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The tumor microenvironment (TME) is a multifaceted ecosystem characterized by

profound cellular heterogeneity, dynamicity, and complex intercellular cross-talk. The

striking responses obtained with immune checkpoint blockers, i.e., antibodies targeting

immune-cell regulators to boost antitumor immunity, have demonstrated the enormous

potential of anticancer treatments that target TME components other than tumor cells.

However, as checkpoint blockade is currently beneficial only to a limited fraction of

patients, there is an urgent need to understand the mechanisms orchestrating the

immune response in the TME to guide the rational design of more effective anticancer

therapies. In this Mini Review, we give an overview of the methodologies that allow

studying the heterogeneity of the TME from multi-omics data generated from bulk

samples, single cells, or images of tumor-tissue slides. These include approaches for

the characterization of the different cell phenotypes and for the reconstruction of their

spatial organization and inter-cellular cross-talk. We discuss how this broader vision of

the cellular heterogeneity and plasticity of tumors, which is emerging thanks to these

methodologies, offers the opportunity to rationally design precision immuno-oncology

treatments. These developments are fundamental to overcome the current limitations of

targeted agents and checkpoint blockers and to bring long-term clinical benefits to a

larger fraction of cancer patients.

Keywords: tumor-infiltrating immune cells, bioinformatics, tumor microenvironment, multi-omics profiling, next-

generation sequencing, systems biology, systems immunology, immuno-oncology

THE TUMOR-IMMUNE PARADIGM SHIFT

In recent years, cancer immunotherapy has revolutionized the treatment of human malignancies:
from directly killing tumor cells, to supporting the body’s own immune system in the fight against
cancer. So far, immune checkpoint blockers (ICBs), i.e., monoclonal antibodies targeting immune-
cell regulators to boost antitumor immunity, represent the most successful treatment regimens
for solid cancers. ICBs targeting the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), the
programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have shown unprecedented durable
responses and are now part of the standard of care for patients with different cancer types (1).
However, as ICBs are ineffective for most patients (2, 3), there is a pressing need to elucidate the
mechanisms taking place in the tumor microenvironment (TME).

The TME is a complex ecosystem composed of various cell types, their secreted products (e.g.,
cytokines, chemokines), and other non-cellular components of the extracellular matrix (ECM)
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(4, 5). Tumor-infiltrating immune cells play a pivotal role in
tumor control and response to therapy (6–8). Cytotoxic CD8+

T cells are the primary effectors of natural and therapy-induced
anticancer immunity, as they can specifically recognize and
kill malignant cells displaying neoantigens (i.e., tumor-specific
antigens generated from the expression of mutated genes) (9).
But immune cells can also induce immunosuppression and
support tumor growth, as in the case of regulatory T (Treg)
cells, M2 macrophages, and myeloid-derived suppressor cells
(MDSCs) (6, 7, 10, 11). Also fibroblasts, the major constituents
of the tumor stroma, take part actively to the tumor-immune
cell crosstalk.While normal fibroblasts counteract tumor growth,
some subsets of cancer associated fibroblasts (CAFs) have been
associated with increased cancer cell proliferation and invasion,
drug resistance, and reduced anti-tumor immunity (12).

DISSECTING THE TUMOR
MICROENVIRONMENT FROM BULK
OMICS DATA

The tumor-immune paradigm shift that has revolutionized the
oncology field has been also mirrored by bioinformatics. Omics
data, originally used to perform tumor-centric analyses, are now
mined to extract additional features describing the cellular and
molecular heterogeneity of the TME and to disentangle tumor-
immune cell interactions.

RNA sequencing (RNA-seq) data can be used alone or in
combination with whole-exome or whole-genome sequencing
data to predict patient-specific cancer neoantigens arisen from
somatic mutations, indels, gene fusions, or alternatively spliced
transcripts (13–16). Putative neoantigens, which might elicit an
anticancer response, can be predicted computationally through
three main steps: (1) Prediction of peptides originated from the
expression of transformed genes; (2) Reconstruction of patients’
Human Leukocyte Antigen (HLA) alleles; (3) Identification
of peptides binding to the patients’ HLA alleles. Using this
approach, two recent studies (17, 18) developed effective
personalized, neoantigen-based vaccines for melanoma patients
in phase I clinical trial. However, the potential of these strategies
is still curtailed by the limited performance of the algorithms for
predicting peptide-HLA binding affinity and by the difficulty to
anticipate neoantigen immunogenicity in silico.

Bulk transcriptomics data can also be used to quantify
different cell types of the TME through gene set enrichment
analysis (GSEA) (19) or deconvolution. While GSEA can only
asses the enrichment of cell types in a sample, deconvolution
methods can quantitatively estimate relative cell fractions by

Abbreviations: CAF, cancer associated fibroblast; CTC, circulating tumor cells;

CTLA-4, cytotoxic T-lymphocyte-associated protein 4; CyTOF, cytometry by time

of flight; ECM, extracellular matrix; EMT, epithelial-to-mesenchymal transition;

GSEA, gene set enrichment analysis; HLA, human leukocyte antigen; ICB, immune

checkpoint blocker; IF, immunofluorescence; IHC, immunohistochemistry; IMC,

imaging mass cytometry; MDSC, myeloid-derived suppressor cell; MIBI,

multiplexed ion beam imaging; PBMC, peripheral blood mononuclear cell; PD-

1, programmed cell death protein 1; PD-L1, programmed cell death-ligand 1;

RNA-seq, RNA sequencing; scRNA-seq, single-cell RNA sequencing; TCR, T-cell

receptor; TME, tumor microenvironment; Treg cell, regulatory T cell.

considering the expression profile of bulk tumors as the
“convolution” of cell-specific signatures (20). Recent tools like
EPIC (21) and quanTIseq (22) are specifically developed for
bulk RNA-seq data. The analysis of more than 8,000 tumor
samples demonstrated that quanTIseq can be used to extract
immunological scores with prognostic value and to monitor
the pharmacological modulation of the immune contexture by
anticancer drugs (22).

RNA-seq data can be used also to dissect the heterogeneity of
T and B lymphocytes, which are equipped with an immensely
diverse repertoire of receptors to be able to cope with a wealth of
unpredictable antigens. When T cells encounter an antigen and
get activated, they rapidly proliferate and differentiate, leading
to a fast expansion of the T cell clone carrying the matching
T-cell receptor (TCR). Computational methods like MiXCR
(23) can analyze the mixed transcriptomes from sequenced cell
populations to determine the diversity of the B- and T-cell
receptors. Beside the prognostic value of lymphocyte-receptor
diversity (23), immune repertoire profiling in tumors or blood
can be used to predict or monitor anticancer immune responses
triggered by ICBs (24–26), provided that enough lymphocytes are
present in the samples.

Overall, RNA-seq produces very rich and unbiased datasets
(i.e., not relying on sets of pre-selected markers) that enable
different immuno-genomic analyses in parallel (13, 27). Its
single-base resolution warrants analyses at the sequence level
like the identification of fusion transcripts or the profiling of
immune repertoires, which are not feasible frommicroarray data.
Currently, most of computational approaches to dissect bulk
measurements are dedicated to this data type due to the broad
diffusion of sequencing technologies and by the establishment of
large-scale coordinated sequencing efforts.

THE SINGLE-CELL REVOLUTION IN
OMICS TECHNOLOGIES

Profiling of bulk populations inevitably renders only a blended
average portray that masks the peculiar contributions of
individual cells. This limitation can be overcome thanks to
new technologies that can generate different omics data at the
single-cell level (Figure 1). The possibility to describe cell types
and states at high resolution and granularity now provides the
opportunity to catalog all human cells in health and disease
(28).

Single-cell technologies can dissect intra- and inter-tumor
heterogeneity and shed light on rare cells playing a role in
cancer progression and invasion, like circulating tumor cells
(CTC), cancer stem cells, and cells committed to epithelial-to-
mesenchymal transition (EMT) (29). Single-cell DNA sequencing
allows the investigation of cell-specific genetic variants and the
reconstruction of tumor clonality and evolution via phylogenetic
methods (29).

Single-cell RNA-seq (scRNA-seq) is leading the single-cell
revolution in terms of both available technologies and pace
of development, and currently allows the profiling of up to
hundreds of thousands of cells in a single experiment and the
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FIGURE 1 | Overview of the main approaches for multi-omics profiling of the tumor microenvironment (TME). Omics datasets can be generated from bulk tumor

samples; this approach is the most standardized and widely used and provides a high-throughput representation of the molecular features (e.g., genome,

transcriptome, proteome) of the TME as a whole. Unlike the averaged representation provided by bulk approaches, single-cell technologies allow generating omics

profiles of each individual cell; however, their costs and technical complexity currently limit the throughput in terms of number of features and total cells that can be

assayed. Emerging imaging techniques can generate omics datasets from tumor-tissue slides that retain the cell spatial resolution; they have cellular or subcellular

resolution but their throughput is significantly lower compared to the other two approaches and the resulting images only represent a restricted 2D snapshot of the

tumor.

interrogation of thousands genes (30–32). scRNA-seq is enabling
the reconstruction of a high-resolution map of the TME in
different cancer types (33–39) and, together with single-cell
epigenomics, the characterization of the heterogeneity, plasticity,
and functional diversity of the immune system (40, 41). Its
unbiased nature is also opening up novel opportunities for the
discovery of new immune cell subpopulations (42). scRNA-
seq is currently not suited for the quantification of TME cell
subtypes due to differences in single-cell dissociation efficiency
that influence the representation of cell type proportions (39).
However, the signatures reconstructed with fine granularity from
scRNA-seq data can be used to inform deconvolution methods
to make them able to quantify cell types with specific functional
states (e.g., activated or dysfunctional CD8+ T cells) and to take
into account the tissue and disease context.

Compelling advances have been also reported in the
field of single-cell proteomics (43). Currently, most of these
technologies, which can be broadly divided into cytometry-
(44) and microfluidics-based (45) platforms, require the use of
antibodies and allow assaying up to 50 proteins in hundreds
of thousands of cells per sample. The number of measured
molecules is likely to increase significantly in the future with
further developments of DNA-labeled antibodies for higher
multiplexing (46) and with the improvement of high-resolution
mass-spectrometry (47).

Despite being constrained to the measurement of selected
markers, proteomics holds the great advantage of directly
measuring the functionality of the cells in the TME. Here,
many functions are carried out by proteins, which mediate
signal transduction, regulate transcription, are secreted as
cytokines/chemokines, and are responsible to regulate cell
migration and invasion. In particular, single-cell proteomics data
from mass cytometry (CyTOF) have been used extensively to
profile the tumor immune landscape (37, 48), to monitor how
ICBs shape the population of immune cells and their function in
responders and non-responders (49, 50), and to predict response
to anti-PD-1 treatment from peripheral blood mononuclear cells
(PBMCs) (49). Additionally, CyTOF holds great potential for the
identification of neoantigens (51).

scRNA-seq and CyTOF technologies produce rich datasets
that can be subjected to different computational analyses,
including (but not limited to): unsupervised clustering of
cell types, cell classification, pseudotemporal cell ordering,
assignment, or correction of cell cycle stages, characterization of
rare cells, identification of marker genes, and reconstruction of
gene and signaling networks (43, 52–54).

Emerging technologies now also permit to simultaneously
generate different omics data from the same cell (55) [e.g.,
proteomics and transcriptomics data (46, 56)], portraying
the phenotypes of the different TME cells and revealing
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the molecular mechanisms that regulate their transcriptional
programs. Additionally, integration of various omics data from
different cells can provide further insights on the heterogeneity
and organization of TME. For instance, scRNA-seq can be
coupled with CyTOF data to confirm newly discovered cellular
phenotypes.

Despite their great potential, a word of caution should
be expressed regarding the experimental and analytical
complexity of single-cell technologies. Computational analyses
are challenged by high data dimensionality, high noise and
absence of biological replicates per se, and low coverage that
can result in extreme data sparsity (57, 58). These issues have
already sparked a fast-paced development of new technologies
and computational tools, but further efforts are required to reach
full maturity and standardization.

TOWARD MULTI-CELLULAR MODELING
OF THE TUMOR MICROENVIRONMENT

The organization of cells in the TME plays an important role
as individual cells are strongly affected by their surroundings.
Unlike bulk and single-cell technologies, imaging techniques
of tumor-tissue slides allow the spatial localization of tumor,
immune, and stromal cells, blood vessels, and ECM, and can
assay expressed genes and proteins at subcellular resolution
(Figure 1).

The best-established imaging techniques for protein
phenotyping of tumor-tissue slides are immunohistochemistry
(IHC) and immunofluorescence (IF). Multiplexed IHC by
iterative staining of single slides or multispectral imaging
(59–61), when combined with software for cell segmentation and
marker-based classification, portrays the cellular architecture of
the TME, but can consider only a limited number of markers.
Emerging antibody-based imaging techniques [reviewed
in (62, 63)], like imaging mass cytometry (IMC) (64) and
multiplexed ion beam imaging (MIBI) (65), can produce
omics-like data through the quantification of up to 40 markers.
However, they require a longer measurement time, limiting the
size of the slide that can be imaged.

Moving toward multi-omics technologies, Schulz and
colleagues recently adapted IMC to measure transcriptomics
and proteomics markers on the same cell using metal-labeled
oligonucleotides and antibodies, respectively (66). Interestingly,
they found that HER2 mRNA and protein expression correlate
well at the population level, but not at the single-cell level.
Moreover, they showed that cells expressing CXCL10, a
chemokine favoring the recruitment of T cells in the TME,
organize in clusters. These so-called tissue motifs have been
identified also by studying the spatial organization of stem cells
niches and tumor-infiltrating immune cells (62, 67) and highlight
the importance of considering spatial patterns for a better
understanding of tissue biology. Another approach to look at
cell-cell interactions is the investigation of intercellular signaling.
A recent effort in this direction has been the reconstruction of
an intercellular communication map of ovarian adenocarcinoma
using bulk proteomics and transcriptomics data from tumor cells,

tumor-associated T cells, andmacrophages (68). Transcriptomics
data have been also used to study intracellular regulation, for
example to understand the importance of CD4+ T cells in
supporting the effector function of cytotoxic T cells (69).

Systems biology approaches can be used to describe the
different cell types of the TME, together with their intra-
and inter- cellular regulatory mechanisms, leveraging on
mathematical models to provide a holistic view of all these
components. Mathematical models can unravel mechanisms
of tumorigenesis and make predictions, which can be
experimentally validated (70, 71). Dynamic models have
been used to describe intracellular signaling to understand
resistance and suggest personalized therapies (72–74), and they
can be extended to study also extra-cellular signaling (75).
Cell-cell interactions can be modeled considering individual
cells as agents, thus providing a spatial description of the system
(76), or as black-boxes with a certain input-output behavior
(77). Mathematical models have been used to understand
cellular interactions, to test in silico the effect of different
therapeutic interventions, and to investigate tumor initiation
and progression (70).

Given the progress of technologies for profiling spatially-
resolved RNA and protein expression data, new computational
methods are strongly required to study cellular networks from
subcellular markers taking into account spatial information (78,
79). Current approaches are mainly data-driven, but they will
extend to mechanistic models incorporating prior knowledge
on cell-type-specific intra-cellular pathways and ligand-receptor
interactions (80).

IMPLICATIONS FOR CANCER THERAPY
AND IMMUNOTHERAPY

All the new insights brought about by the immuno-oncology
revolution and by the fast development of omics technologies
highlight the need to revise the concept of intra-tumor
heterogeneity from a broader perspective and to consider its
implications for cancer therapy and immunotherapy.

The first layer of heterogeneity of the TME regards cancer
cells. Genetic features alone neither fully recapitulate tumor-
cell diversity and dynamicity, nor predict individual drug
response (81, 82). The integration of other omics data can shed
light on the evolution of tumor-cell phenotypes during tumor
progression and therapy and to overcome the current limits
of precision medicine (83, 84). Moreover, the characterization
of tumor neoantigens can open new avenues for personalized
vaccination (85) but, to see their clinical translation, these
approaches need to be optimized in terms of precision and time
efficiency. Non-malignant cells of the TME, like immune cells
and CAFs, introduce a second layer of cellular heterogeneity,
as their action can sustain or counteract tumor progression.
Anticancer immune responses can be boosted employing agents
that deplete immunosuppressive cells, increase the infiltration of
CD8+ T cells or restore their effector function. A third layer of
heterogeneity is given by the interaction between cells, which
is influenced by their expressed/secreted molecules, carried
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antigens, or receptor diversity. Regarding the interplay between
tumor and immune cells, accumulating evidence suggests that
most of conventional and targeted therapies owe their efficacy
to the induced reactivation of the immune system (86), and
that oncogenic pathways are responsible for resistance (2)
and modulation of the immune system in the TME (87). By
disentangling the different layers of heterogeneity of the TME, we
can gain mechanistic rationale to unlock the synergistic potential
of ICBs and targeted agents (88).

A pressing need in cancer immunotherapy is the identification
of predictive biomarkers because only a limited fraction of
patients responds to ICBs. Tumor mutational load, microsatellite
instability, and PDL1 expression have been associated with
response to blockade of the PD1/PDL1 axis, but no marker
provides a clear-cut separation of responders and non-
responders (89). Recently, there have been several attempts to
develop predictors of the response to ICBs (90–92), but their
optimization and validation are currently curtailed by the limited

FIGURE 2 | Representation of some of the facets of the tumor microenvironment (TME). (A) The expression of mutated genes can generate tumor-specific

neoantigens, i.e., peptides bound to the tumor cell HLAs that can be recognized by T cells and elicit an immune response. (B) The quantification of the different cell

types of the TME, which can have pro- or anti-tumorigenic roles, can provide prognostic, and predictive markers for immunotherapy. (C) The immense diversity of

lymphocyte receptors, which can be different from lymphocyte to lymphocyte, allows the immune system coping with a wealth of unpredictable antigens and varies

greatly depending on spontaneous or therapy-induced anticancer immune responses. (D) During tumor progression, cancer cells accumulate somatic mutations that

increase intra-tumoral heterogeneity and can change cell fitness and response to drugs. (E) The TME is composed of various cell subtypes (e.g., CD4+ and CD8+ T

cell), which are in turn characterized by different functional orientations (e.g., naïve, effector, memory CD8+ T cell) and states (e.g., activated, anergic, exhausted

CD8+ T cell). (F) The spatial organization of cells, such as cell neighbors (e.g., proximity of tumor and immune cells) or cellular patterns (i.e., tissue motifs, such as

stem-cell niches), reflects biological processes at the tissue level. (G) Cells constantly exchange signals with surrounding cells by secreting molecules (e.g., cytokines,

chemokines, growth factors) or by direct ligand-receptor binding on the cell surfaces (e.g., immune checkpoints). (H) When ligands bind to cell receptors, the cell

responds by processing this signal through a complex signal transduction network that transmits information to the nucleus, where transcription factors regulate the

transcriptional response of the cell. (I) Most of cancer therapies, such as immunotherapy with immune checkpoint blockers or targeted therapy, act on molecules

responsible for inter- and intra-cellular communication that are deregulated in cancer, trying to restore the normal behavior of the cells.
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public data available. The identification of biomarkers becomes
even more critical for combinatorial therapy. The number of
clinical trials for combination therapies based on anti-PD-1/PD-
L1 was estimated to be 1,100 worldwide in 2017, but their validity
has been questioned due to the lack of rationale for patient
stratification (93).

One approach for the identification of more informative
biomarkers could be the generation of multi-omics data from
longitudinal samples. In this direction, Riaz et al. (25) used
RNA-seq, whole-exome, and TCR sequencing to investigate the
evolution of the TME in melanoma patients treated with anti-
PD1. However, a more holistic view of the TME as a multicellular
system is essential to rationally design clinical trials and inform
on predictive, dynamic biomarkers. Given the dynamic nature
of the immune system, systems biology approaches can improve
personalized immunotherapy (94) calling for collaboration
between experimental and computational scientists (95, 96).
Computational system models can incorporate single-cell and
bulk multi-omics data and will help to understand how the TME
components operate and to predict the effect of therapies on
the system as a whole. Moreover, mathematical models can be
used for in silico screening of immunotherapies and combination
treatments, providing personalized recommendations (97).

Since tumors are complex systems, prediction of response to
therapy is far from trivial despite the availability of rich multi-
omics datasets. A complementary approach to profiling the TME
for precision medicine is the use of functional screening to
directly assay the response of the tumor to drug perturbations
(98). In this respect, mouse models and tumor organoids are
powerful approaches to test a large number of perturbations on
ex vivo tumor cultures. Advances in the co-culturing of organoids
and immune cells might enable to functionally screen ICBs and
to select tumor-reactive T cells to be used for immunotherapy
(99, 100). Alternatively, miniaturized volumes with droplet-based
microfluidics technologies can be used to screen drugs directly on
tumor biopsies (101, 102) and can be further adapted to identify
synergistic partners for ICBs.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Thanks to the scientific insights derived from the recent
advancements in the immuno-oncology field, fostered also by
the pressing development of omics technologies, the investigation

of the TME is gaining momentum. It is now clear that
tumors are not uniform masses of malignant cells, but
multifaceted ecosystems characterized by: (1) profound cellular
heterogeneity, (2) dynamicity and plasticity, and (3) complex
cell-cell interactions.

This broader vision of the TME that is emerging with the
support of bioinformatics (Figure 2) offers the opportunity to
redefine the “precision oncology” paradigm and to eventually
augment its curative potential, still hampered by a too narrow,
genomic-focused implementation (83, 84). We envision that
computational methods for the systematic integration of multi-
omics data [reviewed in (103, 104)] will be tailored to reveal

features of the TME underlying differential patient responses.
Moreover, further therapeutics advancements are expected from
the rational combination of ICBs with targeted agents, which
are likely to act synergistically and extend the long-term clinical
benefits of immunotherapy to a larger fraction of patients (88).

We are now at a crossroad to unlock the potential of precision
immuno-oncology, which can lead to the discovery of predictive
biomarkers for immunotherapy, understanding of mechanisms
of resistance, and design of combination therapies with higher
clinical success. To this end, we need to embrace a holistic
approach in the investigation of the different facets of the TME
in order to master its modulation and finally achieve an effective
control of tumor growth. We envision that this new paradigm in
precision medicine will lay its foundations on the integration of
different omics data, and that bioinformatics and system biology
will play a central role for the extraction of novel mechanistic
insights on the TME that can guide the immuno-oncology field.
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