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A B S T R A C T

Lung cancer ranks as the 2nd most common cancer globally. It’s the most prevalent cancer in men and the 2nd
most common in women. The prominent events in EGFR-mutated non-small-cell lung cancer (NSCLC) include the
emergence of the L858R mutation within EGFR exon 21. Despite the promising efficacy of EGFR inhibitors in
managing lung cancer, the development of acquired resistance poses a significant hurdle. In the current inves-
tigation, we focused on the screening of two phytochemicals, namely Dehydrocostus lactone and Mokkolactone,
derived from the Saussurea lappa plant, as potential inhibitors targeting EGFR L858R mutant lung cancer. The
chloroform and ethanol extract of the plant demonstrated anti-proliferative activity through the Resazurin
chemosensitivity assay, exhibiting an IC50 value of 37.90 ± 0.29 µg/ml with selectivity index 2.4. Through a
GC–MS study, we identified 11 phytochemicals for further insilico analysis. These compounds underwent ADMET
assessment followed by drug likeliness analysis before being subjected to molecular docking against EGFR
L858R, identified through protein–protein interaction network analysis. All phytochemicals exhibited binding
energy scores ranging from − 6.9 to − 8.1 kcal/mol. Dehydrocostus lactone and Mokkolactone were specifically
identified for their binding profile. Findings from 100 ns molecular dynamics simulations demonstrated their
enhanced stability compared to the reference ligand DJK. This was evident in the root mean square deviation
(RMSD) values, ranging from 0.23 ± 0.01 nm to 0.30 ± 0.05 nm, the radius of gyration values, from 1.71 ± 0.01
nm to 1.72 ± 0.01 nm, and the solvent accessible surface area values, from 155.39 ± 2.40 nm2 to 159.32 ± 2.14
nm2. Additionally, favourable characteristics were observed in terms of hydrogen bonding, principal component
analysis, and free energy landscape analysis. Examination of their electronic structure via density functional
theory revealed efficient properties, with the highest occupied molecular orbital-least unoccupied molecular
orbital energy gap values ranging from − 3.984 eV to − 6.547 eV. Further, in vivo analysis is required to gain a
more comprehensive understanding and efficacy of these identified phytochemicals against lung cancer.

1. Introduction

Lung cancer is the most prevalent cancer in men and the 2nd most
common in women worldwide. In 2022, there were over 2.4 million
cases of lung cancer incidence and over 1.8 million deaths were recorded
globally (IARC 2024, Singh et al., 2024)). The projections for 2040
indicate a surge in the incidence of this cancer, with the highest

mortality rates anticipated in Asia, followed by Europe, Northern
America, Latin America and the Caribbean, Africa, and Oceania (GLO-
BOCAN). It primarily falls into two categories: non-small cell lung
cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC prevails as the
dominant form, encompassing approximately 85 % of lung cancer cases
(Dwivedi et al., 2024). Epidermal growth factor receptor (EGFR)-tyro-
sine kinase inhibitors (TKIs) serve as the initial treatment for individuals

* Corresponding author.
E-mail addresses: 2078385814@139.com (K. Gao), 178315603@qq.com (Z. Chen), 49003417@hbbmu.edu.cn (N. Zhang), jiangpumeiyu@sina.com (P. Jiang).

HOSTED BY Contents lists available at ScienceDirect

Saudi Pharmaceutical Journal

journal homepage: www.sciencedirect.com

https://doi.org/10.1016/j.jsps.2024.102139
Received 1 April 2024; Accepted 3 July 2024

mailto:2078385814@139.com
mailto:178315603@qq.com
mailto:49003417@hbbmu.edu.cn
mailto:jiangpumeiyu@sina.com
www.sciencedirect.com/science/journal/13190164
https://www.sciencedirect.com
https://doi.org/10.1016/j.jsps.2024.102139
https://doi.org/10.1016/j.jsps.2024.102139
https://doi.org/10.1016/j.jsps.2024.102139
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsps.2024.102139&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Saudi Pharmaceutical Journal 32 (2024) 102139

2

with previously untreated sensitizing EGFR mutation-positive advanced
or metastatic NSCLC. EGFR mutations are detected in Caucasian in-
dividuals with non-small cell lung cancer and in up to 40 % of Asian
patients. Apart from gefitinib, erlotinib, afatinib, and dacomitinib, other
significant EGFR-TKIs exist. Despite their notable success with high
response rates and extended progression-free survival (PFS) compared
to platinum-based doublet chemotherapy, lung cancer patients often
develop resistance within ten to fourteen months of initiating treatment
(Lu et al., 2024; Nand et al., 2017; 2018). Somatic EGFRmutations occur
in 15 %–40 % of lung adenocarcinomas, with mutation prevalence
varying based on ethnicity and gender. The single point mutation L858R
in exon 21 and different deletions in exon 19 (Del19) account for around
85–90 % of known EGFR mutations in lung cancer, representing the
most common cases (Marrocco et al., 2023). The field of cancer medi-
cation research integrates new technologies such as data science,
informatics, and artificial intelligence (AI) to expedite the development
of effective medicines, reduce costs, and minimize reliance on animal
testing. Various stakeholders, including policymakers, academia, and
corporations, are increasingly intrigued by the impact of artificial in-
telligence on the pharmaceutical industry (Hasselgren and Oprea, 2024;
Nand et al., 2016b). The drug discovery sector is poised to experience a
compound annual growth rate (CAGR) of 40.8 %, surging from $259
million in 2019 to $1,434 million in 2024 (Maiti et al., 2021; 2022).

Presently, diverse computational strategies are effectively employed
to study phytochemicals concerning lung cancer, including network
pharmacology, structure-based drug designing, subcomponent-guided
deep learning, molecular docking, steered molecular dynamics simula-
tions, density functional theory studies, and more.Phytochemicals exert
their effects either synergistically or independently by targeting various
cancer cell characteristics, such as inhibiting cell cycle proteins associ-
ated with cancer progression, disrupting microtubule formation, sup-
pressing angiogenesis, or inducing apoptosis (Maiti et al., 2016a,b; Wani
et al., 2023; Widyananda et al., 2023a; Nand et al., 2020; Widyananda
et al., 2023b; Tchebou et al., 2024; Maiti et al., 2016 a;b). In the current
study, high-throughput virtual screening was conducted to investigate
plant-based EGFR L858R kinase inhibitors against non-small cell lung
cancer sourced from the Saussurea lappa plant. This involved cell line
inhibition assays, GC–MS analysis, ADMET and drug likeness studies,
network pharmacology, docking, molecular dynamics simulations, and
DFT analysis.

2. Methodology

2.1. Plant material collection and extraction

About 1 kg of the plant’s roots underwent thorough washing fol-
lowed by sun-drying for 7 days. Subsequently, the dried roots were
ground into a coarse powder using a mechanical grinder, sifted, and
stored in airtight containers at room temperature for further processing.
Crude extraction was performed using the Soxhlet apparatus, where 100
g of the dried Saussurea lappa root powder was extracted for phyto-
chemicals using a Chloroform + Ethanol solvent (90 % (v/v)) for 24 h at
42 ◦C (Rawani et al., 2010). After extraction, the solvent was evaporated
under low pressure, and the concentrated extract was stored at 4 ◦C.
Before use, the desiccated plant material extract was diluted in a solu-
tion containing 0.7 % Dimethyl sulfoxide (DMSO).

2.2. Cell culture

The A549 human Non-Small Cell Lung Cancer (NSCLC) and Vero cell
lines were procured from the Hebei, China. The cells were cultured in
Dulbecco’s Modified Eagle medium (DMEM) supplemented with 10 %
fetal bovine serum and 5 mM glutamine. The culture media were
refreshed every 48 h, and cells were passaged when they reached 90 %
confluence. The cells were maintained in a tissue culture flask in a 5 %
CO2 incubator with 95 % humidity at 37 ◦C (Rajivgandhi et al., 2020).

For further analyses, A549 and Vero cells were seeded in 100 μl of media
in 96-well tissue culture plates at an optimal density of 25,000 cells/
well. Cell-free media was used for the background control. The plates
were then incubated for 24 h to allow for the establishment of a
monolayer.

2.3. Resazurin chemo-sensitivity assay

The Resazurin assay, also known as Almar blue dye, evaluates the
reduced oxidative environment of cells and employs fluorometric
analysis to precisely measure any observed changes. The assay utilizes
Resazurin, a fluorescent redox dye that can transition from blue to pink
as metabolically active live cells convert it into resorufin. Specific wells
of A549 and Vero cells were treated with 100 μl of Saussurea lappa plant
root extract at different doses (ranging from 240 μg/ml to 15 μg/ml),
while control wells received only 100 μl of medium. The plates were
then incubated at 37 ◦C with 5 % CO2 for 3 days. After incubation, 10 μl
of the resazurin working solution was added to each well, and the plate
was further incubated at 37 ◦C for 4 h. The fluorescence of the plate was
measured at excitation and emission wavelengths of 550 nm and 590
nm, respectively. The reduction in cell viability was compared to the
positive control. The viability of untreated cells was set at 100 %, and
cytotoxicity was deemed equivalent to a cell viability of 100%. The IC50
values were determined using the AATBioquest server (https://www.aat
bio.com/tools/ic50-calculator). The level of selectivity of the extract
was determined by its SI value. Extracts with a high selectivity index (SI)
value (>2) indicates that it has a specific toxicity against cancer cells. On
the other hand, a drug with a SI value < 2 is regarded to have general
toxicity, which can also cause harm to normal cells through cytotoxicity.
The selectivity index (SI) is the ratio of the IC50 value for normal cells to
the IC50 value for cancer cells (Reddy et al., 2013).

2.4. Gas chromatography-mass spectrometry (GC–MS)

The Saussurea lappa plant root extract was subjected to gas
chromatography-mass spectrometry (GC–MS) analysis at the at the
Fourth Hospital of Hebei Medical University in Hebei, China. During,
GC–MS, an electron ionization device of 70 eV, and helium gas (99.99
%) served as the carrier gas with a constant flow rate of 1 ml/min in split
mode (10:1). A 2 µl volume of the S. Lappa plant extract was injected into
the column and ion source set at 260 ◦C and 230 ◦C, respectively. The
pressure was maintained at 81.9 kPa, and the column oven temperature
was held at 80 degrees Celsius. Quantitative determinations were made
using peak regions, and the identification of phytocomponents was
confirmed by comparing spectral data with standard mass spectra from
the NIST08 and WILEY8 library databases. Peak area normalization was
utilized to indicate the relative percentage of each ingredient.

2.5. Prediction of drug-likeness and ADMET properties

The molecular properties influencing the therapeutic capabilities of
phytochemicals were examined using two pharmacological filters, i.e.,
Lipinski’s rule of 5 and Veber’s rule. The DruLiTo software was used for
the evaluation of the drug-likeness of phytochemicals, and chemical
descriptors were assessed using CDK. Phytochemicals’ pharmaco dy-
namic efficacy was evaluated through ADMET characteristics using
admetSAR 2.0 (Yang et al., 2019; Maiti et al., 2016).

2.6. Target prediction and creation of protein–protein interaction network
and molecular docking

The Swiss Target Prediction tool (Gfeller et al., 2014) was employed
to select the targets of Saussurea lappa phytochemicals. GeneCards and
OMIM servers were utilized to select targets related to lung cancer with
NSCLC as the primary term (Stelzer et al., 2016; Hamosh et al., 2005).
Venn diagrams were generated using the Bioinformatics and
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Evolutionary Genomics online server (https://bioinformatics.psb.ugent.
be/webtools/Venn/) to compare the targets of plant compounds and
NSCLC. The plant compound-target network was constructed and
analyzed using Cytoscape3.9.1, and the protein–protein interaction
(PPI) network was generated from STRING using Cytoscape (Shannon
et al., 2003; Antonius et al., 2022). The three-dimensional structure of
EGFR L858 was obtained from the RCSB Protein Data Bank website
(https://www.rcsb.org/structure/4lqm), and grid parameters for the
native ligand were calculated using Chimera 1.8. PyRx graphical user
interface version 0.8 and AutoDockVina software were used for
screening, and Protein-Ligand Interaction Profiler (PLIP) was utilized for
analysis of protein–ligand interactions (Adasme et al., 2021). Later in
last stage, Swiss Target Prediction tool and ShinyGO 0.77 tool was used
for identifying off-target effects of the identified phytochemicals. The
top 20 GO and KEGG analysis pathways were analysed by the negative
logarithm (base 10) of the False Discovery Rate (FDR) and are visually
investigated through enriched dot bubble and bar plots.

2.7. Molecular dynamics simulation

Thereafter, the structural stability of the EGFR L858 bounded with
the hit phytochemicals was analysed during 100 ns in Gromacs software
(Eastwood et al., 2010). The Harvard Macromolecular Mechanics
(CHARMM) 36 force field was applied for generation of topology files
for both the protein and the ligand (Rehman et al., 2023). Thereafter, the
protein ligand complex was solvated in a TIP3PBOX water model within
a 89 × 91 × 103 Å box, applying periodic boundary conditions, an 8 Å
non-bonded cutoff, and Particle Mesh Ewald for handling long-range
electrostatics. Energy minimization was conducted until the root mean
square (rms) of the energy reached less than 1 × 10− 4 kcal/mol-Å. This
was followed by a 100 ps heating phase to increase the system’s tem-
perature to 300 K using the isothermal-isobaric (NPT). The steepest
descent algorithm decreased energy by employing the Verlet threshold
method and neutralizing ions (Cl-4). The Parrinello-Rahman force was
utilized to complete the task within a time frame of 2 fs at a pressure of
1.0 atmosphere. The trajectories of all four protein–ligand complexes

were analyzed for RMSF, RMSD, and hydrogen bonding. The DGTOTAL
binding free energy was computed during the final 100 ns of the mo-
lecular dynamics simulation for each of the four protein–ligand setups.
Quadruple complexes connect.

2.8. Density functional theory (DFT) analysis

DFT analysis was carried out on the most promising phytochemicals,
which play a crucial role in drug discovery. Density Functional Theory
(DFT) is utilized in quantum mechanical simulations to investigate the
electronic structure along with chemical reactivity of molecules. Mo-
lecular orbitals for certain phytochemicals were produced with ORCA
software (Neese et al., 2020). The DFT computations utilized Becke’s
three-parameter exchange correlation functional and Lee-Yang-Parr
(B3LYP) functional (Sanjida et al., 2022), modified version of the
Perdew-Wang 1991 (PW91) exchange functional combined with the
original PW91 correlation functional (mPW1PW91), and Becke, 3-
parameter, Perdew-Wang 1991 (B3PW91). The ideal shape of all
discovered phytochemicals was examined using Frontier Molecular
Orbital (FMO) along with Electrostatic Potential (ESP) to assess chem-
ical reactivity and stability. FMOs represent the highest occupied
(HOMO) and lowest unoccupied orbitals (LUMO). The electrophilic and
nucleophilic reaction tendencies of an atom were analyzed using Avo-
gadro software to calculate and display the energies of the HOMO and
LUMO (Hanwell et al., 2012, Majeed et al., 2021).

3. Results

3.1. Cytotoxicity of Saussurea lappa extract in lung cancer cell line and
GC–MS analysis

The cytotoxic potential of the Saussurea lappa root extract in A549
human lung epithelial cells was initially evaluated. The resazurin cell
viability fluorescence assay, was employed to assess both cell viability
and cytotoxicity. This assay offers uniformity in detecting living cells
through fluorescence. Fig. 1a illustrates that the plant extract inhibited

Fig. 1. The viability of A459 and Vero cells subjected to varying concentrations of S. Lappa extract. a) Depicts the cytotoxicity of cells compared to Doxorubicin; b)
Indicates healthy cells with pink pixels in the wells, while dark blue wells represent cell death post-treatment; c) Shows microscopic views of both healthy and treated
A549 and Vero cells. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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A549 cell viability in a concentration-dependent manner, with an IC50
of 37.90 ± 0.29 µg/ml, Doxorubicin; 9.27 ± 0.84 µg/ml, while in Vero
cells 88.87 ± 0.42 and a selectivity index of 2.4.

The chemical composition of the Saussurea lapparoot extract, pre-
pared with a mixture of chloroform and ethanol, was analyzed using
GC–MS data. The obtained results were then compared with substances
present in the NIST library. A total of 94 chemical structures were
identified. Among these, the highest peak area was attributed to Azuleno
(4,5-b)furan-2(3H)-one (29.02 %), followed by Mokkolactone (7.62 %),
Aplotaxene (5.29 %), (3S,3aS,6S,7S,7aS)-6-Ethenylhexahydro-3,6-
dimethyl-7-(1-methylethenyl)-2(3H)-benzofuranone (5.29 %), Costol
(4.05 %), Cycloartenol acetate (3.14 %), Tetracontane (2.51 %), Hex-
acosane (1.84 %), Tris(2,4-di-tert-butylphenyl) phosphate (1.76 %),
(3S,3aS,6S,7S,7aS)-6-Ethenylhexahydro-3,6-dimethyl-7-(1-methyl-
ethenyl)-2(3H)-benzofuranone (1.3 %), and 4,8,13-Duvatriene-1,3-diol
(1.01 %) (Fig. 2). Subsequently, 11 phytochemicals covering 75 % of
the total area were selected for further in silico screening (Table 1,
Supplementary file 1).

3.2. Phytochemicals’ drug-likeness and ADMET properties

Subsequently, the molecular characteristics of phytochemicals
impacting therapeutic properties were assessed using two pharmaco-
logical filters: Lipinski’s rule of 5 and Veber’s rule (Uddin et al., 2023).
Lipinski’s rule evaluates orally absorbable drug-like substances based on

molecular weight (MW) (≤500 Da), hydrogen-bond donors (≤5), ac-
ceptors (≤10), and lipophilicity log P (≤5). Veber’s rule, on the other
hand, considers bioavailability factors such as the number of rotatable
bonds (≤10) and the polar surface area (≤140 Å). Among the eleven
compounds, four met all criteria like the reference EGFR inhibitor
(PD168393) and were deemed suitable for molecular docking analysis
(Table 2). Assessment of the ADMET properties of these compounds was
further done and the results indicated significant potential for intestinal
absorption in all five active compounds, namely Mokkolactone, Dehy-
drocostus lactone (Dhl), Costol, Azuleno[4,5-b]furan, and 3S,3aS,6S,7-
S,7aS)-6-Ethenylhexahydro-3,6-dimethyl-7-(1-methylethenyl)-2(3H)-
benzofuran, as outlined in Table 3. Costol demonstrated the best
blood–brain barrier penetration and exhibited the highest acute oral
toxicity comparing with PD168393. Dehydrocostus lactone and Costol
were found to be non-substrate inhibitors in the metabolic process.
Conversely, Mokkolactone, Azuleno[4,5-b]furan, and 3S,3aS,6S,7-
S,7aS)-6-Ethenylhexahydro-3,6-dimethyl-7-(1-methylethenyl)-2(3H)-
benzofuran were identified as substrates rather than inhibitors. None of
the tested substances and PD168393 displayed carcinogenic activity,
underscoring the necessity for further assessment of their anti-cancer
potential.

Fig. 2. Thetotal ion chromatogram (TIC) of Saussurea lappa root (chloroform + ethanol) extract.

K. Gao et al.
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3.3. Predicting targets through protein–protein interaction network
analysis

Following the removal of duplicate entries, the Swis-
sTargetPrediction program was utilized to identify 101 potential targets
associated with 11 S. Lappa phytochemicals. Subsequently, the keyword
“Lung cancer” was employed to retrieve data from the GeneCards and
OMIM disease databases. After merging the data from 5670 genes
sourced from GeneCards and 65 genes from the OMIM database, a total
of 5670 unique lung cancer genes were pinpointed. Utilizing the Bio-
informatics and Evolutionary Genomic Online tool, a Venn diagram

illustrating the common targets of S. Lappa and lung cancer was
generated (Fig. 3a). Out of the 5715 genes, 56 were found to be shared
between the phytochemicals and lung cancer. A Protein-Protein Inter-
action (PPI) network comprising 56 common genes from the STRING
database was constructed to elucidate the connections between disease-
related targets (Fig. 3b). This PPI network encompassed 55 nodes and
167 edges, with a mean node degree of 6.07, a mean local clustering
coefficient of 0.574, and a PPI enrichment p-value lower than 1.0e-16.
The top 10 hub genes in the Protein-Protein Interaction (PPI) network
were identified using the CytoHubba plugin within Cytoscape, as illus-
trated in Fig. 3c and d. EGFR was found with highest score during the

Table 1
Identification information for top 11 phytochemicals found in Saussurea lappa root (chloroform + ethanol) extract.

S.
No

Peak R.
Time

Area Area
%

Name
CAS Mol.

Weight
Synonym

1 47 18.389 74,528,829 29.02 Azuleno [4,5-b]furan-2(3H)-one, decahydro-3,6,9-tris
(methylene)-, [3aS-(3a.alpha.,6a.alpha.,.,9a.alpha.,9b.
beta.)]- $$ Dehydrocostuslac

477–43-0 230.30 C15H18O2

Hispitolide-A
Hispitolide A

Dehydrocostus lactone
2 43 17.764 19,581,978 7.62 Dihydrodehydrocostus lactone 4955–03-7 232 C15H20O2 Didehydrocostus

lactoneor
Mokkolacton

3 26 14.709 13,595,189 5.29 1,8,11,14-Heptadecatetraene, (Z,Z,Z)- 10482–53-8 232.41 C17H28
Aplotaxene

4 38 16.61 13,587,669 5.29 2(3H)-Benzofuranone, 6-ethenylhexahydro-6-methyl-3-
methylene-7-(1-methylethenyl)-, [3aS

23527–07-3 234 C15H22O2(3S,3aS,6S,7S,7aS)-6-
Ethenylhexahydro-3,6-dimethyl-7-
(1-methylethenyl)-2(3H)
-benzofuranone

5 34 16.009 10,395,857 4.05 2-((2R,4aR,8aS)-4a-Methyl-8
methylenedecahydronaphthalen-2-yl)prop-2-en-1-ol

515–20-8 220 C15H24O
Costol

6 93 40.122 8,056,134 3.14 9,19-Cyclolanost-24-en-3-ol, acetate, (3.beta.)- 1259–10-5 468 C32H52O2
CYCLOARTENOL ACETATE

7 72 27.403 6,449,352 2.51 Tetracontane 4181–95-7 562 C40H82
Tetracontane

8 67 25.887 4,717,794 1.84 HEXACOSANE 630–01-3 366 C26H54
HEXACOSANE

9 94 42.883 4,523,029 1.76 Tris(2,4-di-tert-butylphenyl) phosphate 95906–11-9 662 C42H63O4PTris(2,4-ditert-
butylphenyl)
phosphate

10 36 16.234 3,326,544 1.3 2(3H)-Benzofuranone, 6-ethenylhexahydro-3, 6-
dimethyl-7-(1-methylethenyl)-, [3S-(3.alpha.,

23527–07-3 234 C15H22O2(3S,3aS,6S,7S,7aS)-6
Ethenylhexahydro-3,6-dimethyl-7-
(1-methylethenyl)-2(3H)
-benzofuranone

11 53 19.723 2,600,193 1.01 4,8,13-Cyclotetradecatriene-1,3-diol, 1,5,9-trimethyl-
12-(1-methylethyl)-

CAS:7220–78-
2

:306 C20H34O2
4,8,13-Duvatriene-1,3-diol

Table 2
Pharmacological indices of the screened ligands by Lipinski’s rule, and Veber rule.

Name of the screened
compounds

Mokkolactone Dehydrocostus
lactone

Costol (3S,3aS,6S,7S,7aS)-6 Ethenylhexahydro-3,6-dimethyl-7-(1-
methylethenyl)-2(3H)-benzofuranone

PD168393
(Reference)

MW 232.15 230.13 220.18 234.16 368.03
logp 2.633 2.451 4.309 3.533 1.086
Alogp 1.438 1.656 0.628 2.168 0.532
HBA 2 2 1 2 5
HBD 0 0 1 0 2
TPSA 26.3 26.3 20.23 26.3 65.85
AMR 65.48 65.05 66.66 67.64 99.77
nRB 0 0 2 2 5
nAtom 37 35 40 39 36
nAcidicGroup 0 0 0 0 0
RC 3 3 2 2 3
nRigidB 19 19 15 16 20
nAromRing 0 0 0 0 3
nHB 2 2 2 2 7
SAlerts 3 4 1 3 1
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analysis. The most often found EGFR mutations in NSCLC cases are exon
19 deletion (19 Del) and exon 21 point mutation (L858R), which ac-
count for 85–90 % of cases. It is also reported that patients with the
EGFR-L858R mutation had a noticeably reduced survival time in com-
parison to patients with different EGFR mutations (Li et al., 2017a,b;
Hong et al., 2019; Nand et al., 2016a). Therefore, for the present study,
EGFR L858R is considered as target protein.

3.4. Binding potential of phytochemicals with EGFR L858R

The protein EGFR L858R (PDB ID 4LQM) is a 331-amino acid poly-
peptide consisting of a single A chain, as determined by structural
analysis. The compound DJK − N-[4-(3-Bromo-Phenylamino)-Quina-
zolin-6-Yl]-Acrylamide effectively inhibits the EGFR tyrosine kinase
within cells by permeating the cell membrane, exhibiting permanent
action, and selectively targeting this specific enzyme. Phytochemicals
exhibited binding energy scores ranging from − 8.1 to − 6.9 kcal mol-1,
while the reference molecule PD168393 (established epidermal growth
factor receptor inhibitor) demonstrated a binding energy of − 8.0 kcal

mol-1. PD168393 binds to Met 793, a crucial residue located in the ki-
nase’s “hinge” region that connects the N- and C-lobes, as revealed by
LigPlot analysis with EGFR L858R. Both Gefitinib (Iressa), a well-known
EGFR inhibitor and PD168393 form a single hydrogen bond with the
hinge region (Yun et al., 2007; Maiti et al., 2021). Following docking,
Mokkolactone and Dehydrocostus lactone were selected for further
investigation based on their hydrogen bonding interactions with Met
793 and their high binding energy scores (Fig. 4).

3.5. Stability of phytochemicals binding with EGFR L858R during
molecular dynamics simulations

The efficacy of the chosen phytochemicals with the EGFR L858R was
demonstrated in the final phase through molecular screening. The
simulationmethod applied Newtonian equations of motion to accurately
simulate the behaviour of a protein–ligand complex (Tchebou et al.,
2024b). This technique involves simulating a considerable number of
particles, ranging from hundreds to millions, all under identical condi-
tions (Ahmed et al., 2022). The assessment of these characteristics was

Table 3
Profile of the ADMET properties of active compounds that were screened.

S.
No

Screened
Compounds

HIA
(probability)

BBB
(probability)

Acute oral Toxicity
(Kg/mol)

CYP4503A4
inhibitor/substrate

Carcinogenicity

1 Mokkolactone 0.9964 0.9085 0.6273 Substrate Non-required

2 Dehydrocostus lactone (Dhl) 0.9949 0.9236 0.5777 Non-substrate/Non-
inhibitor

Non-carcinogens

3
Costol

0.9895
0.9747 0.7974

Non-substrate
inhibitor

Non-carcinogens

4 3D_Azuleno[4,5-b]furan 0.8998 0.9262 0.3787 Substrate Non-carcinogens
5 3S,3aS,6S,7S,7aS)-6-Ethenylhexahydro-3,6-dimethyl-7-(1-

methylethenyl)-2(3H)-benzofuranone
1.0000

0.9479 0.6988 Substrate
Non-carcinogens

6 PD168393 (Reference) 0.9791 0.9818 0.5141 Non-substrate Non-carcinogens

Fig. 3. Selection strategy for the target identification through PPI interaction network analysis, a) Venn diagram showing the common targets of S. Lappa photo-
chemical and lung cancer, b) PPI network of 56 common genes from the STRING database, c, d) Top 10 hub genes in the PPI network.
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conducted during the 100 ns simulation period (Yasmeen et al., 2023);
(Ahmad et al., 2023). Root Mean Square Deviation (RMSD)measures the
disparity between the target and reference structures in molecular dy-
namics, indicating structural changes over time. The Mokkolacto-
ne_EGFR complex, Dehydrocostus_EGFR complex, and DJK_EGFR
complex exhibited consistent behavior during the RMSD study, with
RMSD values of 0.23 ± 0.01 nm, 0.25 ± 0.02 nm, and 0.30 ± 0.05 nm,
respectively. A solution is deemed appropriate if the Root Mean Square
Deviation (RMSD) falls between 0.2 and 0.3 nm (Shahzadi et al., 2023).
Initially, Mokkolactone_EGFR complex (purple colour) showed some
fluctuation but becomes stable after 60 ns. The Radius of Gyration (Rg)
signifies the distribution of atoms around a protein’s axis, measuring
structural changes in a protein during molecular dynamics simulations.
A lower Rg value indicates a less flexible structure(Bakheit et al., 2023).
The Rg values for the three complexes ranged from 1.71 nm to 1.72 nm
with slight variations (1.71 ± 0.01 nm, 1.71 ± 0.01 nm, and 1.72 ±

0.01 nm, respectively). Furthermore, the Solvent Accessible Surface
Area (SASA) was calculated to determine the proportion of the com-
plex’s surface area interacting with the aqueous solvent. Higher SASA
values suggest decreased structural stability, while lower values indicate
a more compact arrangement of water molecules and amino acid resi-
dues. The SASA values for the ligands in the Mokkolactone_EGFR com-
plex, Dehydrocostus_EGFR complex, and DJK_EGFR complex were
found to be 155.39 ± 2.40 nm2, 157.23 ± 2.20 nm2, and 159.32 ± 2.14
nm2, respectively.The analysis also evaluated the number of hydrogen
bonds formed between the docked complexes. More hydrogen bonds
indicate a stronger binding affinity between the ligand and the proteins.
The Dehydrocostus_EGFR complex and DJK_EGFR complex exhibited
the highest binding affinity, forming 2 hydrogen bonds each, while the
Mokkolactone_EGFR complex formed only 1 hydrogen bond.Root Mean
Square Fluctuation (RMSF) measures the flexibility of individual resi-
dues, unlike RMSD, which assesses positional changes of complete
structures over time. Both ligand–protein complexes displayed stable
RMSF values with minimal fluctuations (>1 nm), indicating a high level
of rigidity across the entire complex region (Fig. 5).

3.6. Principal components analysis

Subsequently, the screened phytochemicals with EGFR complexes
were analyzed by assessing their collective motions by analysing
fundamental dynamic and principal component analysis. The eigen-
values of all principal phase space eigenvectors governing the motion
were determined through matrix diagonalization. Fig. 6a depicts the
stability of the three complexes, with the screening ligand Dehy-
drocostus_EGFR exhibiting the highest stability, followed by DJK and
Mokkolactone. Fig. 6 was utilized to examine the Gibbs energy map of
all complexes for PC1 and PC2. The findings suggest that conformational
transitions are more energetically favorable with lower Gibbs energy
values. The Mokkolactone_EGFR complex shows the widest range of
Gibbs energy (0–16.5 kJ/mol), followed by the DJK_EGFR complex
(0–12.6 kJ/mol) and the Dehydrocostus_EGFR complex (0–12.5 kJ/
mol).

3.7. Analysis of free energy landscape (FEL)

The Gibbs free energy landscapes (FEL) depicted in Fig. 7 was
generated based on the first two principal components. Functional en-
ergy landscape (FEL) analysis provides a detailed representation of a
protein’s energy and temporal conformational space by employing
principal component analysis (PCA). FEL computations enable the study
of both kinetic and thermodynamic characteristics of protein forms,
including holo and apo states. Utilizing a straightforward correlation,
FEL computations translate probabilities of data points into free energy
values. Principal Component Analysis (PCA) assesses the range of con-
formations sampled in a Molecular Dynamics (MD) ensemble during
Free Energy Landscape (FEL) calculations by examining the distribution
of these conformations. The colour bar in Fig. 7 illustrates Gibbs free
energies in kcal/mol, ranging from blue to dark yellow, representing
different structural states with varying energy levels. The blue energy
minima in each of the three complexes indicate greater stability with
adequate space. The FELs presented in Fig. 7 were computed based on
the first two major components, providing an accurate depiction of a

Fig. 4. a) Binding potential of S. Lappa photochemical with EGFR L858R, b) Mokkolactone and c) Dehydrocostus lactone.
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protein’s energy landscape.The Dehydrocostuslactone_EGFR complex
and DJK_EGFR complex exhibit extensive coverage of blue patches,
signifying stable clusters, with the Mokkolactone_EGFR complex
following suit, as revealed by spatial analysis of atom locations using
Gibbs FEL analysis. Additionally, FEL analysis indicates that each
complex reaches the minimum energy necessary for its most stable
conformations.The FELs of the Dehydrocostuslactone_EGFR complex
and DJK_EGFR complex display three scattered free energy basins. In
contrast, the Mokkolactone_EGFR complex demonstrates a single stable
global free energy minimum within a basin on the FEL, indicating a
singular stable conformational state.

3.8. Quantum chemical parametersof the phytochemicals

Analysis using density functional theory (DFT) is a widely employed
quantum chemistry method for assessing the biological impacts of
various pharmaceutical substances (Soni et al., 2024). This approach is
used for detecting alterations in the electrical structure of these mole-
cules, which are fundamental to their biological functions. The HOMO-
LUMO gaps were analysed for applied functionals including B3LYP,
mPW1PW91, and B3PW91 which were − 5.951 eV, − 5.457 eV and
− 5.238 eV respectively for Dehydrocostus lactone. As low HOMO-
LUMO gap generally indicates higher reactivity of a compound the
B3LYP computed values were further analysis. The gap between HOMO-
LUMO are essential for evaluating kinetic stability, were computed for
the reference ligand DJK/PD-168393 which is an established epidermal

growth factor receptor inhibitor and screened compounds. Specifically,
Dehydrocostus lactone, Mokkolactone, and DJK exhibited energy gap
values of − 5.951 eV, − 5.279 eV, and − 6.547 eV respectively (Table 4,
Fig. 8). Such information is critical for determining the kinetic stability
of the phytochemicals. Quantum chemical parameters, including hard-
ness (γ), softness (S), electronegativity (ϳ), and electrophilicity (x), are
vital for understanding the chemical properties of molecules. Table 4
provides the global descriptor parameters for both the reference
phytochemical hit and each identified phytochemical hit. The ionization
potential (I) represents the energy neededto obtainan electron from a
molecule’s HOMO and offers insight into the distinctive properties of the
compounds. Notably, Dehydrocostus lactone exhibited the highest
ionization potential of 6.672 eV, followed by Mokkolactone at 6.642 eV
and DJK at 5.934 eV. These values suggest that the specified compounds
are more prone to electron acceptance than DJK. Electron affinity, the
energy needed for a neutral molecule to attract one electron from a
source, was also considered. Both the DJK and selected phytochemicals
displayed negative chemical potential (ϼ) values, indicating good sta-
bility with EGFR. Dehydrocostus lactone showed highest electronega-
tivity value (4.0325) among the compounds studied, indicating its
affinity for attracting electrons.Furthermore, the consistent softness (S)
values observed in all compounds suggest their capability to either
donate or accept electrons. Unlike the reference, Dehydrocostus lactone
exhibited minimal hardness (η) values, implying its ability to impede
charge transfer to neighboring molecules. The reference molecule
demonstrated notable electrophilicity (x), indicating excellent

Fig. 5. The binding stability study of the screened phytochemicals with EGFR during a 100 ns molecular dynamics simulation, including RMSD (5a), radius of
gyration (Rg) (5b), SASA (5c), and hydrogen bonds (5d)for Dehydrocostus lactone (Maroon), Mokkolactone (Purple), and DJK (Cyan). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. The PCS projection plot of phytochemicals (a) and the Eigen values plot in (b). Plot of Gibbs energy for Dehydrocostus lactone, Mokkolactone, and
DJK complex.

Fig. 7. The Free Energy Landscape (FEL) evaluation of the Dehydrocostuslactone_EGFR, Mokkolactone_EGFR, and DJK_EGFR complex.
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electrophilic properties. Based on their global reactivity descriptor
values and molecular orbital energies (eV), the analyzed chemicals
exhibit potential as inhibitors of EGFR L858R.

3.9. Evaluation of molecular electrostatic potential (MEP) surface

The Molecular Electrostatic Potential (MEP) map, as depicted in
Fig. 9, serves as a crucial approach for understanding the distribution of
electronic density of the screened phytochemicals and reference com-
pound at a molecular level, offering insights into molecular reactivity
and interaction potential of the screened phytochemicals. This map uses
a color gradient from red to blue to visually represent areas of varying
electrostatic potentials, where red areas signify regions of high elec-
tronegativity and blue areas indicate electron-deficient regions. Such

visualizations highlight the molecule’s abundant sites of intense elec-
tronegativity and electropositivity, suggesting its capability to form
multiple hydrogen bonds with target proteins. The color code of these
maps ranges from 6.797 a.u. (deepest red) to 6.797 a.u. (deepest blue) in
compound. From the figure, it was clear that Dehydrocostus lactone
have more blue region (electron-deficient) indicates the strongest
attraction and thereby identifying reactive sites for nucleophilic attacks.
On the other hand, Mokkolactone, and DJK showedmore red region that
indicates the strongest repulsion along with reactive sites for electro-
philic attacks (Demircioglu et al., 2015).

3.10. Off-target effects of the screened phytochemicals

Off-target effects of screened Dehydrocostus lactone and Mokko-
lactone were further investigated as can influence the specificity and
safety of therapeutic applications. Understanding these effects helps in
designing more effective and safer drugs by minimizing unintended
interactions within the body. Using Swiss Target Prediction, 100 genes
were identified as potential target for both phytochemicals. Proteases
and CytochromeP450 family genes were major identified genes for both
phytochemicals. Further, during KEGG pathway enrichment analysis of
the selected genes dot plot of the top 20 pathways with the highest
enrichment ratio were displayed in Fig. 10. Nitrogen metabolism,
Nicotine addiction and steroid hormone biosynthesis pathways were
major for Dehydrocostus lactone whereas for Mokkolactone, Nicotine
addiction and Steroid hormone biosynthesis were also found major
along with Serotonergic synapse pathway. The nitrogen metabolism
pathway plays a crucial role in drug discovery by affecting the pro-
duction of important biomolecules such as proteins and nucleic acids,

Table 4
The quantum chemical parameters of the DKJ and S. Lappa phytochemicals.

Screened compounds Dehydrocostus
lactone

Mokkolactone DJK

HOMO − 6.99 − 6.672 − 6.642
LUMO − 1.039 − 1.393 − 0.095
L-H gap (eV) − 5.951 − 5.279 − 6.547
Ionization (I) (eV) 6.99 6.672 6.642
Electron affinity (A) (eV) 1.139 1.393 0.095
Chemical potential (μ) − 1.0695 − 1.0695 − 1.0695
Electro negativity (χ) 4.0645 4.0325 3.3685
Global (η)Hardness 2.9255 2.6395 3.2735
Global softness (S) 0.171 0.189 0.153
Global electrophilicity
(ω)

0.195 0.217 0.175

Fig. 8. Surface representations of the HOMO to LUMO of certain compounds, including Dehydrocostus lactone, Mokkolactone, and DJK.
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which in turn affects the effectiveness and safety of drugs (Moir&Wood,
2001). Further, nicotine addiction pathway is associated with smoking
cessation (Smith et al., 2021), steroid hormone biosynthesis pathways
with (Rižner, 2019) modulate hormone levels and address disease
symptoms effectively and Serotonergic synapse pathway with modula-
tion of serotonin levels and receptor activity (Ogelman et al., 2024).
During the development phase, these identified off-target effects of
Dehydrocostus lactone and Mokkolactone will play a significant role in
causing non-clinical toxicity, which is a primary cause for the failure of

medications in preclinical testing.

4. Discussion

Approximately 45% and 40% of EGFRmutations found in non-small
cell lung cancer (NSCLC) are situated within exons 18–21 of the tyrosine
kinase domain(Ansori et al., 2024; Widyananda et al., 2021). Among
these mutations, exon 19 deletions and exon 21 L858R point mutation
are considered classical or sensitizingmutations, as highlighted byWang

Fig. 9. The electron density of Dehydrocostus lactone (a), Mokkolactone (b), and DJK (c) depicted in the MEP surface mapping.

Fig. 10. Identified Off-target genes and pathways of Dehydrocostus lactone (a&C) and Mokkolactone (b&d).
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et al., 2024. In the present study, two phytochemicals, Dehydrocostus
lactone (C15H18O2) and Mokkolactone (C15H20O2), derived from the
Saussurea lappa plant, are identified as potential agents against EGFR
L858R mutant lung cancer. Both compounds were identified GC–MS
extract of the plant’s chloroform and ethanol extract showed anti-
proliferative action in the Resazurin chemosensitivity experiment,
with an IC50 of 37.90 ± 0.29 µg/ml. They also exhibited excellent
ADMET and drug likeliness properties and binding potential with EGFR
L858R confirmed by molecular docking and simulation experiments.
Through density functional theory, their electronic structure showed
efficient properties with the maximum occupied molecular orbital-least
vacant energy gap values ranging from − 5.9 to − 6.547 eV. Dehy-
drocostus lactone and Mokkolactone, with HOMO-LUMO energy gaps of
− 5.951 and − 5.279 respectively, exhibit distinct electronic properties
compared to other bioactive compounds like Cinnamyl dihy-
drocinnamate (− 0.320118 eV), R5 complex from Re(I) Tricarbonyl and
its Imidazole-Based Ligands (3.6972 eV), and 2,4-Diamino-6-methyl-
1,3,5-triazin-1-ium hydrogen oxalate (4.097 eV). These differences in
energy gaps are crucial for predicting their reactivity and stability,
which in turn affects their interaction with biological targets in lung
cancer treatment. For instance, the R5 complex, with a smaller energy
gap, suggests higher reactivity, potentially enhancing its efficacy in
interacting with cancer cells (Matlou et al., 2021; Charlie et al., 2022).

Both Dehydrocostus lactone and Mokkolactone belong to the
sesquiterpene lactone class, featuring distinct guaianolide lactone
frameworks. Dehydrocostus lactone (DHL) has demonstrated inhibitory
effects on the survival and proliferation of lung cancer cells, augmenting
the growth-inhibitory properties of chemotherapeutic drugs, as indi-
cated by Sheng et al., 2018. Additionally, DHL has exhibited efficacy
against human breast and ovarian cancer cell lines, inducing cell cycle
arrest and apoptosis, as reported by Li et al., 2020 and Choi & Kim in,
2010, respectively. Moreover, this compound possesses antioxidant and
anti-inflammatory properties, significantly reducing the release of TNF-
α and IL-6 from stimulated human PBMCs, as observed by Sirwi et al.,
2022, and inducing caspase-3, according to Yun et al. in 2004. It has also
demonstrated antiproliferative effects on A549 human lung cancer cells,
as documented by Hsu et al. in 2011. In the future research circum-
stances, investigations conducted in laboratory settings (in vitro) and on
living organisms (in vivo) will be crucial in promoting the development
of screened phytochemicals as prospective candidates for drugs.
Initially, in vitro studies will be essential for evaluating the cytotoxicity,
selectivity, and mode of action of these phytochemicals against specific
cells or pathogens (Mostafa et al., 2022). Following that, conducting in
vivo research in animal models will be essential for assessing the phar-
macokinetics, pharmacodynamics, effectiveness, and safety character-
istics of these drugs (Bultum et al., 2022). The combination of these
experimental methods will offer extensive knowledge regarding the
therapeutic capabilities and enhancement techniques for screened
phytochemicals. This will facilitate their progression into clinical trials
and eventual integration into contemporary pharmacotherapy (Adams
et al., 2023; Jha et al., 2022). Further, the optimization of drug delivery
systems may give focus on enhancing their efficacy and target speci-
ficity. Advanced nanoparticle technologies and targeted drug conjugates
could be employed to improve the bioavailability and therapeutic
impact of the screened phytochemicals. Techniques such as encapsula-
tion in biocompatible nanoparticles or binding to specific ligands for
targeted delivery will be crucial. These strategies will ensure that the
phytochemicals effectively reach and act on the targeted EGFR L858R
mutant lung cancer cells with minimizing side effects, thereby maxi-
mizing their potential as therapeutic agents (Smith et al., 2023; Johnson
et al., 2023).

5. Conclusion

Acquired resistance poses a significant challenge for lung cancer
patients treated with EGFR inhibitors, despite their favorable disease

control rates. While EGFRTKIs are usually used as the primary therapy
for NSCLC patients diagnosed with EGFR mutations, resistance often
develops, limiting treatment effectiveness. Therefore, further research is
necessary to identify potent medications capable of overcoming ac-
quired resistance and enhancing the survival rates of NSCLC patients.
The present study identifies Dehydrocostus lactone andMokkolactone as
promising agents against EGFR L858Rmutant lung cancer, sourced from
the Saussurea lappa plant. The anti-proliferative action of the plant’s
chloroform+ ethanol extract was confirmed using the Resazurin chemo-
sensitivity assay. Following compound identification through GC–MS
analysis, ADMET drug likeliness analysis was conducted, followed by
molecular docking and molecular dynamic simulations. Dehydrocostus
lactone and Mokkolactone exhibited superior stability in MD simula-
tions compared to the reference ligand DJK, along with effective elec-
trical structure characteristics during DFT analysis. The MEP map
represent areas of varying electrostatic potentials, where red areas
signify regions of high electronegativity and blue areas indicate
electron-deficient regions. Therefore, the two newly identified inhibitors
could serve as promising drug candidates against EGFR L858R mutant
lung cancer. However, further research and in vivo experimental vali-
dations are required to gain a comprehensive understanding of these
screened phytochemicals for lung cancer treatment.
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