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ABSTRACT

Objectives: To measure the receptive risks of malaria
in Somalia and compare decisions on intervention
scale-up based on this map and the more widely used
contemporary risk maps.

Design: Cross-sectional community Plasmodium
falciparum parasite rate (PfPR) data for the period
2007—2010 corrected to a standard age range of 2 to
<10 years (PPR,_10) and used within a Bayesian
space—time geostatistical framework to predict

the contemporary (2010) mean PfPR,_1o and the
maximum annual mean PPR,_1q (receptive) from the
highest predicted P/PR,_1q value over the study period
as an estimate of receptivity.

Setting: Randomly sampled communities in Somalia.
Participants: Randomly sampled individuals of all
ages.

Main outcome measure: Cartographic descriptions
of malaria receptivity and contemporary risks in
Somalia at the district level.

Results: The contemporary annual PPR,_1q map
estimated that all districts (n=74) and population
(n=8.4 million) in Somalia were under hypoendemic
transmission (=10% PfPR,_1). Of these, 23% of the
districts, home to 13% of the population, were under
transmission of <1% PPR,_1o. About 58% of the
districts and 55% of the population were in the risk
class of 1% to <5% PPR,_19. In contrast, the
receptivity map estimated 65% of the districts and
69% of the population were under mesoendemic
transmission (>10%—50% PPR,_1q) and the rest as
hypoendemic.

Conclusion: Compared with maps of receptive risks,
contemporary maps of transmission mask disparities
of malaria risk necessary to prioritise and sustain
future control. As malaria risk declines across Africa,
efforts must be invested in measuring receptivity for
efficient control planning.

INTRODUCTION

Malaria receptivity is a measure of the
intrinsic vector transmission potential of an
area.' Interest in measuring malaria recep-
tivity has emerged following the resurgence
of the malaria elimination agenda® ® and the
need to quantify the risks posed by human

ARTICLE SUMMARY

Article focus

m Cross-sectional PfPR prevalence survey data for
the period 2007—2010 in Somalia.

m Bayesian geostatistical models estimating the
receptive and contemporary malaria transmis-
sion in Somalia.

m Implications of the two malaria risk maps for
malaria control planning in Somalia.

Key messages

m It is feasible to use PPR community prevalence
data in space and time to estimate the receptive
and contemporary risks of malaria within the
same model framework.

m Malaria receptivity maps are critical to inform the
scale-up and sustaining of interventions where
disease has declined or is highly seasonal.

m Efforts must be invested in helping malaria
endemic countries in Africa measure their
receptive risks.

Strengths and limitations of this study

m The annual PPR surveys provide unique oppor-
tunities to measure receptivity in Somalia.

m Improving the spatial and temporal distributions
of PR data and exploring probabilistic
approaches of selecting potential maximum
risks will improve the measurement of
receptivity.

population movement leading to the rein-
troduction of transmission.* However,
understanding receptivity is equally impor-
tant to decision-making for countries that are
implementing control. In low stable endemic
countries, national programmes need to
understand the risks posed by withdrawal of
interventions from areas that are historically
high transmission.” ® In unstable trans-
mission areas where parasite exposure is
highly seasonal and prone to climatic anom-
alies, targeting interventions to prevent the
risk of epidemics are a priority.! The empir-
ical malaria risk maps that are commonly
available to countries to support malaria
control planning are those that represent the
contemporary distribution of risk under
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control” ® and are therefore of limited value in defining
the epidemic potential or the receptive rebound risks of
withdrawing or failing to sustain interventions.
Measuring receptivity for malaria control countries
ideally requires empirical data from a period of no
control and under the optimum transmission condi-
tions. There is hardly any country in Africa that has
remained universally control-naive over the past
100 yof:ars.9 Alternatively, nationally representative
empirical data on malaria transmission during the pre-
Roll Back Malaria (RBM) era, or before intervention
scale-up reached critical thresholds for a given country,
may represent the best approximation of receptivity.
Furthermore, such information must be resolved to
administrative decision-making units to which malaria
resources are allocated to make them relevant for policy.
In this study, we use community Plasmodium falciparum
parasite prevalence data from 2007 to 2010 within

Figure 1 Zone, regional and o
district maps of Somalia showing
the distribution of the age-
standardised community
Plasmodium falciparum parasite
rate (PPR._10) data (n=1558)
assembled during the period
2007—2010 (including 54 surveys
undertaken in 2011). The zones
are CS, Central South; NE, North
East; NW, North West. The thick
black line show the zone
boundaries, the thin black lines
show the regional boundaries and
the thin grey lines show the district
boundaries. The blues lines show
the location of the Juba (lower)
and Shabelle (upper) Rivers.

Kenya

a model-based geostatistical (MBG) framework to
develop contemporary and receptive risk maps and
resolve endemicity to districts in Somalia.

METHODS

Country context

Somalia is divided into the three zones of North West
(Somaliland), North East (Puntland) and Central South
(figure 1). The northern zones are generally dry and
hot, whereas the Central South zone has subtropical
climate and is where the two major rivers of the country,
the Shabelle and the Juba, are located.'” ' Anopheles
arabiensis is the dominant malaria transmitting vector
throughout the country, although Anopheles funestus is
reported in Central South.'”* * p falciparum is the
dominant species of the malaria parasite."* '® The
presence of Plasmodium vivax cases have also been
reported with studies in Somaliland showing relatively
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high vivax antibody responses.'” The failure of the long
rains in Somalia in 2010 combined with the below
average rainfalls in previous two seasons have resulted in
a severe drought.”

Since 1991, Somalia has had no effective central
government and has experienced frequent internal
armed conflicts resulting in the breakdown of public
services and political disintegration.'® Although the
transitional federal government, formed in February
2004, is internationally recognised as the official
government of Somalia,'” in reality the three zones
currently function as semi-independent states. Conse-
quently, there are three ministries of health, but the
majority of healthcare is provided by international and
national non-government organisations that have come
together under the umbrella of Somalia Aid Coordi-
nating Board, which was later reformed as the Somalia
Support Secretariat.?’

The main funder of malaria control in Somalia is the
Global Fund to Fight Aids TB and Malaria with the
United Nations Children Fund (Unicef) as the principal
recipient and the WHO as subrecipient.?' 2 In 2010, the
second national malaria strategy was launched with
universal scale-up of vector control, parasitological
diagnosis, effective antimalarials, improved surveillance
and epidemic preparedness and response as the main
strategic approaches.” ** Since 2004, over US$77
million has been approved to Somalia by the Global
Fund to Fight Aids TB and Malaria for malaria control
resulting in the distribution of almost 1 million long-
lasting insecticidal nets (LLINs).2*

Community survey data

The community P falciparum parasite rate (PfPR) is the
most commonly used indicator for mapping malaria
transmission.” This is because it is easy to measure, has
a historical legacy and a predictable relationship with
other measures of transmission intensity, such as ento-
mological inoculation rate and the basic reproductive
rate.”” #® The P/PR data used for the present study were
assembled through the Food and Agriculture
Organization—Food Security and Nutrition Analysis Unit
(FAO-FSNAU) surveys undertaken regularly in
Somalia.'® " These surveys were initially established to
monitor the nutritional status of children <5 years of
age and began in 2000.%” Investigations of malaria
prevalence covering persons of all ages were only
included from 2007'® and have been undertaken annu-
ally since covering most regions of Somalia. A detailed
description of the sampling design is provided else-
where.'® During the survey, respondents provided
a finger prick blood sample that was examined for the
presence of P falciparum infection using a rapid diag-
nostic test (Paracheck Pf, Orchid Biomedical Systems,
Goa, India). Consent was obtained for all individuals
before interview and separately for the malaria testing.
Additional information was recorded on the date of
survey and age and sex of participants. After all survey

data were assembled, each surveyed community was geo-
coded using combinations of global positioning systems,
electronic gazetteers (Google Earth, Encarta and Alex-
andria) and other sources of longitude and latitude such
as a settlement database collated by FAO-SWALIM."'

Assessment of ecological and climatic predictors
of malaria risk
The transmission intensity of malaria is influenced by
climatic and ecological factors through their indepen-
dent or combined effects on the survival of the Anoph-
eline vectors and the Plasmodium parasites within the
vector.?® The ecological and climatic factors used
commonly to improve the precision of empirical malaria
mapping are urbanisation, rainfall, temperature and
distance to potential mosquito larva breeding sites.
Data at 1X1 km spatial resolution on urbanisation,
annual mean precipitation® *! and enhanced vegetation
index®? were assembled. Maps of rivers, flood plains,
reservoirs and coastal wetlands were assembled from the
Global Wetlands and Lakes Database® and Euclidean
distances to these proximates of breeding sites were
computed in ArcGIS 10 (ESRI Inc., New York, USA). As
a metric for the effect of temperature on malaria trans-
mission, a temperature suitability index (TSI) at a spatial
resolution of 1X1km was used. TSI was constructed
using monthly temperature time series within a biolog-
ical modelling framework to quantify the effect of
ambient temperature on sporogony and vector survi-
vorship and determine the suitability of an area to
support transmission globally.’* The values of the
underlying ecological and climatic covariates were
extracted to each survey location using ArcGIS 10 Spatial
Analyst tool. Distance to potential breeding sites was log-
transformed before analysis because of its high positive
skew. The covariates were then included in total-sets
analysis, which is an automatic model selection process
based on a generalised linear regression model and
implemented using the bestglm package in R.*> *® This
approach selects the best combination of the covariates
based on the value of the Bayesian Information Criteria
Statistic,37 which selects the lowest Bayesian Information
Criteria as the best model fit. Details of the ecological
and climatic predictors of P/PR and the results of the
total-set analysis are provided in supplementary
information 1.

29

The space—time Bayesian geostatistical model for
predicting P falciparum distribution in Somalia
Space—time MBG methods offer the flexibility of
predicting an outcome to any given year and location in
a time series by harnessing fully both the spatial and
temporal relationships of the data and generate uncer-
tainties of the predictions from the full posterior distri-
butions.”®

In this study, the assembled P/PR data were stand-
ardised to the classical age range of 2 to <10 years using
an algorithm based on modified catalytic conversion
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models.* The continuous surfaces of the age-stand-
ardised data (P/PRy_;9) were generated using a space-
—time MBG framework® ** whereby Bayesian inference
was implemented using the Markov Chain Monte Carlo
algorithm. Details of model code® and statistical
procedures® are provided in supplementary information
2. In brief, the value of PPRy_;; was modelled as
a transformation of a spatiotemporally structured field
superimposed with unstructured (random) variation on
a regular 1X1 km grid from 2007 to 2010. The number
of P falciparum-positive responses from the total sample
at each survey location was modelled as a conditionally
independent binomial variate given the unobserved
underlying age-standardised PfPRy_jo value® and
a linear function of the climatic and environmental
predictors. The unstructured component was repre-
sented as Gaussian distribution with zero mean. The
spatiotemporal component was represented by
a stationary Gaussian process*' with covariance defined
by a spatially anisotropic version of the space—time
covariance function proposed by Stein (2005).** To
partly model seasonality, the covariance function was
modified to allow the time-marginal model to include
a periodic component of wavelength 12 months in the
temporal covariance structure. Each survey was refer-
enced temporally using the midpoint (in decimal years)
between the recorded start and end months. For each
grid location, samples of the annual mean of the full
posterior distribution of PPRy_;, for each year were
generated. These PfPRy_;y samples were then used to
generate continuous maps of the annual mean. To
determine the probable maximal malaria risk, the
highest value of predicted mean annual PPRy_;( value
at each 1X1 km grid location over the period 2007—2010
were extracted. These were then combined to generate
a single map of maximum mean PfPRoy_jy.

Assessing uncertainty of model predictions

As a first step to understanding the uncertainty around
the predictions of PPRy_;(¢ using the Bayesian geostat-
istical model, the continuous mean maps were accom-
panied by estimates of the posterior standard deviation
(SD). For the maximum mean PPRy_;y map, the
posterior SDs associated with the selected mean value
was used. To allow for a scaled comparison of the
uncertainty of the 2010 PfPRy_;p map and the 2010
annual mean PPRo_yy, the coefficient of variation,
which is a measure of dispersal around the mean,* was
computed as the ratio of the SD to the mean. Higher
values of the coefficient of variation suggest increasing
uncertainty of model predictions. In addition, a spatially
representative validation set of P/PRy_;( survey data were
also selected using a spatially declustered sampling
algorithm.40 The annual predictions were then repeated
in full using the remaining data to predict mean
PfPRy_; at the validation locations. The ability of the
model to predict point values of P/PR at unsampled
locations was quantified using two simple summary

statistics: the mean prediction error (MPE) and the
mean absolute prediction error (MAPE). The
MPE provides a measure of the model bias, while the
MAPE is a measure of the average accuracy of individual
predictions.

Defining district-level malaria endemicity and population
at risk

A 2010 population surface for Somalia at 100X100 m
spatial resolution was provided by the AfriPop
project.”” ** Using this map, estimates of the total
population of each 1X1km pixel to which mean
PfPRy_;( was predicted was computed in ArcGIS 10. The
1X1 km grid squares with attached population estimates
were further classified separately by the mean PfPRy_
2010 and the maximum mean PfPRo_;o. To weight
endemicity for population distribution, only those grid
squares with population were retained and from these
the mean P/PRy_;( was computed for each district. Based
on the aggregate mean PfPRo_;,, districts were then
classified using a modification of the classical malaria
endemicity classification.*> The hypoendemic class
(=10% PfPRy_jo) was split into <1% PfPRy_10; 1% to
<5% PfPRy_1p and 5%—10% PfPRy_1o. The endemicity
class of <1% PfPRg_( represents the threshold at which
an area is considered to be under low stable endemic
control and a decision for sustaining control or aiming
for elimination can be made.”> ® The hyperendemic
(>50%—"75% PfPRy_jy) and holoendemic (>75%
PfPRy_;() classes were also combined, while the meso-
endemic class (>10%—50% PfPRy_jp) remained
unchanged. The number of districts and population by
these endemicity classes were then summarised based on
both the 2010 mean PfPRy_;( (contemporary risk) map
and the maximum mean P/PRo_;( (receptive risk) map.

RESULTS
Predictions of mean annual PPR,_4o to 2010
and maximum mean posterior PPPRo_qg
A total of 1558 P falciparum community surveys (figure 1)
in which 103 593 persons were examined were assembled
for the period 2007—2011 in Somalia. The majority of
the data were located in the Central South zone where
most of the population live. Survey data were collected
across nine different months over the 5 years, with the
majority of data (76%) assembled in the months of
November, December, May and June corresponding to
the peak malaria seasons in Somalia. The results of the
total-set analysis showed that the model with urbanisa-
tion, precipitation, enhanced vegetation index and
distance to main water bodies and flood plains as the
best fit in predicting P/PR, and these variables were
subsequently included in the malaria prediction model
(supplementary information 1). TSI was not selected as
a statistically strong predictor of P falciparum prevalence
in Somalia.

The continuous 2010 malaria endemicity map for
Somalia PfPRy_;( showed the majority of locations were
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Coefficient of
variation

0.8 10

Figure 2 (A) Map of the posterior annual mean PfPR._1¢ prediction to 2010 (contemporary) at 1x1 km grid location in Somalia.
(B) Map of the maximum mean PfPR,_4, prediction (receptive) at 1xX1 km grid location as computed from the posterior annual
mean PfPR,_;, prediction for each year from 2007 to 2010. (C) Map of the coefficient of variation (the SD/the mean PPR,_1¢
prediction) of the contemporary prediction at 11 km grid location. (D) Map of the coefficient of variation at 11 km grid location of
the receptive prediction. The thick black lines show the zone boundaries, the thin black lines show the regional boundaries and the
thin grey lines show the district boundaries. Higher coefficient of variation of the predictions suggests higher uncertainties of the
PPR>_10 predictions. The scale bar for the continuous PPR>_10 ends at 50, which is the upper limit of mesoendemic transmission.
The blues lines show the location of the Juba (lower) and Shabelle (upper) Rivers.
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predicted to have parasite prevalence of <5% indicating
largely hypoendemic transmission (figure 2A). The
majority of areas in North East and North West zones
were predicted to be under PfPRy_j9 <1%. In contrast,
the maximum annual mean P/PRy_;p map showed
a substantially different risk landscape, with the majority
of the Central South zone having PfPRy_1o of >10% and
an a maximum predicted mean of 38%, suggesting that
peak malaria transmission in all of Central South zone
and southern parts of North East zone is mesoendemic
(figure 2B). In the northern zones, maximum mean risks
were predicted to be predominantly between 5% and
<10% PfPRg_q,.

The MPE and MAPE associated with the full
space—time geostatistical model was 4.8% and 0.2%,
respectively. The 2010 annual mean PfPRy_;, predictions
were associated with higher coefficients of variation
compared with the maximum mean P/PRy_;o predic-
tions, although the difference was moderate (figure 2C,
D). In both maps, uncertainty appeared highest in
northern zones where data in space and time were
fewest.

District estimates of contemporary and receptive

malaria risk

According to the contemporary district malaria ende-
micity map based on the annual mean PfPRy_;o map of
2010, all districts in Somalia were under hypoendemic
transmission (figure 3A). Of the 74 districts, an esti-
mated 17 (23%) districts covering about 1.1 million
people (13%) were in the <1% PfPRg_;( risk class
(table 1 and figure 3A). The majority of the districts
(58%) and population (55%) were in the risk class of
1%—<5% PfPRy_;( and the rest were under risks of 5%—
10% PfPRo—_.

In contrast, the receptive risk map showed that there
were no district under low stable endemic control (<1%
PfPRy_19), and the majority of the districts (65%) and
population (69%) were under the mesoendemic class
(table 1 and figure 3B), with an upper district maximum
mean estimate of 35% PfPRy_19. About 27% of the
districts and 17% of the population were in the upper
range of hypoendemicity (5%—10% PfPRy_;¢). The rest
of the districts and population were in the intermediate
hypoendemic class of 1%—<5% PfPRg_1o,

DISCUSSION

The malaria risk maps that are commonly available to
countries in Africa to support malaria control planning
are those that represent the contemporary distribution
of risk.® '® **75% They have been developed primarily
from geo-coded parasite rate survey data’ usually to
predict risk to the most recent data year and therefore
reflect transmission under scaled interventions during
the era of the RBM partnership.”’ °% In this study, we
argue that, in addition to contemporary maps of malaria
risks, low stable endemic control and unstable trans-
mission countries require maps of receptivity to assess

the risks of rebound and epidemics and decide on where
to scale-up and/or sustain intervention coverage. To
demonstrate this, we used community P/PR survey data
from the period 2007—2010 within a space—time MBG
framework to generate two continuous malaria risk maps
for Somalia. One is a contemporary map of annual mean
PfPRo_;( predicted to 2010 (figure 2A) and the other is
the maximum annual mean PfPRy_;o map derived from
the highest mean PfPRy_;( value predicted to a location
in any year over the study period to approximate
receptivity (figure 2B). We resolved these maps to the
district, which is the malaria decision-making unit in
Somalia, and classified them by endemicity using
population-weighted mean P/PRy_;¢ (figure 3).

The efficacy and impact of malaria interventions on
disease in an area are dependent on its intrinsic trans-
mission potential.”>~*° This is the theoretical basis upon
which international guidelines for malaria control are
formulated.” °® One of the most important applications
of malaria risk maps for control planning, therefore, is to
inform the spatial targeting of the appropriate mixes of
interventions.”” For Somalia, the results of the compar-
ison of the contemporary and the receptive risk maps
represents two very different transmission scenarios
(table 1 and figure 3). The contemporary malaria risk
map predicted that all of Somalia was under conditions
of hypoendemic transmission (=10% PfPRy_10) in 2010
with a fifth of the districts under risks of <1% P/PRg_1o,
while the majority of the districts and population were in
the intermediate hypoendemic transmission class of 1%
to <5% PfPRy_1o. Under these transmission conditions,
targeted distribution of LLINs and indoor residual
spraying aimed at control of residual foci are recom-
mended, while intermittent presumptive treatment in
pregnancy is not.”® Instead of being part of the broader
monitoring and evaluation process, disease surveillance
is also regarded as an intervention in of itself’
comprising high-quality passive case detection, case
notification and active case detection in which all febrile
cases within proximity of the index case are tested and
those positive for malaria infection are radically
treated.”® In the districts where transmission is <1%
PfPRy_;9, malaria elimination is considered to be tech-
nically feasible® ® presenting an opportunity to re-orient
the subnational strategy here towards elimination and
undertake an assessment of its operational feasibility.” In
contrast, the receptive risk map predicted that over 65%
of the districts and population were under mesoendemic
transmission (>10%—50% PfPRy_;9) with the rest
exposed to hypoendemic transmission. Using this map,
in the hypoendemic districts LLINs and indoor residual
spraying would be better targeted to foci of risk and in
preparation for possible epidemics as universal coverage
with these interventions is unlikely to be the most cost-
effective. In those areas of receptive mesoendemic
transmission, which comprise 65% of the districts,
universal coverage with LLINs should be the sustained
ambition." °® The two divergent potential national
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PPR;_10
' <1%

. 1%to<5%
[ 5%to10%
B >10% to 50%

Figure 3 District (n=74) maps of Somalia classified by endemicity using a population-weighted: (A) posterior aggregate annual
mean PfPR,_1o (contemporary) prediction to 2010 and (B) the maximum annual mean PfPR,_4, (receptive) predictions over the

period 2007—2010. The blues lines show the location of the Juba (lower) and Shabelle (upper) Rivers.

malaria strategies emanating from the two different
descriptions of risk highlight the danger of relying on
contemporary risk maps to make decisions that require
the understanding of the intrinsic transmission potential
of malaria.

Available maps that describe pre-RBM distribution of
risks are either expert opinion maps’® or climate-based
deterministic transmission suitability models®® and not
driven by empirical data. Even where empirical data may
be available, in countries with unstable malaria trans-
mission susceptible to seasonal and anomalous climatic
variations such as the recent drought in Somalia, the
risks measured at one time point may not be represen-
tative of the possible peak risk levels for that point.
Therefore, spatially nationally representative data over
several years are required to capture these variations and
estimate the highest possible transmission. In this study,
PfPR data for Somalia that is available over four
consecutive years has provided a unique opportunity to
develop a novel way of selecting the maximum predicted
risks within the time series. The resolution of risk levels
at the malaria resource decision-making unit also
represents a product that is likely to be of more policy
relevance to the mnational programme managers
compared with the more common pixel-level predictions
of risks.

The study has some limitations. Although Somalia
represents one of the few African countries with ubig-
uitous PfPR data in space and time there are gaps in the

distribution of the data and uncertainty of the predic-
tions are partly a function of these. The validation tests,
however, show overall good predictive model perfor-
mance with overall bias of MPE of <5% and a slight
average overprediction of about MAPE of 0.2%. The
coefficient of variation, which is the ratio of SD to mean
PfPRy_10, appeared similar for both the 2010 mean and
the maximum mean maps with uncertainty highest in
northern zones where data in space and time were fewest
(figure 2C,D). In selecting the maximal mean risk as
predicted to a location in any year over the 4-year period,
we make assumptions as if the modelled predictions
were part of 4-year repeat ‘observations’ of PfPRy_;9, in
that location. The basis for this is that if the mean esti-
mate at any 1X1km location from the full posterior
distribution of the space—time model is a robust esti-
mate to the given time and location, then selected
maximum mean estimate is equally so. We suggest that
this is a plausible assumption but further efforts need to
be invested in probabilistically selecting the maximum
mean predictions from the series of usually spatially and
temporally uneven data. Any uncertainties in the
approach used to select the maximum annual mean
PfPRy_;( are, however, unlikely to be the source of the
major differences in endemicities when compared to the
annual mean PfPRy_;4 for 2010. The P/PR data used in
this analysis were assembled during a period when access
to control interventions had increased in Somalia with
donor funding support. Although coverage of main
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Table 1 A summary of districts (N=74) and population in 2010 (N=8.4 million) in Somalia classified by malaria endemicity

Endemicity classification based on the Endemicity classification based on the

2010 annual mean PfPR,_1¢
(contemporary) predictions

maximum mean PfPR,_, (receptive)
predictions over the period 2007—2010

Number (%) of

Population at risk,

Number (%) of  Population at risk,

districts million, (%) districts million, (%)

Population-weighted
mean PPR,_1o
Hypoendemic

<1% PPR5_1¢ 17 (23) 1.1 (13) 0 (0) 0 (0)

1% to <5% PPRa_10 43 (58) 4.6 (55) 6 (8) 1.2 (14)

5%—10% PPR,_10 14 (19) 2.6 (31) 20 (27) 1.4 (17)
Mesoendemic (>10%—50% 0 (0) 0.0 (0) 48 (65) 5.8 (69)
PPR2_10)
Hyperendemic and holoendemic 0 (0) 0.0 (0) 0 (0) 0.0 (0)

(>50% PPRs_10)

District classifications of endemicity were computed from population-weighted posterior annual mean PfPR,_1, predicted to 2010
(contemporary) and the maximum annual mean PfPR,_4¢ (receptive) predictions over the period 2007—2010.

vector control interventions remain modest,* it is likely
that some of observed data were influenced by these
interventions and in parts of the country true receptivity
may even be higher than estimated. Land-use changes
due to urbanisation, large-scale agricultural schemes and
hydroelectric power dam projects also act as modifiers of
transmission and in mapping malaria risk these factors
must be adjusted for. Urbanisation, which has been
shown to reduce malaria transmission, was included in
the analysis of receptivity for Somalia. The maps of water
bodies and vegetation used in the analysis will to some
degree capture any aquatic or agricultural land-use
changes. However, due to the long civilwar and the lack
of a functioning central government, such changes have
been limited.

To compute a single estimate of risk for a relatively
large area, such as districts in Somalia, will always
obscure some of the heterogeneity in malaria distribu-
tion within that area regardless of the methods used. Any
decision to do so is therefore a compromise between the
practical applications of such a classification and the
potential loss of precision in risk estimation. Approaches
that directly adopt the heterogeneous properties of the
prevalence data to make statistically robust single
estimates of mean P/PR to an administrative unit are
computationally and methodologically intensive®' but
have the advantage of estimating the area-level uncer-
tainty classification through joint simulation. In this
study, we have used simpler approaches to partly capture
the within-district heterogeneity in malaria risk when
classifying them into a single endemicity class by first
assigning pixel-level population to an endemicity class
before aggregating to the district. Future efforts should
explore approaches such as joint simulation®" and small
area estimation®® techniques to describe the uncer-
tainties around area-level estimates of risks robustly.
Such measures of uncertainties are not only quantitative
estimates of model validity but also help determine

where future data assembly must be prioritised to
improve precision.

In conclusion, the aim of this study was to demonstrate
the need for malaria receptivity maps for optimal
malaria resource planning in countries, which have
either achieved low stable endemic control or are of
unstable transmission and therefore susceptible to
seasonality or climatic anomalies. We have used
approaches that derive maps of contemporary malaria
risk and approximations of receptivity within the same
space—time MBG framework resolved at the district level
in Somalia. The two maps show significantly divergent
transmission scenarios in which the contemporary map
describes the majority of Somalia as hypoendemic and
while the other shows a largely mesoendemic trans-
mission profile. These disparities have farreaching
consequences on decisions regarding the design and
scale-up of interventions in Somalia. The results have
important control implications for several low trans-
mission countries in Africa. Urgent efforts must there-
fore be invested in assembling detailed historical data on
parasite prevalence to allow for a better understanding
of receptivity and equip national programmes with reli-
able estimates of receptivity that will enhance better
decision-making.
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