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ABSTRACT: We present here the differential analysis of metabolite−metabolite association networks constructed from an array of
24 serum metabolites identified and quantified via nuclear magnetic resonance spectroscopy in a cohort of 825 patients of which 123
died within 2 years from acute myocardial infarction (AMI). We investigated differences in metabolite connectivity of patients who
survived, at 2 years, the AMI event, and we characterized metabolite−metabolite association networks specific to high and low risks
of death according to four different risk parameters, namely, acute coronary syndrome classification, Killip, Global Registry of Acute
Coronary Events risk score, and metabolomics NOESY RF risk score. We show significant differences in the connectivity patterns of
several low-molecular-weight molecules, implying variations in the regulation of several metabolic pathways regarding branched-
chain amino acids, alanine, creatinine, mannose, ketone bodies, and energetic metabolism. Our results demonstrate that the
characterization of metabolite−metabolite association networks is a promising and powerful tool to investigate AMI patients
according to their outcomes at a molecular level.

KEYWORDS: metabolite−metabolite association networks, nuclear magnetic resonance, metabolomics, network inference,
acute myocardial infarction

1. INTRODUCTION

Acute myocardial infarction (AMI) is associated with high
mortality and (co)morbidity.1,2 A favorable outcome of the
patients is directly linked to a rapid and effective management
of the condition, while a deferred diagnosis can result in severe
clinical conditions. Unfortunately, stratification of AMI
patients in different risk categories and their management
remain a clinical and a research challenge.3−6 Several studies
evaluated the clinical usefulness of prognostic biomarkers for
(early) identification of patients at risk of a negative clinical
outcome. Several studies have reported prognostic utility of
high levels of inflammatory markers like CRP (C-reactive

protein) and IL-8 (interleukin-8) in patients with acute
coronary syndrome (ACS) who underwent coronary revascu-
larization,7−9 often in combination with metabolite profil-
ing.10−12

Nuclear magnetic resonance (NMR)-based high-throughput
metabolomics analysis of hundreds of different metabolites
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present in a biological specimen13−15 such as blood, urine, and
tissue can provide a global picture of the many metabolic and
biomolecular processes underlying complex and multifactorial
diseases16−20 such as acute coronary syndrome.
Through an in-depth NMR metabolomics analysis of serum

samples of AMI patients in the acute phase, we provided
recently a very promising discrimination between patients with
different clinical outcomes.21 Multivariate and univariate
analyses were applied to infer a pattern of metabolic alterations
that identifies high risk of death within 2 years after AMI, but
mechanistic understanding of the underlying risk factors was
not investigated in a systemic fashion,22 which can enhance

comprehension and characterization of both the biological
process that are perturbed and the key regulatory mechanisms
underlying disease pathophysiology.
Integrative systems biology approaches offer a holistic

representation of the structural and functional properties of
living organisms and can help shed light on the relationships
and interaction among molecular entities governing the system
behavior. In this framework, network representations and
network analysis provide a unique view to understand
biological systems, where not only the individual components
are considered but also their interconnections and their

Figure 1. Graphical overview of the analysis design to investigate differences between metabolite−metabolite association networks of patients who
survived and did not survive 2 years after AMI. The AMI event is recorded at time t0, and blood samples, analyzed in this study and the previous
one, were collected at time t1 (24−48 h after percutaneous coronary intervention and overnight fasting). Survival status was evaluated after 2 years
(time t1 + 2 years), and samples are retrospectively split into two groups according to the survival status (alive vs deceased). Metabolite−metabolite
association networks were inferred from the two groups using the PCLRC algorithm23 and compared to detect metabolites with differential
connectivity with respect to the survival status.

Figure 2. Graphical overview of the analysis design to investigate differences between metabolite−metabolite association networks underlying
different mortality risk factors. The AMI event is recorded at time t0, and blood samples, analyzed in this study and the previous one, were collected
at time t1 (24−48 h after percutaneous coronary intervention and overnight fasting). Given a risk factor R (with R equal to Killip, STEMI, GRACE,
and Metabolomics RF), patient samples are divided into two groups, high risk of mortality and low risk of mortality. Patients in the high-risk group
are then evaluated for mortality at 2 years after AMI, and samples are split according to the survival status (alive vs deceased.) Metabolite−
metabolite association networks were inferred from the two groups (alive vs deceased) using the PCLRC algorithm23 and compared to detect
metabolites with differential connectivity with respect to the survival status within patients initially classified to be at high risk of mortality. The
same analysis was performed on the sample of patients in the low-risk group. Overall, the analysis resulted in 16 different networks as shown in
Figure 3. *The generic risk factor R assumes values: Killip, STEMI, GRACE, and Metabolomics RF (see Methods for more details).
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functions as a whole, and constitute a valuable integration to
classical multivariate data analysis tools.23

Network analysis has proven to be a powerful tool to
analyze, understand, and interpret the complex patterns
observed in metabolomics data.23−27 The rationale underlying
the use of network analysis is that metabolite concentrations
(like genes and proteins) measured in blood or other biofluids
exhibit association patterns that can be considered, to a certain
extent, related to the structure of the underlying biological and
metabolic networks.
In the metabolomics context, networks are best exploited

when compared across different conditions in a so-called
differential network analysis approach:23,28 different network
characteristics and different patterns of association between
metabolites can highlight possibly affected molecular mecha-
nisms. In this work, we attempt with our previous
metabolomics investigation21 a more systematic approach
using the analysis of metabolite−metabolite association
networks to investigate the possible molecular mechanisms
underlying different clinical outcomes (i.e., death as a
consequence of adverse cardiovascular event) in AMI patients
treated by percutaneous coronary intervention (PCI). The
patients of this study are a subset of the AMI-Florence II
cohort.21,29

The first objective was to investigate, from a metabolite−
metabolite association network point of view, the differences in
the baseline characteristic of patients who, after 2 years, had
survived the AMI with respect to those who died. To this aim,
metabolite−metabolite association networks were built starting
from the serum metabolites quantified using NMR spectra of
serum samples that have been collected from patients in the
24−48 h after the AMI: samples were then split into two
groups (alive at 2 years from AMI and deceased), and
metabolite networks were compared as shown in Figure 1.
The second objective of the study was to investigate the

(possibly different) molecular mechanisms underlying different
risk scores used in clinical practice to stratify patients of
different categories of risk of mortality after AMI; therefore, we
aimed to investigate if patients at low- or high-risk mortality
after AMI were characterized by risk-level-specific metabolite−
metabolite association networks.

Different risk parameters like the ACS classification,30 the
Killip index,31 and the GRACE (Global Registry of Acute
Coronary Events) score32 are routinely used to stratify
different classes of risks of mortality after the AMI, and since
they are based on different input parameters, they reflect
different patient characteristics and may assign patients to
different risk categories. We investigate the differences in the
metabolite−metabolite networks underlying these three risk
parameters in addition to the metabolomics NOESY RF risk
score, which was developed in our previous study,21 taking into
account also whether the patients survived or not 2 years post-
AMI. Practically, we compared the networks of the patients
who survived the AMI at 2 years within both risk classes (low
and high) for every risk parameter considered. The overall
analysis design is graphically illustrated in Figure 2.

2. METHODS

2.1. Study Population

The study population consists of patients admitted to the
Coronary Unit of the six hospitals (five community hospitals,
namely, Santa Maria Annunziata Hospital, Santa Maria Nuova
Hospital, Nuovo San Giovanni di Dio Hospital, Mugello
Hospital, and Figline Hospital, and one University hospital, the
Careggi Hospital) of the Florence health district (Tuscany,
Italy) who participated in the AMI-Florence 2 registry29

between April 2008 and April 2009.
Demographic information, medical history, clinical charac-

teristics, treatments, and outcomes during hospitalization were
collected and are reported in Table 1. Inclusion criteria and
details about patient treatment are available to the reader in
the publication describing the original study.21

We considered only complete cases from the original
study:21 153 subjects were excluded because the data set was
missing relevant clinical information necessary for the
calculation of the risk scores, leaving 825 patients available
for analysis: 311 females (37.7%) and 514 males (62.3%), with
a median age of 75 years, of which 123 (14.9%) died within 2
years from the AMI event (labeled “deceased patients” in the
remainder of the paper) and 702 (85.1%) patients have lived
for at least 2 years after the AMI event (labeled “survivor
patients”).

Table 1. Demographic and Clinical Characteristicsa

parameters survivor patients (702) deceased patients (123) P-value adjusted

demographic characteristics
age (years), median (IQR) 73 (63−80) 82 (78−87) 1.15 × 10−20

gender, females, n (%) 253 (36.0%) 58 (47.1) 2.08 × 10−01

medical history, n (%)
chronic heart failure 29 (4.1%) 20 (16.3%) 1.73 × 10−06

diabetes 169 (24.1%) 49 (39.8%) 2.91 × 10−03

hypertension 457 (65.1%) 88 (71.5%) 1.00 × 10+00

dyslipidemia 240 (34.2%) 26 (21.1%) 7.47 × 10−02

cerebrovascular disease 42 (6.0%) 24 (19.5%) 3.83 × 10−06

risk features
ACS classification, STEMI, n (%) 257 (36.6%) 26 (21.1%) 9.41 × 10−03

Killip II-III, n (%) 101 (14.4%) 52 (42.3%) 2.33 × 10−12

GRACE score ≥ 170, n (%) 501 (71.4%) 116 (94.3%) 7.13 × 10−07

NOESY RF risk score ≥ 0.454, n (%) 197 (28.1%) 92 (74.8%) 1.34 × 10−22

aIQR, interquartile range; ACS, acute coronary syndrome; STEMI, ST-segment elevation myocardial infarction; GRACE, Global Registry of Acute
Coronary Events risk score; NOESY RF, nuclear Overhauser effect spectroscopy random forest risk score. A P value adjusted with the Bonferroni
correction <0.05 is deemed significant.
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Survival status after 2 years from the AMI event was
obtained by consultation of the registry office’s city of
residence of the patients.

2.2. Ethical Issues

The study received approval on March 19, 2008 from the
Ethical Committee of the University of Florence and the
Careggi Hospital (study number 11/2008). Informed, written
consent was obtained from all participants. The study adheres
to the directives of the Declaration of Helsinki (1964) and its
later amendments.

2.3. Overview of Mortality Risk Scores

The Global Registry of Acute Coronary Events (GRACE) risk
score and the metabolomics nuclear Overhauser effect
spectroscopy random forest risk score were calculated as
described in the original publication.21 For the network
analyses here proposed, the ACS classification, Killip
classification, GRACE score, and NOESY RF score were
considered in order to obtain high- and low-risk classes for
cardiovascular risk of death after AMI.
AMI patients are subdivided into ST elevation myocardial

infarction (STEMI) and Non-ST elevation myocardial
infarction (NSTEMI) if they exhibit, or not, significant ST
segment elevations on the electrocardiogram. STEMI is
characterized by total occlusion in a coronary artery, whereas
in NSTEMI, the occlusion is partial; for these reasons,
NSTEMI are considered at a lower risk of death with respect
to STEMI patients.
The classification or index of heart failure severity proposed

by Killip and Kimball31 in AMI patients aims at assessing the
risk of in-hospital death and the potential benefit of specialized
care in coronary care units. Patients are classified into four
classes based on physical examination: patients in class I
demonstrate no clinical signs of heart failure (HF); class II
patients exhibit findings consistent with mild to moderate HF;
class III patients display overt pulmonary edema; and patients
in class IV are in cardiogenic shock or arterial hypotension
with evidence of peripheral vasoconstriction. We considered
Killip class I patients low risk and all the other classes high risk.
The Global Registry of Acute Coronary Events hospital

discharge risk score (GRACE score), developed from a
multinational registry involving all subsets of ACS, predicts
long-term mortality post-ACS.32 Variables measured to
calculate the score include age, heart rate, systolic blood
pressure, renal function, Killip class, ST-segment deviation,
cardiac arrest, and elevated cardiac enzyme levels. AMI
patients with a GRACE score >170 are considered high risk.
The present cohort of AMI patients was previously utilized

for large-scale NMR-based profiling of serum samples aiming
at the metabolomics characterization of acute myocardial
infarction patients to define a metabolomics score able to
predict 2 year post-AMI mortality.21 A random forest (RF)
classifier33 was built to discriminate the NOESY NMR spectra
of patients who died or survived the AMI event within two
years. A patient-specific score, called “NOESY RF risk score”,
was defined in the training set by quantifying the similarity of
the blood NMR fingerprint of a given patient to those of
patients who died; patients with NOESY RF score ≥ 0.454 are
deemed at a high risk of death 2 years after AMI.

2.4. NMR Sample Collection and Preparation

Blood samples were collected in the 24−48 h after the PCI and
overnight fasting. Serum samples were obtained by centrifug-

ing blood sample at 2000g for 10 min at 4 °C and then stored
in aliquots at −80 °C until analysis.
Samples were prepared for NMR experiments as detailed in

Bernini et al.34

2.5. Experimental Methods

2.5.1. NMR Experiments. One-dimensional 1H NMR
spectra were acquired on a Bruker 600 MHz spectrometer
(Bruker BioSpin) operating at 600.13 MHz and equipped with
a 5 mm cryoprobe, an automatic tuning-matching (ATM), and
an automatic sample changer.
A water-suppressed Carr−Purcell−Meiboom−Gill

(CPMG)35 spin echo pulse was used to obtain spectra with
attenuated broad signals from lipids and proteins. More details
on instrument configuration and setting and on NMR
experiments can be found in the original publication.21

2.5.2. Metabolite Identification and Quantification.
Metabolites were identified on the CPMG spectra using AMIX
3.8.4, the BBIOREFCODE (Bruker BioSpin), and the Human
Metabolome Database (HMDB).36

The metabolite selection was purely based on an
experimental ground and not because they were a priori
known or supposed to be associated with AMI or post-AMI
death. The quantification (in arbitrary units) of metabolites
above the detection limit (1 μM) was carried on using software
developed in-house based on standard line-shape analysis
methods.
Data have been deposited in the MetaboLights database

(www.ebi.ac.uk/metabolights) under the accession number
MTBLS395 from where they can be freely retrieved.

2.6. Network Analysis

Differential network analysis was used to investigate the
changes in metabolite−metabolite association patterns be-
tween patients who survived and those who did not survive the
AMI event at 2 years (see Figure 1) and to investigate
differences among high- and low-mortality-risk patients (see
Figure 2).
The AMI event is recorded at time t0, and blood samples

analyzed in this study and in a previous one21 were collected at
time t1 (between 24−48 h after percutaneous coronary
intervention and overnight fasting, see Figure 1). Survival
status was evaluated after 2 years (time t1 + 2 years), and
samples were retrospectively split into two groups according to
the survival status (alive vs deceased). Network inference,
comparison, and validation were performed as detailed in
Section 2.6.1 and 2.6.2.
To investigate the differences between metabolite−metab-

olite association networks underlying different mortality risk
factors, the samples collected at t1 were retrospectively
stratified to groups with high risk of mortality and low risk
of mortality according to a given mortality risk index (Killip,
STEMI, GRACE, or NOESY RF scores; see Figure 2 for a
graphical overview of the analysis setting and see Section 2.3
for more details on the risk scores). For each of the two
different risk groups (high/low), patients were then retro-
spectively evaluated for mortality at 2 years after AMI, and
samples were divided according to the survival status (alive vs
deceased); metabolite−metabolite association networks were
inferred from the two groups (alive vs deceased) as detailed in
Section 2.6.1. This resulted in 16 different networks: 4
mortality risk factors × 2 risk statuses (high/low) × 2 survival
at 2 years after AMI statuses (alive/deceased) = 16.
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2.6.1. Network Reconstruction. The probabilistic con-
text likelihood of relatedness (PCLRC)23 algorithm was used
to build metabolite−metabolite correlation networks. This
algorithm is a modification of the context likelihood of
relatedness (CLR) algorithm (using correlation instead of
mutual information to measure similarity between metabolite
profiles) and on iteratively sampling the data set resulting in a
weighted adjacency matrix containing an estimate of the
association likeliness between any two metabolites. The default
values of 25−75% data split and 90% confidence level have
been used. An R implementation of this algorithm is available
at semantics.systemsbiology.nl.
The PCLRC outputs a matrix containing a probabilistic

measure pij for each correlation rij (which is the ith and jth
element of the Spearman correlation matrix R) between any
two metabolites i and j. We retain correlations for which pij >
95%, setting to 0 all other correlations:

=
≥

<
r

r p

p
:

if 0.95

0 if 0.95ij

ij ij

ij

l
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oooo
n
oooo

For each metabolite i in network a, the connectivity is
defined as

∑χ = | | −
=

r 1i
a
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1
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For the metabolite i, the differential connectivity Δi
calculated among two networks a and b is

χ χΔ = −i
a b

i
a

i
b,

2.6.2. Assessing the Significance of Differential
Connectivity. The significance of the differential connectivity
was assessed implementing a permutation test. First, each
column of each data matrix X is permuted independently so
that the column values x1, x2, ..., xn are replaced by xp(1), xp(2),
..., xp(n) where p(1), p(2), ..., p(n) are random permutations of
1, 2, ..., n. In this way, the distributional properties of every
column of X (mean and variance) are preserved but the
relationships among the variables of different columns are
destroyed. The permuted version of X is collected in the matrix
Xk.
The overall network estimation using the PCLR algorithm is

performed on the permuted versions of the data matrix,
obtaining the corresponding correlation matrix Rk, which are
then used to compute, for each metabolite, the “permuted”
connectivity

∑χ = | | −
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The permutation procedure is repeated k = 1, 2, ...., K times
to build a distribution Di of permuted differential connectivity
values for metabolite i, which is used to compute the
significance of the differential connectivity of metabolite i
among two networks a and b. The significance is expressed as a
P-value calculated as

‐ =
+ # | | > |Δ |

P
D

K
value

1 ( )i i
a b,

where #(|Di|>|Δi
a, b|) indicates the number of elements of Di

whose absolute value is larger than the absolute value of the
differential connectivity calculated from the original data.
2.7. Statistical Methods

2.7.1. Univariate Analysis. Group comparisons were
carried out using the Wilcoxon−Mann−Whitney test38 (for
metabolite concentrations), t test (demographic and clinical
variables), and chi-square test (categorical clinical variables).
All P-values were adjusted for multiple test correction using
either the Benjamini−Hochberg39 method (metabolites) or
Bonferroni correction37 (all other variables).
An adjusted P-value <0.05 was deemed significant.
2.7.2. Simultaneous Analysis of Adjacency Matrices.

Covariance simultaneous component analysis (COVSCA) is a
recently introduced model to analyze communalities and
differences across a set of Sk (k = 1,2,..., K) covariance matrices
simultaneously.39 As an adjacency matrix can be considered a
particular case of the covariance matrix, this method can be
used to model communalities and differences between
adjacency matrices. In COVSCA, the matrices are approxi-
mated as a combination of a limited number (L ≪ K) of low
dimensional prototypes

∑≈
=

cS Z Zk
l

L

kl l
T

l
1

where ckl ≥ 0 (l = 1, 2, ..., L) are weight coefficients and ZlZl
T

are the prototypical covariance matrices that consist of loading
Z of size J × Rl that hold simultaneously for all Sk. We have
chosen to fit our model with two rank-2 prototype matrices as
the best compromise between fit (70%) and model complexity.
We refer the reader to the original publication for more details
on model derivation and implementation.
COVSCA scores were analyzed with the k-nearest neighbor

classification algorithm to obtain the discrimination accuracy,
and the result was validated using a permutation test using 103

permutations.

3. RESULTS AND DISCUSSION

3.1. Differential Network Analysis of Survivor- and
Deceased-Specific Metabolite−Metabolite Association
Networks

The analysis of some baseline patient characteristics identifies
multiple factors that are significantly different between who
had or had not died within 2 years since their AMI
presentation (see Table 1) and constitute possible confound-
ing factors when comparing the survival status of the groups.
For this reason, metabolite profiles were corrected for age and
history of chronic heart failure, diabetes, and cerebrovascular
disease prior network inference.
The specific serum metabolite association networks for

deceased and survivor patients estimated using the PCLRC23

algorithm are shown in Figure 3A (survivors, constructed using
n = 702 serum samples) and Figure 3B (deceased, constructed
using n = 123 serum samples). Network nodes were arranged
and colored according to the metabolite degree of connections,
whereas the width of network edges represents metabolite−
metabolite correlations and edge colors represent edge
betweenness.
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We observed that the metabolite network specific to patients
who survived the AMI at 2 years tends to be more connected
with respect to the ones of deceased patients. This different
topology is likely to reflect underlying metabolic differences,
but it could be also affected by the differences in the sample
size.
We assessed the significance of the observed differences in

connectivity using a permutation test: isobutyrate, glycine,
creatinine, isoleucine, and valine present statistically different
connectivities (P-value <0.05 after Bonferroni correction) in

survivor and deceased patient-specific networks. Among these
metabolites, only glycine (Figure 3C) did not show also
statistically significant differences in terms of concentrations
(P-value <0.05 after Benjamini−Hochberg correction).
Peculiar is the behavior of creatinine: in survivor-specific

network, creatinine shows four connections with mannose,
methionine, leucine and isoleucine, whereas creatinine in
deceased patient-specific network is completely disconnected;
previous studies have demonstrated the association between
compromised myocardial flow and negative prognosis for 1
year survival and a high level of creatinine in patients.40,41

Correlation between creatinine and mannose has been
previously observed,42 suggesting an association between
insulin resistance and diabetic kidney disease,43 which is a
well-established risk factor for CVD as well as for overt diabetic
kidney disease. Interestingly, results in our data set confirm this
observation only in survivor patients: creatinine correlates
significantly with mannose as well as with leucine, isoleucine,
and methionine only in survivor patients, whereas it does not
have any significant correlation in deceased patients.
Disruption of this correlation could indicate a possible
impairment or re-wiring of mannose metabolism, which has
been considered as a potential biomarker for the prediction of
CVD. Possible implications of mannose are further discussed
in Section 3.2. As already shown in our previous study,21

creatinine presents statistically higher concentrations in
patients who died with respect to survivors (Figure 3C).
Both these pieces of evidence suggest a central metabolic role
of creatinine, which may condition the prognosis of AMI
patients. Moreover, increase of serum creatinine levels has
been related to adverse outcomes, including an increased risk
of in-hospital mortality, in patients undergoing primary
percutaneous coronary intervention for AMI. It has been
proposed that adopting interventions in the patient manage-
ment able to reduce rises in creatinine should improve
outcomes of AMI patients.44 Moreover, creatinine has been
shown to be inversely associated with incident CVD while
mannose was found to be directly associated with incident
CVD.45

Glycine does not show any significant change in
concentrations between survivor and deceased patients,
whereas it shows significantly higher connections in survivors
(Table 2). Previous studies demonstrated that high plasma
glycine levels were associated with an overall favorable
coronary heart disease risk profile.46 We may assume that a
higher glycine degree of connectivity probably reflects a major
contribution of glycine metabolism in the AMI patient
prognosis, and indeed, serum glycine has been correlated
with anti-inflammatory effects in animal models.47,48

For 3-hydroxybutyrate, we found increased serum levels
(Table 2) in deceased patients, whereas no difference in
connectivity is present. A recent study indicates that ketone
body consumption is reduced under conditions of myocardial
ischemia, probably suggesting a shift in the energy metabolism
to anaerobic pathways.49,50 We can hypothesize that the onset
of metabolic ketosis may influence the patient prognosis but
whether the increase of ketone bodies is an adaptive response
necessary for supporting cell metabolism or it is a trigger for
disease progression21 has to be ascertained. In addition, it is
interesting to mention that we observed differences in 3-
hydroxybutyrate connectivity if we did not adjust the matrix of
correlations for age. We already observed in our previous study
on a healthy population that 3-hydroxybutirate is more

Figure 3. Metabolite−metabolite association networks reconstructed
using the PCLRC algorithm from the serum metabolite concentration
profiles. (A) Survived and (B) deceased AMI patients within 2 years
from the cardiovascular event; vertexes are colored according to the
metabolite degree of connectivity. (C) Differences in terms of
connectivities in networks of survived and deceased are reported
against each metabolite’s P-value. The thresholds for significance at
0.05 and after Bonferroni correction are given. The colors red to blue
encode for the increasing difference. Significance in terms of
metabolite levels is also reported: circles are metabolites that are
statically different between survived and deceased patients, whereas
triangles encode for the not significant ones.
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connected in younger people;27 thus, we can hypothesize that
the pattern of connections of this metabolite is directly
influenced by aging.
In deceased patients, we observed a significant reduction of

histidine serum levels and a concomitant reduction of histidine
connectivity (from 8 to 5 connections, not significant after
Bonferroni correction). This finding is of particular interest if
compared with the available literature: previous studies have
shown that histidine was significantly reduced during the acute
phase of thrombotic myocardial infarction47 and that histidine
can reduce platelet aggregation after vascular injury in animal
models.51 DeFilippis and coauthors47 hypothesized that the
simultaneous increase of steroid hormones and decrease of
histidine in the plasma of acute thrombotic MI patients, but
not in the plasma of non-thrombotic MI patients, could imply
a contribution of these metabolites in a pathological coronary
thrombosis setting; this hypothesis is in line with the decrease
of histidine that we observed in deceased patients.

3.2. Differential Network Analysis or Risk-Associated
Metabolite Networks

For each risk parameter, namely ACS, Killip, GRACE, and
metabolomics NOESY RF classifications, serum metabolite−
metabolite association networks distinct for high and low risk
of death were estimated using the PCLRC23 algorithm
considering the two subgroups of survivor and deceased
patients for a total of 16 different networks. Differences in
terms of connectivity in each couple of networks (survivors vs
deceased patients) were analyzed for each risk parameters
according to the low (Figure 4A,C,E,G) or high (Figure
4B,D,F,H) risk of death at 2 years. Metabolites for which
connectivity does not change with the phenotype considered
(i.e., high/low risk of mortality) can be considered to be
unrelated to that specific trait and being involved in

“housekeeping” biological reactions.52 On the other hand, it
is known that metabolites participating in many metabolic
processes tend to have higher levels of correlation and
connectivity;53 thus, decreased connectivity indicates reduced
activity of certain pathways where metabolites with signifi-
cantly altered connectivity are involved. Thus, changes in
connectivity can be seen as a proxy for changes and/or
alteration in metabolically functional modules.
In many sub-group, acetone and 3-hydroxybutyrate showed

statistically significant differences in connectivity in the
comparison between networks of survivor and deceased
patients. Analysis of the medical history of deceased patients
revealed that they were characterized by a higher ratio of
chronic heart failure and diabetes (Table 1). It has been shown
that ketone body metabolism dysregulation plays a crucial role
in both these pathological conditions49,54,55 and acetone has
been proposed as a possible early biomarker for metabolic
responses to AMI.56

Excluding the ACS classification risk, only low-risk patients
show significant differences in the connectivity of mannose: we
observed a progressive decrease of the connectivity of mannose
with BCAA, alanine, creatinine, and acetone going from
survivor low-risk patients to high-risk ones to low-risk deceased
and finally to high-risk deceased patients. Only the connection
with glucose remains unaffected among all risk classes. Based
on the observation that highly connected metabolites
participate in many chemical reactions, this decrease in
connectivity leads to the hypothesis of decreased metabolic
activity for high-risk subjects. This substantiates the previous
discussion that mannose may be a pivotal player for the
prediction of mortality following AMI and of CVD in general.
It has been suggested that the processing of glycoconjugates

composed of glucose-derived mannose and its efflux from the

Table 2. Metabolite Univariate Analysisa

molecule survivors (702) deceased (123) P-value P-value adjusted

creatinine 196.6 ± 52.2 261.0 ± 108.5 1.05 × 10−10 2.53 × 10−09

proline 115.2 ± 60.0 154.8 ± 95.3 3.43 × 10−07 4.11 × 10−06

formate 9.4 ± 3.4 11.4 ± 3.8 3.10 × 10−06 2.48 × 10−05

unknown 10.2 ± 11.6 19.8 ± 21.2 5.94 × 10−06 3.56 × 10−05

valine 1122.6 ± 237.2 1026.2 ± 257.4 6.67 × 10−05 3.20 × 10−04

3-hydroxybutyrate 329.1 ± 320.1 487.1 ± 523.7 4.83 × 10−04 1.93 × 10−03

mannose 105.4 ± 34.5 1229 ± 55.9 8.27 × 10−04 2.84 × 10−03

histidine 114.2 ± 21.6 106.9 ± 23.7 3.84 × 10−03 1.15 × 10−02

acetate 78.9 ± 47.1 97.9 ± 67.2 7.54 × 10−03 1.85 × 10−02

acetone 735.2 ± 559.6 900.44 ± 824.9 7.71 × 10−03 1.85 × 10−02

isobutyrate 30.3 ± 12.0 35.54 ± 14.6 9.18 × 10−03 2.00 × 10−02

citrate 89.7 ± 29.8 99.84 ± 39.6 1.23 × 10−02 2.47 × 10−02

glutamine 188.3 ± 46.5 203.89 ± 71.3 1.69 × 10−02 2.98 × 10−02

glucose 2765.7 ± 745.9 3037.1 ± 1067.3 1.74 × 10−02 2.98 × 10−02

isoleucine 162.0 ± 42.4 151.6 ± 41.0 2.55 × 10−02 4.08 × 10−02

phenylalanine 227.84 ± 58.7 231.1 ± 63.9 4.85 × 10−02 7.27 × 10−02

alanine 1488.5 ± 364.0 1395.3 ± 323.2 7.04 × 10−02 9.93 × 10−02

glutamate 205.5 ± 105.7 181.0 ± 114.1 8.69 × 10−02 1.16 × 10−01

glycine 522.18 ± 162.0 478.2 ± 157.4 1.21 × 10−01 1.53 × 10−01

methionine 109.6 ± 34.8 115.9 ± 43.2 2.54 × 10−01 3.04 × 10−01

leucine 520.9 ± 119.0 508.6 ± 146.7 3.33 × 10−01 3.80 × 10−01

lactate 1515.5 ± 416.4 1578.3 ± 611.9 8.55 × 10−01 8.98 × 10−01

tyrosine 169.1 ± 36.9 169.5 ± 45.7 8.60 × 10−01 8.98 × 10−01

creatine 101.9 ± 60.0 100.1 ± 80.7 9.61 × 10−01 9.61 × 10−01

aList of metabolites assigned and quantified in the serum NMR spectra, reported as median with median absolute deviation (arbitrary units). A P-
value adjusted with the Benjamini−Hochberg correction <0.05 is deemed significant.
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cells account for most of the mannose present in blood and it
is responsible for the maintenance of its steady state.57

Mannose plays a central role in glycation processes of
lipoproteins that are involved in the initiation and develop-

ment of atherogenesis. N-Glycans are up-regulated in
proinflammatory settings and have been found on the
endothelial cell surface in early stages of atherosclerotic plaque
development.58

Figure 4. Difference in terms of connectivities in networks of survived and deceased are reported against each metabolite’s P-value for each risk
class. The thresholds for significance at 0.05 and after Bonferroni correction are reported. The colors red to blue encode for the increasing
difference. Significance in terms of metabolite levels is also reported: circles are metabolites that are statically different between survived and
deceased patients, whereas triangles encode for the not significant ones. (A) NSTEMI (low risk); (B) STEMI (high risk); (C) low risk for GRACE
score; (D) high risk for GRACE score; (E) Killip class I (low risk); (F) Killip class II-II (high risk); (G) low risk for NOESY RF score; (H) high
risk for NOESY RF score.
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The role of mannose-binding lectin (MBL), an activator of
the complement immune system and thereby involved in
inflammatory activation, has been investigated in patients with
ACS, and it has been shown that ACS patients featured higher
MBL and genotypes in comparison with healthy control.59 It
has been observed that the lectin complement pathway60 is
activated after myocardial ischemia−reperfusion and leads to
tissue injury: the blockade of the lectin pathway with inhibitory
mAbs protects the heart from ischemia−reperfusion by
reducing neutrophil infiltration and attenuating proinflamma-
tory gene expression.61

Investigation of mannose levels in AMI patients provides
complementary information to that obtained by network
analysis: higher levels of mannose in high-risk patients (see
Table 2) suggest that less mannose is bound to MBL, thus
reducing the activation of the lecithin pathway, which is one of
the three ways in which the complement system is activated.
In addition, differences in metabolite network connectivity

between survivor and deceased patients emerged in both high-
and low-risk networks, especially regarding branched-chain
amino acid, alanine, and aromatic amino acid metabolisms.
Alanine is synthetized and secreted by the heart under almost
all circumstances, including hypoxia and ischemia:62 it can be
transaminated to pyruvate whose oxidation produces three
molecules of NADH and one of GTP, and thus it contributes
to the maintenance of the energetic metabolism even in
hypoxic conditions,63 like those post-AMI. We observed a

negative correlation between alanine and acetone levels in
survivor patients with low ACS and RF risk scores, while this
correlation disappears in high-risk patients, either survived or
deceased at 2 years after AMI.
We can explain the observed negative correlation between

alanine and acetone, suggesting that in low-risk patients with
favorable outcomes (alive at 2 years after AMI), the CORI
cycle (also known as the lactic acid cycle) is favored or more
active than in patients with negative outcomes, which are also
characterized by higher levels of acetone. Indeed, the CORI
cycle is more efficient for energy production than the alanine−
glucose cycle (Cahill cycle), and this suggests that high-risk
patients may switch to alternative ways to produce energy like
fatty acid metabolism.
During ischemia, the overall mitochondrial oxidative

metabolism is reduced as a consequence of the decrease in
oxygen supply to the heart,64 whereas many studies already
showed that during myocardial reperfusion, there is an
overshoot in the rate of fatty acid oxidation, impaired pyruvate
oxidation, and accelerated nonoxidative glycolysis.65 The
serum samples analyzed here were collected in the hours
immediately after PCI and thus in the condition of increased
cardiac fatty acid oxidation rates. It is interesting to note that in
high-risk patients and in patients who did not survive the AMI
event, the negative correlation between alanine and acetone is
lost, indicating that the preferential metabolic activity is lost
and substituted by one or more, less efficient alternatives. In

Figure 5. Score and loading plots of the COVSCA model for the metabolite correlation networks obtained using the PCLRC algorithm. (A, B)
Score plots of the first three components. Each sphere represents a network that corresponds to each mortality risk parameter analyzed. Blue
spheres indicate patients that survive within 2 years after AMI, whereas red spheres indicate deceased patients. Light colors denote networks of
patients at low risk of mortality, while dark colors are for networks of patients with high risk. (C, D, E) Loading plots of the first three components.
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fact, in patients with negative outcomes, we observed generally
higher levels of ketone bodies and glucose and lower levels of
BCAAs, indicating that metabolic pathways alternative to fatty
acids oxidation are underutilized. Our results support the
evidence that the direct inhibition of mitochondrial fatty acid
oxidation64,65 could be a promising target for treatment of
ischemic heart diseases.
Branched-chain amino acids (BCAAs) show higher con-

nectivity in deceased patients, in particular isoleucine in low-
risk networks and valine in high-risk networks, thus implying a
central role of their metabolism in AMI. Previous studies have
shown that myocardial infarction leads to impaired BCAA
catabolism, directly contributing to post-AMI cardiac dysfunc-
tion and remodeling.66,67 This can be reflected in the altered
connectivity patterns observed here. Furthermore, in diabetes
patients, it was also reported that BCAAs and aromatic amino
acids were strongly predictive for the development of
cardiovascular diseases.68

3.3. Comprehensive Analysis of AMI Risk-Associated
Metabolite−Metabolite Association Networks

To investigate similarity and dissimilarity across the different
networks in a compressive fashion, the 16 networks were
analyzed simultaneously using covariance simultaneous
component analysis: with this method, each network becomes
a point in the COVSCA component space as shown in Figure
5A,B. We observe a clear separation between the networks
(discrimination accuracy of 87.5% using k-NN, P-value =
0.0134) pertaining to subjects alive 2 years after AMI (blue
dots) and those who died within 2 years (red dots): this
indicates that the correlation patterns observed are, overall,
different in the two groups. However, within each group, we
observe also a separation among networks pertaining to high
and low risk, indicating the existence of risk-specific
metabolite−metabolite correlation signatures. We notice, in
particular, that the network specific to the low risk for the
KILLIP parameters for dead subjects within 2 years from AMI
is markedly different from the others.
Since the COVSCA model is a component model, the

relative metabolite contribution to explain the observed
clustering patterns can be obtained by inspecting the loading
plots (Figure 5C−E) as in standard PCA. The first and third
components account mostly for the separation among survivor
and deceased patients and are dominated by amino acids
(histidine, leucine, isoleucine, and valine). Leucine, isoleucine,
and valine are branched-chain amino acids (BCAAs), which
are primarily catabolized in the extrahepatic tissues, notably the
cardiac muscle, and are essential for normal growth and
function at the cellular and the organ levels.69,70 BCAA
catabolism plays a fundamental role in normal cardiac
physiology and cellular viability, and defective BCAA
catabolism has been reported to promote dilated cardiomyop-
athy in humans.69,71 Furthermore, our results are in line with
the ones of a previous study that identifies in the decrease of
plasma amino acid levels an important clinical consequence of
thrombotic AMI.50 The second component partially accounts
for the subclustering with the two major clusters with larger
contributions from glutamine, leucine, methionine, glycine,
alanine, which are glucogenic amino acids, and citrate. The
observed clustering of the metabolite association network
specific to the ACS classification, Killip classification, GRACE
score, and NOESY RF score suggests that these scores may

describe similar mechanisms, albeit with different levels of
resolution.

4. CONCLUSIONS

We have presented network reconstruction and analysis of
experimentally identified relationships between metabolites
and applied a differential network approach to analyze AMI
patients who survived more than 2 years after the
cardiovascular event with respect to those who did not survive.
Our results show significant differences in the connectivity
patterns of several low-molecular-weight molecules, implying
variations in the regulation of several metabolic pathways. In
particular, creatinine and mannose emerged as possible
prognostic biomarkers.
The network approach seems to provide more insights than

the standard approach, showing a decrease of the connectivity
in the network of deceased patients. However, the biological
implications of our result need to be further investigated.
The large number of patients studied (n = 825) and the long

period of follow-up are major strength points of this study.
However, information about biochemical mechanisms under-
lying the transition to the quiescent phase could not be
obtained because samples were collected only during the acute
phase of the disease. This aspect is of crucial importance, and
thus further efforts in this direction are guaranteed. Moreover,
samples were collected not at the time of presentation but after
the therapeutic intervention, and at this point, all acute
ischemia (the etiology of the event) has resolved. In
conclusion, this study provides important information on
how the metabolic networks of AMI patients change according
to the patient outcomes.
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