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Abstract

Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving
effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in
the insect olfactory system, we analyze the conditions that lead to controlled gain in a randomly connected network of
excitatory and inhibitory neurons. We consider two scenarios for the variation of input into the system. In the first case, the
intensity of the sensory input controls the input currents to a fixed proportion of neurons of the excitatory and inhibitory
populations. In the second case, increasing intensity of the sensory stimulus will both, recruit an increasing number of
neurons that receive input and change the input current that they receive. Using a mean field approximation for the
network activity we derive relationships between the parameters of the network that ensure that the overall level of activity
of the excitatory population remains unchanged for increasing intensity of the external stimulation. We find that, first, the
main parameters that regulate network gain are the probabilities of connections from the inhibitory population to the
excitatory population and of the connections within the inhibitory population. Second, we show that strict gain control is
not achievable in a random network in the second case, when the input recruits an increasing number of neurons. Finally,
we confirm that the gain control conditions derived from the mean field approximation are valid in simulations of firing rate
models and Hodgkin-Huxley conductance based models.
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Introduction

In sensory perception the salient properties of signals need to be

separated from their overall amplitude and, therefore, at some

level in the neural processing cascade the response of neurons

should become insensitive to the overall amplitude of stimulation.

This is the role of gain control, which is ubiquitous for sensory

processing in the brain [1]. It allows us to recognize a melody

independent of how loud the music plays, identify objects in a wide

range of light conditions or recognize an odorant irrespective of its

concentration or our distance from the source [2].

In the olfactory system it is particularly important to distinguish

odorant composition from intensity. A foraging moth or bee can

visit many flowers in a day. During their foraging trips the intensity

of stimulation fluctuates over a wide range of concentrations while

they approach or leave their target flowers. Nevertheless, they are

able to discern a preferred odor and reach their goal, consistent

with perceiving the odor at different concentrations as a single

perceptual object [3,4]. This is a typical example where adjusting

the organism’s sensitivity by setting the appropriate sensory gain

for environmental cues is critical for matching the animal’s

behavioral responses to its ecological needs.

Odor encoding is a spatially distributed process. Olfactory

receptor neurons (ORNs) in the antennae detect odors and relay

neural activity to the antennal lobe (AL). In insects, each ORN

typically expresses two odorant receptor genes. One is ubiquitously

expressed in all ORNs. The other is unique to subpopulations of

ORNs [5,6]. The unique receptor determines the range and

intensities of odors that the ORN detects. ORNs expressing the

same receptor protein send axons onto a single glomerulus in the

AL [7], the first signal processing stage of the olfactory pathway.

Thus, each odorant receptor gene defines a processing channel

which carries information about some particular feature of the

odorant stimulus. The stereotypic organization of the AL is

relatively simple. Each glomerulus is innervated by about three to

five uniglomerular projection neurons (PNs) which propagate the

olfactory information downstream to higher brain centers.

Glomeruli are anatomically connected by a network of local

interneurons (LNs). The AL has both excitatory (eLN) and

inhibitory (iLN) local neurons [8–10] and inhibitory local circuits

play an important role in shaping the response of the output

[11,12]. LNs exclusively branch within the AL and therefore

provide a substrate for interactions between olfactory channels.

At the first level of olfactory perception, insects are sensitive to

concentration. The stronger the odor the stronger the excitation

that the PNs receive and, in addition, the more glomeruli are

recruited [13–16]. However, by recording the activity of more

than 100 PNs it has been found in locusts [17] that the mean firing

PLOS Computational Biology | www.ploscompbiol.org 1 July 2013 | Volume 9 | Issue 7 | e1003133



rate of the excitatory PN population in the AL remains nearly

constant across a large range of odor concentrations. Subsequent

intracellular studies of the excitatory neurons in Drosophila have

confirmed these results [18] by identifying a nonlinear transfor-

mation that saturates the PN response to the ORN activation,

effectively creating a situation where the level of activity of PNs is

insensitive to changes in intensity. Independent evidence in bees

indicates that the lateral antenno-cerebral tract (lACT), one of the

olfactory pathways in bees, similarly shows very low sensitivity to

concentration [19] and is therefore also likely to be subject to gain

control. It has also been established using simultaneous optical and

electrophysiological recordings in several glomeruli of the

Drosophila antennal lobe that the PNs reach their maximum firing

rate in response to various odorants at intermediate concentrations

[20]. It is this regime prior to full saturation of neural responses at

very high concentrations that we are addressing in this paper.

Theoretically one can explain the need for gain control in the

AL [21,22] because the next processing layer of the olfactory

system, the mushroom bodies, display sparse activity [23,24]

which is a critical feature of models of associative memory [25–

27]. But sparse coding is also very sensitive to fluctuations in input

strength [21,28–30] implying that the level of activity in the AL

has to be carefully controlled.

A number of studies has illustrated the importance of lateral

inhibitory networks for sharpening the tuning curves of PNs in

response to odors [8,11,13,31–33] and demonstrated their role in

the formation of odor-specific spatio-temporal activity patterns in

the AL [34–40]. In particular in [40] the authors analyze how

lateral inhibition normalizes the response of a PN to its presynaptic

ORNs and how this type of gain control affects PN population

codes for odors in Drosophila. In addition, it has been shown in a

model of the bee olfactory system [41] that explicitly added gain

control allows improved coding of odors and odor mixtures. In this

work we analyze the structural and functional network require-

ments that lead to gain control that keeps the excitatory neurons

within a defined narrow range of activity regardless of the stimulus

intensity.

We are investigating these conditions in the framework of a

model network of excitatory and inhibitory neurons inspired by

the structure of the insect AL (note similar studies in the olfactory

bulb [2,42]). Since this work is of broad relevance to brain

microcircuits we will refer to the PNs as the excitatory population

and the inhibitory LNs as the inhibitory population in the

remainder of the paper. Excitatory LNs are included only

indirectly as lateral excitatory connections between neurons of

the excitatory population. Excitation from ORNs will be referred

to as ‘‘sensory input’’. The network architecture is illustrated in

Fig. 1. As we will show below, one can use a mean field

approximation to derive general gain control conditions on the

connectivity of the network. We then demonstrate the validity of

the mean field solution in simulations of an appropriate firing rate

model and a more realistic Hodgkin-Huxley type conductance

based network model.

We consider two main cases to understand gain control in the

theoretical mean field model. First, we consider the situation

where increasing the external stimulus increases the level of

depolarization of the neurons in the network but otherwise keeps

the input, in particular the number of neurons which receive

input, unchanged. In the second case we consider a scenario where

an increasing number of neurons is recruited (analogous to the

recruitment of more glomeruli) by the stimulus when the odor

concentration increases.

Results

Mean field description
Departing from the firing rate models explained in the model

section using equations (29,30) the first step to find global

conditions for robust gain control is to use mean field equations

which are exact in the limit of large N. These are built by defining

new macroscopic variables representing the groups of neurons

depicted in Fig. 1 as

X1~
1

DSE D
X
i[Se

nE
i ð1Þ

X2~
1

DSE D
X
i[SE

nE
i ð2Þ

Y1~
1

DSI D
X
i[SI

nI
i ð3Þ

Y2~
1

DSI D
X
i[SI

nI
i ð4Þ

The quantities X1 and Y1 respectively represent the averaged

firing rates of the excitatory and inhibitory populations, which

receive sensory input for a given stimulus. We do not consider

excitatory LNs explicitly but allow for excitatory connections

between the neurons of the excitatory population to emulate their

effects on the activity of the network. The sets SE and SI denote

the indices of the excitatory and inhibitory populations.

The size of these sets can be expressed in terms of the

‘sparseness parameter’ a as SEj j~ta|NEs and SIj j~ta|NIs,

Author Summary

Neural networks in the brain can classify objects as being
the same thing regardless of the stimulus intensity, which
is referred to as gain control. This intensity invariance
occurs during pattern recognition in any sensory modality.
We evaluate whether it is possible to design stable neural
circuits made of excitatory and inhibitory neurons that are
capable of controlling the internal representation of a
stimulus using network properties alone. Gain control is
important because if the activity gets out of control
neurons can die or be damaged by hyper-excitation. It is
known that one can control the internal representation by
the saturating responses of neurons. However, we show
that there also is a precise relationship of network
parameters that can account for gain control regardless
of the external stimulus without such saturation. The most
important network parameters are the connections from
the inhibitory population to the rest of the network. This is
consistent with experimental findings. We also show that
the connections from the excitatory to the inhibitory
population do not play an important role in gain control,
suggesting that they can be freed for encoding purposes
without leaving the operating range of the network when
levels of stimulation increase.

Gain Control in Early Sensory Coding
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where NE and NI are the total number of excitatory and

inhibitory neurons, respectively.

For the sake of simplicity we will assume that the external input

is not fluctuating and is identical for all neurons in these sets. X2

and Y2 are the average activities of the excitatory and inhibitory

neurons that do not receive direct input from the receptors but

only laterally from the network (see Fig. 1). Their indices are

denoted by SE and SI .

The lowest-order mean field approximation is based on the

following assumption

SWQ
i T^FQ Sh

Q
i T

� �
ð5Þ

where S . . . T denotes a population average and the contribution of

the higher order moments of the excitatory and the inhibitory

synaptic currents have been considered in the vector field

functions F (:). These functions are smoother than the gain

functions WQ(:) and are derived from averaging over fluctuations

in the synaptic input current h
Q
i [43], see model section. Under the

assumption of statistical independence between the connectivity

and the activity of the network (33) and by virtue of the mean field

approximation (5), we can reduce the initial microscopic field

equations (29,30) to a set of four ordinary differential equations

representing the average firing rate time evolution of the excitatory

and inhibitory populations, separately for those that receive

external input from the receptors and those that only receive input

from the network.

_XX 1~FE(NE pEEgEE(aX1z(1{a)X2){

NI pEI gEI (aY1z(1{a)Y2)zcEI{hE){X1

_XX 2~FE(NE pEEgEE(aX1z(1{a)X2)

{NI pEI gEI (aY1z(1{a)Y2){hE){X2

_YY 1~FI (NE pIEgIE(aX1z(1{a)X2){

NI pII gII (aY1z(1{a)Y2)zcI I{hI ){Y1

_YY 2~FI (NE pIEgIE(aX1z(1{a)X2){

NI pII gII (aY1z(1{a)Y2){hI ){Y2:

where the dot denotes the time derivative. Let us define the

variables x~NE pIEgIE(aX1z(1{a)X2) and y~NI pEI gEI

(aY1z(1{a)Y2) which represent the average synaptic current

from the PN and LN populations respectively. The parameter g

denotes the efficiency of the connection between neurons of

different populations and p the connection probability. With these

Figure 1. Schematic representation of the network architecture. There are two populations of neurons, excitatory (green) and inhibitory
(red). The inhibitory network controls the activity of the model. The input arrives into a particular subpopulation of all neurons. The fraction of
neurons that receive input is denoted by a and the intensity of the external stimulation is denoted by I . The main network parameters are the
probability of connections between the neurons, pEE ,pEI ,pIE ,pII and their strength gEE ,gEI ,gIE ,gII . Our theoretical results indicate that the
connections from the inhibitory population to the excitatory population are most important for gain control purposes.
doi:10.1371/journal.pcbi.1003133.g001
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notations we can compress the four previous equations into

_xx~NE pIEgIE aFE pEEgEE

pIEgIE
x{yzcEI{hE

� �
z

�

1{að ÞFE pEEgEE

pIEgIE
x{y{hE

� ��
{x

ð6Þ

_yy~NI pEI gEI aFI x{
pII gII

pEI gEI
yzcI I{hI

� �
z

�

1{að ÞFI x{
pII gII

pEI gEI
y{hI

� ��
{y

ð7Þ

Now, we first would like to prove that all the fixed points of this

system of ordinary differential equations are stable and, second, to

determine conditions that lead to gain control of the activity level

of the excitatory population. To be more specific, we define a gain

control system as a neural network with the ability to keep the

averaged activity of the excitatory neurons constant over large

variations in odor concentration.

Stability analysis. Let us first analyze the stability of the

stationary state of the mean field equations. The parameter

values should be set in regions where stable fixed points are

feasible. Moreover, we can also identify the main source of

instability which, in this case, are the excitatory connections

within the excitatory population. For simplicity we define the

functions

f E(u):NE pIEgIEFE(u), ð8Þ

f I (u):NI pEI gEI FI (u): ð9Þ

The mean field equations (6, 7) are then replaced by

_xx~af E(qEE
IE x{yzcEI{hE)z(1{a)f E(qEE

IE x{y{hE){x, ð10Þ

_yy~af I x{qII
EI yzcI I{hI

� 	
z(1{a)f I x{qII

EI y{hI

� 	
{y, ð11Þ

where the ratio qII
EI~

pII gII

pEI gEI
is a measure of the effective synaptic

inhibition in the network, and qEE
IE ~

pEEgEE

pIEgIE
is a ratio of the

effective synaptic excitation in the network. Using linear stability

analysis it is easy to determine the stability conditions for the

steady states of equations (10) and (11). The Jacobian of the

system can be expressed as

qEE
IE x1,x2

½f E �{1 { x1,x2
½f E �

y1,y2
½f I � {qII

EI y1,y2
½f I �{1

 !
ð12Þ

where x1,x2
½:� is the composite derivative operator

q1,q2
½:�~a

d

du






q1

z(1{a)
d

du






q2

ð13Þ

and the sub-indices qi(~xi,yi D i~1,2) correspond to the

evaluation points x2~{y{hE , x1~x2zcEI ,

y2~x{qII
EI y{hI , and y1~y2zcI I . We are primarily interested

in the sign of the eigenvalues of the Jacobian

lz,{~{1z
qEE

IE x1,x2
½f E �{qII

EI y1,y2
½f I �

2
+

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(qEE

IE x1,x2
½f E �zqII

EI y1,y2
½f I �)2{4 y1,y2

½f I � x1,x2½f E �
q ð14Þ

In the absence of lateral excitation, pEE~0 or gEE~0, both

eigenvalues are always negative because both f E(:) and f I (:) are

monotonically increasing functions that implies that their

derivatives x1,x2
½f E �§0 and y1,y2

½f I �§0. So any fixed point

of the system is stable, independent of the spread of the stimulus

a. If the input is stationary, the network therefore may evolve to a

solution in which the population average firing rates are constant.

However when there is some level of lateral excitation the

stability conditions change for high values of the product pEEgEE .

For example, for NE ,NIww1 and linear gain functions with slope

1, the boundary condition of stability is qII
EI qEE

IE ƒ1, so

pEEgEE
ƒ

pIEgIE pEI gEI

pII gII
:

Beyond this level of lateral excitation between the neurons of the

excitatory population, the dynamical system becomes unstable and

non-functional for stimulus encoding purposes.

Gain control conditions. The first step in the analysis of

equations (10) and (11) is to calculate the equilibrium firing rates of

the excitatory and inhibitory populations. The equilibrium

equations are found by setting dx=dt and dy=dt to zero, leading

to

x�~af E(qEE
IE x�{y�zcEI{hE)z

(1{a)f E(qEE
IE x�{y�{hE),

ð15Þ

y�~af I x�{qII
EI y�zcI I{hI

� 	
z(1{a)f I x�{qII

EI y�{hI

� 	
: ð16Þ

Equations (15) and (16) are nonlinear implicit equations. We need

to determine conditions such that

d x�

dI
~0, ð17Þ

that is, there are no macroscopic changes in the excitatory

population activity as a function of the stimulus intensity. We are

going to consider two cases. First, we consider the case where

increasing intensity of the external stimulus I increases the level of

depolarization of the neurons, while keeping the fraction a of

neurons that are receiving input constant. In the second part we

will consider the case where increasing odor concentration

increases both the the fraction a of recruited neurons and the

input current I received by them [44].

Condition for independence on the stimulus intensity

I. Equations (15) and (16) are implicit equations and we need to

determine conditions such that
d x�

dI
~0. If we differentiate

equations (15) and (16) we obtain

Gain Control in Early Sensory Coding
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dx�~acEdf E(u)

du






x�

1

dIzqEE
IE x�

1
,x�

2
½f E �dx�{ x�

1
,x�

2
½f E �dy�, ð18Þ

dy�~acI df I (u)

du






y�
1

dIz y�
1

,y�
2
½f I �dx�{qII

EI y�
1

,y�
2
½f I �dy�: ð19Þ

where the derivative operators qi ,qj
are as defined in (13) and

must be evaluated at the fixed point (x�,y�). If we solve for
dx�

dI
from equations (18) and (19) and then take into account the

constraint (17), we obtain the gain control condition

cE df E (u)
du




x�1
x�

2

cI df I (u)
du




y�1
y�
2

~
x�

1
,x�

2
½f E �

1zqII
EI y�

1
,y�

2
½f I � : ð20Þ

This equation is one of the main results of our analysis. It describes

a specific relationship between network parameters that must hold

in order to maintain constant average PN activity over a large

range of input intensities I . This relationship depends on the gain

functions of the neurons through the slopes of the vector fields

f E(:) and f I (:) of the excitatory and inhibitory populations at the

equilibrium firing rates.

Analysis of the gain control conditions. The general gain

control condition (eq. 20) may appear complex, but it can be

simplified significantly in practice. Whenever a sufficiently strong

stimulus is present, and if, as we assume, lateral excitation is

dominated by lateral inhibition, the group of excitatory and

inhibitory neurons that do not receive direct sensory input become

silent due to inhibition by the increasingly responding inhibitory

neurons [32,45]. Note, however, that this does not necessarily

imply that odor responses may not broaden within the population

of PNs which do receive inputs or by PNs that are additionally

recruited to receive input. The gain functions of both excitatory

and inhibitory neurons below threshold are constant and hence

the evaluation of equation (20) at x�2 and y�2 is 0 if they are silenced.

Moreover, the excitatory and inhibitory neurons that do receive

sensory inputs are most of the time in the linear regime and hence

the vector fields f E(:) and f I (:) are approximately linear above

their threshold [46]

f E(u)~cE u½ �z, ð21Þ

f I (u)~cI u½ �z, ð22Þ

where the mean input current to the excitatory population is

½u�z:u for uw0 and zero otherwise, and cE and cI are gain

parameters.

Thus, using equations (8,9,21,22),
df E(u)

du
Dx�

2
~0, which corre-

sponds to the group of excitatory neurons that are shut down

during stimulation,
df I (u)

du
Dy�

2
~0, for the same reason for the LNs,

and inserting them into equation (20) leads to the simple gain

control expression

gEI pEI~
cE

cI

1

cI NI a
zpII gII

� �
: ð23Þ

Furthermore, in the simulations that follow, we use

cE~cI~cI~cE~1, which simplifies the gain control condition to

gEI pEI~
1

NI a
zpII gII , ð24Þ

indicating that the primary dependence of the gain control is on
1

a
.

The simulation of the full set of ordinary differential equations for

the firing rate and Hodgkin-Huxley models confirms this

dependence as we will show in the following sections.

This expression also indicates that in order to maintain gain

control, the effective synaptic inhibition should be scaled with the

input to the network. This finding is consistent with the idea that a

larger number of activated glomeruli may induce more lateral

inhibition to set the appropriate sensory gain [20]. It is also

remarkable that there is no explicit dependence on the connec-

tions from the excitatory to the inhibitory population, which is

consistent with other findings [47–49] where the key plasticity is

found in the connections originating from the LNs.

In Fig. 2 we show the derivative of the average rate of the

excitatory population with respect to intensity, I , as a function of

the probability of connections from the inhibitory to the excitatory

population and as a function of a. The solid black line indicates the

exact gain control condition given by equation (24). This plot will

be compared with the solutions obtained in the following sections

using the complete firing rate and Hodgkin-Huxley network

models.

Recent work in Drosophila [40] has demonstrated that lateral

inhibition scales linearly with the total sensory input. If we

calculate the fixed points of the excitatory and inhibitory

populations for large I using the condition for gain control in

equation (23), it can be shown that the activity of the inhibitory

population scales linearly with I as follows

Figure 2. Gain control conditions obtained from the mean field
approximation for NI ~100, cI ~cE~cE~cI ~gEI~gIE~gII~1,
pEE~0, pIE~0:4 and pII~0:1. The contour plot shows the absolute
value of the slope of the rate in the excitatory population as a function
of the input current I from ORNs. The axes of the plot are ranges of
parameters. Strict gain control corresponds to 0 slope, eq. (23),
indicated by thicker black line.
doi:10.1371/journal.pcbi.1003133.g002

Gain Control in Early Sensory Coding
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y�~
hI pEEgEE{hEpIEgIE{

hI
NE cE a

pIEgIEz
cI
cE

1
NE cE a {pEEgEE
� �zcEI : ð25Þ

Note that if the system operates in the gain control condition, the

main dependence on the external input is regulated by the

synaptic gain of the input to the excitatory neurons. Equation (25)

implies that the activity of the inhibitory network grows linearly

with the external input to compensate for the external stimulus.

Condition for gain control with respect to the sparseness

parameter a. In the previous section we obtained the gain

control condition for the activity of the excitatory population if the

input intensity I varies but the spread or sparseness parameter a is

fixed. As mentioned earlier, in general odor intensity also

determines the number of recruited glomeruli and hence the

equivalent of a in the insect brain should depend on the stimulus

as well [44]. Returning to equations (15) and (16) differentiating

them with respect to x�, y�, I and a we obtain

dx�~½f E(u)�
x�

1
x�

2
dazacE

df E(u)

du






x�

1

dIz½qEE
IE x�

1
,x�

2
½f E ��dx�{ x�

1
,x�

2
½f E �dy�,

ð26Þ

dy�~½f I (u)�
y�

1
y�

2
dazacI

df I (u)

du






y�

1

dIz y�
1

,y�
2
½f I �dx�{½qII

EI y�
1

,y�
2
½f I ��dy�:

ð27Þ

When we solve these equations for dx�=dI and determine the

condition such that dx�=dI~0, we find

da

dI
~

a

pEI gEI cI x�
1

,x�
2
½f E �df I (u)

du





y�
1

{cE (pEI gEIzpII gII
y�
1

,y�
2
½f I �)df E (u)

du





x�

1

(pEI gEIzpII gII
y�
1

,y�
2
½f I �)½f E(u)�

x�
1

x�
2
{pEI gEI

x�
1

,x�
2
½f E �½f I (u)�

y�
1

y�
2

:

ð28Þ

This means that there is no solution to the gain control problem for

arbitrary relationships between a and I . Gain control could be

achieved if each change in I were accompanied by the correct

change in a to fulfill (28). However, this would imply that this

complex equation would have to be implemented in the connec-

tivity between sensory input and the network and/or within the

network or appropriate dynamic changes in the connectivity

strengths gEI and gII depending on I , which appears unlikely.

The consequences are significant because there are no plausible

gain control conditions if the stimulus is encoded with an

increasing number of recruited neurons. If one looks at Fig. 2

the explicit 1=a dependence shows that in order to have strict gain

control conditions, the network would have to have a mechanism

to modulate the probability or strength of the connections. The

modulation of the inhibitory connection in real time as a function

of the stimulus requires additional circuits that are not part of the

mathematical description used here, although they might be

possible by modifying the architecture of the network [50,51]. If

the gain control requirements can be relaxed to signify an

approximately zero gain of activity with increasing input, relaxed

gain control conditions can be found for a large number of

inhibitory neurons and high a. In this case the effect of changes in

a becomes negligible (see equation (24)).

Rate model simulation
In this section we assess the validity of our approach of deriving

gain control conditions from mean field approximations by

numerically solving the full rate model expressed by the coupled

ordinary differential equations (29) and (30) explained in the model

section. The equations model the firing rate of neurons to a first

approximation [52–55] and though they are simpler than

conductance-based models, they still allow unveiling fundamental

principles underlying the cooperative function of neural systems.

Population rate models provide an accurate description of the

network behavior when the neurons fire asynchronously [56].

Fig. 3 summarizes how the the steady state firing rate depends on

the stimulus intensity I . A grid of a,pEI from 0 to 1 with steps of

0:025 was run 500 times for each range of concentrations I . The

solid thick line represents the gain control conditions, that are fairly

flat for sufficiently high values of a and hence match the asymptotic

theoretical behavior derived in equation (24). However, for low

values of a, the firing rates decrease significantly as a function of I
and the numerical estimation does not have sufficient precision. As

we can see, there are remarkable similarities between the rate model

simulation and the theoretical gain control conditions solved in

equation (20) and shown in Fig. 2. In Fig. 2B we can see that the

same qualitative dependence exists when the strength gEI of the

connections is varied rather than their probability pEI . On Fig. 2C

we can see a few examples of the mean activity of the excitatory

population for several levels of a for the gain control conditions. As

we can see, despite enforcing gain control the dynamics of the

network retain a large repertoire of dynamical behaviors that can be

used for information processing purposes.

Overall the functional dependence of the average excitatory

firing rate on the odor concentration is highly non-linear: weaker

inputs from the antenna are amplified greatly, while stronger

inputs are amplified less. The inhibition acts as a negative feedback

loop keeping the output of the system within a given range. When

we run simulations for different values of the connection

probability from the excitatory to the inhibitory population, pIE ,

(see Fig. 4) we do not find such a high variability in the gain

control conditions, which is indicated by the solid black line in

Figures 4 and 3. This is again consistent with the expression (24)

which lacks an explicit dependence on pIE and gIE .

HH model simulation
To further test our results in an even more realistic simulation

we tested the gain control condition in a network model of

Hodgkin-Huxley type model neurons. We simulated a network of

NE~NI~100 model neurons and after an initial period of 1000
ms simulated time, we excited a fraction a of the PN and LN

populations with an input current that was ramped up linearly

from 0 nA to 2 nA during 5000 ms simulated time and then

ramped down again to 0 nA in another 5000 ms (Fig. 5). The

input current of all excitatory and inhibitory neurons that

received input was updated every integration time step. We

counted the spikes in the excitatory and inhibitory population in

250 ms windows and added the numbers of the windows with

corresponding input current from the up- and down-ramp. We

then used Matlab to fit a linear regression to the spike count in

the excitatory population as a function of the input current I .

This analysis was repeated for different pairs of values for a and

gEI . Fig. 6 summarizes the results. The slope mE of the number of

spikes nE(I) in the excitatory population in 500 ms simulated
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Figure 3. (A) Contour plot of slopes of response curves in numerical experiments using rate model neurons. We plot the derivative of
change in the PN activity with respect to the external stimulus I as a function of a, which is the fraction of neurons that receive input, and pEI , which
is the probability of having a connection from an inhibitory neuron to an excitatory one. The parameter values used in this simulation of the rate
model neurons were NE~100, NI ~100, gEI ~gIE~gII ~1, while the probability of connections are pEE~0, pIE~0:4 and pII ~0:1. The gain
constants cI ,cE ,cE ,cI are set to 1 with thresholds hE~hI ~{100. Strict gain control corresponds to 0 slope and is represented by the thick black
solid line. The line is not complete because we do not have enough resolution to reliably track the gain control boundary. (B) Exploration of the
dependence of the gain control boundaries as a function of the strength of the coupling from the excitatory to the inhibitory population. The
parameters were the same as for the simulations shown in A except pEI~0:5. (C) Examples of the mean activity of the excitatory population for
different realizations (rows) of the network using the same parameter values as (A) near the gain control conditions. Despite the restraining gain
control conditions the dynamics of the rate models are capable of displaying a rich variety of dynamical behaviors. Each column represents different
levels of recruitment (a) by the input.
doi:10.1371/journal.pcbi.1003133.g003
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Figure 4. (A) Contour plot of slopes of response curves in numerical experiments using rate model neurons but here testing
whether the gain control conditions are truly independent of pIE as predicted by the mean field model. We plot the derivative of
change in the PN activity with respect to the external stimulus I as a function of a, that is the fraction of neurons that receive input, and pEI , which is
the probability of having a connection from an inhibitory neuron to an excitatory one. The parameter values used in this simulation of the rate model
neurons were NE~100, NI ~100, gEI~gIE~gII ~1, while the probability of connections are pEE~0, pIE~0:25 and pII ~0:1. The gain constants
cI ,cE ,cE ,cI are again set to 1 and hE~hI~{100. Strict gain control corresponds to 0 slope and is represented by the thick black solid line. The line is
not complete because we do not have enough resolution to reliably track the gain control boundary. (B) The same as in the left but using pIE~0:75
to corroborate the gain control condition (the solid line) does not depend on the connections from the excitatory population as predicted from the
theory.
doi:10.1371/journal.pcbi.1003133.g004

Figure 5. Illustration of the conductance based numerical experiment for an example of successful gain control at a~0:7 and
gEI ~0:04 mS. The input current to the fraction of a~0:7 of all PNs and LNs is ramped up from 0 nA to 2 nA and back down to 0 nA (top). In response
to this input the firing patterns of PNs and LNs change. While the average rate of LNs increases and decreases proportional to the input (see spike
density function (SDF) in the second panel), the average activity of PNs remains constant. Nevertheless, there is a clear and distinctive response to the
input in form of slow patterning of the PN activity (see spike raster).
doi:10.1371/journal.pcbi.1003133.g005
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time as a function of the input current I in nA (normalized to

within the interval ½{1,1�) is displayed as colors. Successful gain

control corresponds to 0 slope, or green in the plot. It is achieved

on what roughly looks like a hyperbolic function 1=a (see strong

contour line). This is in good correspondence with the

dependency we found in the other descriptions (see figures 2,3

and equation (23)).

Note that even though the overall activity levels are constant

because of the gain control condition, Figures 3C and 5 illustrate

that nevertheless the network does produce a variety of spatio-

temporal responses of the excitatory population. Gain control is

therefore not limiting the capacity to map external information

into intrinsic neural representations. It is known that networks of

excitatory-inhibitory neurons, like the one used here, can achieve a

large repertoire of reproducible spatio-temporal sequences to

encode information [57].

Discussion

The function of gain control is necessary if not crucial for any

system that aims to separate the quality of stimuli from their

intensity. If this separation is achieved there must be a stage in the

signal processing system where the response is no longer

dependent on the intensity of the signal. This has been observed

in biological systems and is believed to be important for the correct

function of neural systems [1]. Mechanisms of gain control have

been demonstrated at the level of single neurons using, e.g.,

synaptic adaptation [51]. It was found that adapting synapses

allowed signal decoding over a wide dynamical range even though

it did not induce signal invariance per se. Another commonly

suggested mechanism of gain control is feedback gain control [29]

which has been found to effectively stabilize general activity levels

independent of stimulus intensity and so support efficient coding of

odor identity independent of concentration [41].

Besides being important for separating intensity and identity

information, models of the insect brain have demonstrated that

gain control is also an important constraint for improving

recognition performance [21,58,59]. For example in the insect

olfactory system, the excitatory neurons of the AL project into a

large screen of mushroom body neurons where there is a large

variability of activity as a function of small perturbations in the AL

[28,30,58]. It is therefore imperative to closely control activity

Figure 6. Gain with increasing I in the excitatory population as a function of a and gEI for the conductance based model. The color
map shows the the slope of the spike count in the excitatory population as a function of the input current I from ORNs, normalized to a maximum of
1. The axes of the colormap are the ranges of parameters a (x-axis) and gEI (y-axis). Strict gain control corresponds to 0 slope (green, thicker contour
line).
doi:10.1371/journal.pcbi.1003133.g006
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levels in the AL in order to have usable sparse coding in the

mushroom bodies.

Here, we demonstrated gain control at the level of a

subnetwork. Gain control is achieved through a balance between

excitation and inhibition, while both excitatory and inhibitory

neurons in the system receive excitatory input from primary

sensory neurons. Although the neurons in the network are using

constant synaptic connections, i.e., are lacking synaptic adapta-

tion, we were able to identify successful gain control conditions.

The mechanism that underlies these conditions emerges from the

dynamic balance of inhibition and excitation.

Our main finding, obtained by mean field analysis and

confirmed by more detailed simulations, is that gain control

conditions exist over a defined range of connectivity strengths from

excitatory to inhibitory neurons if stimuli of different intensity

affect the intensity of stimulation and not the number of neurons

that are activated.

The success of gain control is largely determined by the

probability and strength of inhibitory (LN) to excitatory (PN)

connections. The strength of the connections from excitatory to

inhibitory neurons, which is important for odor coding in insects

[13,60], does not play a role in the proper function of this gain

control mechanism. We have also investigated the role of lateral

excitation that has been found in Drosophila in the form of

excitatory LNs [10,61] and found that it also did not play a role in

the effectiveness of gain control. These results are consistent with

previous work that explored unsupervised learning in the AL

network and found that LN to PN plasticity is most effective in

generating olfactory habituation in the fruit fly [48,49] and

honeybee [47]. Moreover, these ideas seem to resonate with the

observation that lateral inhibition on PNs narrows the glomerular

response profile [32,45], similar to the ideas proposed in the

olfactory bulb of mammals [42].

In the insect olfactory system, when an odorant stimulus

increases in strength, both the intensity of the ORN response and

the number of different types of ORNs that respond increase [33].

In our model a change of the intensity of the ORN responses

would be equivalent to an increase in I . We have demonstrated

that we can derive a general gain control condition for changes in

I that depends only on the connections from the inhibitory

population to the rest of the network regardless of the number of

neurons. This gain control condition derived from the mean field

approximation is valid for random networks of excitatory and

inhibitory neurons using rate models and realistic conductance

based models, demonstrating the generality of the result.

Furthermore, in agreement with experimental evidence [40], we

found that in order to achieve gain control the activity of the

inhibitory population and hence the strength of lateral inhibition

needs to scale linearly with the intensity of the input.

However, if a, the fraction of activated glomeruli, is the main

variable that encodes stimulus intensity, we could not identify

consistent or stationary gain control conditions, in particular for

low values of a. If increasing stimuli recruit a larger number of

glomeruli and hence neurons, the network parameters (the

probability and strength of the connections) have to change

dynamically in order to regulate the activity levels of the excitatory

population. Short term depression of synapses and spike rate

adaptation in neurons could be invoked as possible mechanisms

[50]. It is in particular unclear whether such mechanisms would be

fast enough for efficient gain control and whether they would

compromise the sensitivity of the network to subsequent low-

intensity inputs.

A different solution to the problem of input dependent a would

be the relaxation of the gain control condition. We have in this

paper concentrated on strict gain control by postulating dI=dt to

be exactly 0 leading to exact conditions on connection probabil-

ities and connection strengths. This is unlikely to be precisely

realized in biological networks. The most plausible scenario is that

the neural networks in the brain have large parameter spaces in

which information processing is not impaired. Within this

scenario, one would expect gain control to be approximate rather

than strict. It remains to be seen how much our gain control

conditions could be relaxed. Perhaps, a reasonable approach to

this question may consist of determining a lower and upper bound

of EdI=dtEƒe instead of equality to 0. In this case a large number

of inhibitory neurons, for example, could shift the gain control

conditions more aggressively to the left in Figures 2 and 3,

effectively achieving very good regulation of excitatory activation

for many values of a. Furthermore, as the gain control curves are

approximately horizontal for aw0:3, constant values of the

connectivity probabilities and strengths could lead to approximate

gain control in this regime even if a is input dependent.

The fact that the gain control conditions derived from the mean

field approximation were verified by simulations of a rate model

[56] and a more realistic Hodgkin-Huxley conductance based

model is an important confirmation that using mean field

approximations to understand the structural organization of brain

centers is useful. Our formulation of the mean field theory has

been proven to be general enough to capture the main function of

the system. We would like to interpret this finding to indicate that

the main properties of the system we have described do not

critically depend on the details of its construction. In this sense,

there is a large space of neural circuits with properties similar to

the ones observed here.

The confirmation of the gain control conditions in a firing rate

model is also important in the context of presynaptic inhibition

which has been identified in several forms in the AL[11]. Firing

rate models accommodate presynatic inhibition alongside post-

synaptic forms of inhibition because all synaptic inputs are

integrated in a passive manner. Being confirmed in a firing rate

model, our gain control conditions should be valid for any form of

synaptic inhibition in any combination.

In conclusion, we used analysis and simulations of a network of

excitatory and inhibitory neurons inspired by the AL network to

identify a relationship between network parameters that allows

strict gain control. The more general question is how such a

relationship can be induced and maintained in a biological system.

Certainly, strict gain control would necessitate the probability of

connections between the population of neurons and the strength of

these connections to have a very precise value. This is, as we have

already alluded to above, impractical in real world conditions.

However, our simulations suggest that there is a range of values

around the strict gain control condition line where approximate

gain control is achieved. Therefore, a biological mechanism that

would control the probability and strength of excitatory to

inhibitory connections [62,63] within a certain range would

suffice to achieve the desired approximate intensity invariance.

Models

The firing rate network model
To analytically address the issue of gain control in a random

excitatory-inhibitory network, we simulate the network by firing

rate models [64]. Rate models [54,55] are simpler than

conductance-based models, but they reveal some of the funda-

mental principles that underlie the cooperative function of neural

systems by providing an accurate description of the network

behavior when the neurons fire asynchronously [56].
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The network mode l considered here consists of an excitatory

PN population, and an inhibitory LN population with NE and NI

neurons respectively. We use the sub- or superscript E for

variables referring to the excitatory population (PNs) and I for

those referring to the inhibitory population (LNs). The firing rates

of all neurons evolve in time according to the following set of

ordinary differential equations:

tE

d nE
i

dt
~WE(hE

i ){nE
i , ð29Þ

tI
d nI

i

dt
~WI (hI

i ){nI
i , ð30Þ

where tE,I are the time constants, h
Q
i denotes the total afferent

current into the ith neuron in pool Q(~E,I) and WQ(hi) is the

corresponding gain function. The individual gain functions

represent the steady state firing rates of the neurons as a function

of their total input. Note that we do not consider excitatory LNs at

this level of description.

To be as general as possible we only make two assumptions

about the model neurons. First, that they have a threshold, i.e.,

WQ(h)~
0 if hv0,

gQ(h) if h§0,

�
ð31Þ

and second, that their gain functions are positive, continuous and

monotonically increasing functions (i.e., gQ(h)§0 and

d gQ(u)

du
w0). These conditions are quite general and represent

fairly well the firing response of neurons [65]. Furthermore,

specific gain functions can be determined semi-analytically for

specific noise models or numerically for more realistic models

[56,66,67].

The neurons are connected through a network of synaptic

connections w
QP
ij . The contributions of all synapses are assumed to

be added linearly in the main compartment of the neuron via

h
Q
i ~

XNE

j~1

w
QE
ij nE

j {
XNI

j~1

w
QI
ij nI

j zcQI
Q
i {h

Q
i , ð32Þ

where h
Q
i is the threshold of the ith neuron in pool Q and the term

cQI
Q
i represents its external input from the presynaptic ORNs.

Both, PNs and LNs, receive afferent input directly from the

ORNs.

In our model we do not assume any anatomically or functionally

structured connectivity between the glomeruli, i.e., the connectiv-

ity matrices wQP are random matrices with entries drawn from the

following Bernoulli process

w
QP
ij ~gQP|

1 with probability pQP

0 otherwise,

(
ð33Þ

where gQP represents the synaptic conductance or efficiency of the

connection from a neuron in the pool P to a neuron in the pool Q.

Thus, on average, a given neuron receives NE|pQE synapses of

strength gQE from the excitatory population and and NI|pQI

connections of strength gQI from the inhibitory population.

The Hodgkin-Huxley network model
The simulated network of conductance based Hodgkin-Huxley

neurons consists of 100 PNs and 100 LNs which were randomly

connected as described for the rate model above. The probabilities

for connections were pII~0:1 following observations in the

honeybee [45], pEI~0:5 and pIE~0:4, and pEE~0:0.

HH neuron model
The neurons in the simulated network model were described by

a Hodgkin-Huxley type model based on the model of Traub and

Miles [68]. Additionally, a spike rate adaptation (M-type) current

was added leading to the following set of equations:

C _VVi~{INa{IK{IL{IM{Ii,DC{Ii,syn, ð34Þ

where Ii,DC is a constant bias current regulating the intrinsic

excitability of neurons. The leak current is IL~gL(Vi{EL) and

the ionic currents INa, IK, and IM are described by

INa(t)~gNami(t)
3hi(t)(Vi(t){ENa)

IK(t)~gKni(t)
4(Vi(t){EK)

IM(t)~gMzi(t)(Vi(t){EK):

ð35Þ

The synaptic current Isyn to each neuron is the linear sum of all

synapses onto the neuron, each synaptic current given by (38).

Each activation and inactivation variable

yi(t)~fmi(t),hi(t),ni(t),zi(t)g satisfied first-order kinetics

dyi(t)

dt
~ay(Vi(t))(1{yi(t)){by(Vi(t))yi(t), ð36Þ

with non-linear functions ay(V ) and by(V ) given by

am~0:32({52{V )=(exp(({52{V )=4){1)

bm~0:28(25zV )=(exp((25zV )=5){1)

ah~0:128 exp(({48{V )=18)

bh~4=(exp(({25{V )=5)z1)

an~0:032({50{V )=(exp(({50{V )=5){1)

bn~0:5 exp(({55{V )=40)

az~0:01=(1zexp((20{V )=5))

bz~0:0002

ð37Þ

The remaining parameter values were C~0:143 nF,

gL~0:02672 mS, EL~{63:563 mV, gNa~7:15 mS, ENa~50
mV, gK~1:43 mS, EK~{95 mV, gM~0:715 mS.

Ii,DC~0:8+0:1 nA for PNs and Ii,DC~{1:8+0:1 nA for LNs,

where +x denotes the addition of a random individual bias

sampled from a uniformly distributed random variable in ½{x,x�
for each neuron.

Synapse model
Synapses were described by a first order kinetic model [69]. In

brief, the synaptic current is given by

Isyn~gS(V{Vrev) ð38Þ

where g is the synaptic conductance and Vrev the reversal

potential. Here, Vrev~0 mV for excitatory synapses and
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Vrev~{80 mV for inhibitory synapses. S describes the activation

of the synapse and is governed by

dS

dt
~

a(1{S){bS if 0ƒt{tspikeƒtrelease

{bS otherwise,

�
ð39Þ

where trelease is the duration of synaptic release after a pre-synaptic

spike, tspike is the time of the last pre-synaptic spike, detected as a

crossing from below of Vthresh~{20 mV, and a and b are rates of

synaptic release and decay (re-uptake). Here, we used trelease~2
ms for excitatory synapses and trelease~5 ms for inhibitory

synapses. The activation and inactivation rates were given by

aIE~0:1 kHz, bIE~0:05 kHz, aEI~~aII~0:05 kHz and

bEI~bII~0:01 kHz. The maximal synaptic conductances were

chosen as gIE~0:01+0:001 mS, gEI~0:02+0:002 mS, and

gII~0:5+0:1 mS, where +x denotes a random variation by a

Gaussian random variable of mean 0 and standard deviation x.

The model was integrated with a 6/5 order variable time step

Runge-Kutta algorithm with maximal time step of 0:1 ms, using

custom-made C++ code.
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