recombination rates but not
to the variability among maps. The importance of GC
content suggests that DNA structure plays an important
role in the frequent recombination of the honey bee gen-
ome but genome-wide fine-scale recombination maps
and the precise mechanisms of the high recombination
rate and the resulting local variability remain to be
explored.
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Methods

Data from eight existing, genome-wide recombination
maps of the honey bee were collected from different
published studies. These maps were constructed in dif-
ferent laboratories using different genetic markers and
marker densities. They showed variable levels of correl-
ation with each other, with pairwise correlation coeffi-
cients calculated for 100 kbp windows ranging from 0.0
to 0.6 [29]. Based on 2000 microsatellite loci, the pub-
lished “Solignac” map had the highest marker density,
derived from a combination of two European families
[11]. Two maps were based on approximately 1300 SNP
markers genotyped with Illumina’s GoldenGate Assay™
the “Grooming” map [30] and the “VSH” map [31]. The
“Grooming” map was generated from a backcross
worker family in Mexico and the “VSH” map was de-
rived from selected commercial stock in the USA. The
“ITH” map was based on a backcross between the diver-
gently selected high and low pollen hoarding lines [42]
and genotyped via RAD-tag sequencing, resulting in
1100 markers [43]. The remaining 4 maps each com-
prised about 230 evenly spaced SNP and microsatellite
markers. Two of these crosses (“HBC” and “LBC”) were
reciprocal backcrosses between the high and low pollen
hoarding lines [44] and the other two (“R3” and “R5”)
were two parallel backcrosses between a hybrid queen de-
rived from the Africanized and European honey bee popu-
lations in North America and an Africanized male [45].

For all genetic markers of the eight maps the physical
position in the current version of the honey bee genome
(Amel 4.5) was determined by BLAST-n searches [46].
Maps were surveyed for inconsistencies between the
genetic and the physical position of markers. Inter-
marker intervals that were defined by a marker with
conflicting genetic and physical locations were excluded
from the subsequent analyses. The genome was divided
into 100 kbp windows as the basic analysis unit. The re-
combination rate per window was computed as the
weighted average of the corresponding inter-marker in-
tervals. Intervals with a recombination rate equal to zero
were excluded from the analysis because these values
were artifacts, usually resulting from the combination of
missing data and a pair of physically very close markers
that did not experience any recombination. In addition
to the local recombination rate estimates of each map,
an overall average recombination rate and the variance
of recombination rate among the eight maps were calcu-
lated for each window (e.g. chromosome 1 in Figure 3;
all other chromosomes: see Additional file 1).

The DNA sequence and annotation features were
downloaded from the NCBI website (ftp://ftp.ncbi.nih.
gov/genomes/Apis_mellifera/Assembled_chromosomes/seq/)
and local sequence features and gene annotations were
extracted with their positional information. For each
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window, we computed GC content, CpG number, as
well as a few select longer motifs [26] and the abun-
dance of low complexity and all microsatellite sequences.
The frequency of all di-, tri-, and tetra-nucleotide motifs
per window were also determined by simple string
searches. Even though these simple motifs presumably
do not represent entire protein binding sites, analyzing
these relatively short motifs allowed the evaluation of
the complete parameter space (all 16, 64, and 256 pos-
sible combinations of bases, respectively) in a reasonable
computational time. These motifs are partially contained
in each other or constitute reverse complements of each
other. Nevertheless, we tested each possible motif separ-
ately to provide a complete and unbiased analysis. While
any true sequence motif that influences recombination
by protein binding is likely longer, a specific subset of
the shorter motifs should be included in the longer motif
and hence show a strong correlation with recombin-
ation. In addition, the number and size of genes, their
average distance, and the average size of exons according
to the latest genome annotation [21] were compiled.

Subsequent analyses were performed for each genetic
map independently, as well as for the average and vari-
ance of local recombination rates across maps. The rela-
tion between recombination rates and DNA sequence
features was analyzed by calculating all bivariate correl-
ation coefficients, followed by a stepwise backwards re-
gression model (exclusion threshold: p = 0.05). The di-,
tri-, and tetra-nucleotide motifs were each analyzed in
separate procedures due to their high correlation with
each other and with some of the other DNA features.
Again, bivariate correlation coefficients were computed.
However, the high degree of collinearity required a prin-
cipal component analysis (PCA) before relating the ex-
tracted principal components (PC) to recombination
rates.

Additional file

Additional file 1: Figures of the calculated local recombination rates
along chromosomes 2 - 16 from eight different linkage maps, along
with the average and variance of recombination rates, display the
considerable heterogeneity of local recombination in the honey bee
genome.
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