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Traditionally, radiologists have crudely quantified tumor extent by measuring the longest

and shortest dimension by dragging a cursor between opposite boundary points across a

single image rather than full segmentation of the volumetric extent. For algorithmic-based

volumetric segmentation, the degree of radiologist experiential involvement varies from

confirming a fully automated segmentation, to making a single drag on an image to initiate

semi-automated segmentation, to making multiple drags and clicks on multiple images

during interactive segmentation. An experiment was designed to test an algorithm that

allows various levels of interaction. Given the ground-truth of the BraTS training data,

which delimits the brain tumors of 285 patients on multi-spectral MR, a computer

simulation mimicked the process that a radiologist would follow to perform segmentation

with real-time interaction. Clicks and drags were placed only where needed in response

to the deviation between real-time segmentation results and assumed radiologist’s goal,

as provided by the ground-truth. Results of accuracy for various levels of interaction are

presented alongwith estimated elapsed time, in order tomeasure efficiency. Average total

elapsed time, including loading the study through confirming 3D contours, was 46 s.

Keywords: brain MRI, tumor, segmentation, glioma, deep learning, efficiency

INTRODUCTION

Malignant brain tumors often have unfavorable prognoses such as time to progression and overall
survival, and also have direct impact on motor and/or cognitive function and poor quality of life
(Omuro and DeAngelis, 2013). In recent decades, imaging has played a key role throughout the
entire treatment paradigm of cancer patients ranging from diagnosis and presurgical planning to
treatment response assessment. Additionally, multimodal MRI protocols allow for non-invasive
interrogation of tumor heterogeneity and identification of phenotypic sub-regions i.e., peritumoral
edema/invasion, enhancing active tumor core and necrotic regions which reflect tumor biological
properties including tumor cellularity, vascularity, and blood-brain barrier integrity.

However, despite the exponential enhancement in imaging sequences, hardware and software,
we have barely begun to tap the potential of non-invasive imaging to characterize the
phenotype of tumors. To date, radiologic assessments are qualitative including tumor detection
and image-based tumor staging or semi-quantitative using freehand uni-dimensional and
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bi-dimensional measurements of the tumor. In fact, all current
imaging assessment criteria [such as Response Evaluation
Criteria in Solid Tumors (RECIST), Response Assessment in
Neuro-Oncology (RANO), immune related RECIST (irRECIST),
and immune related response criteria (irRC)] used to evaluate
tumor response in the clinical setting or in clinical trials rely on
these freehand measurements to evaluate tumor size (Sorensen
et al., 2008; Eisenhauer et al., 2009; Wolchok et al., 2009; Wen
et al., 2010).

Accurate assessment of tumor volume is important for clinical
management and particularly for monitoring treatment response
and development of new therapies and trials. Despite the
well-known advantages of whole tumor volumetric assessment,
as recognized by the RANO Working Group, currently it is
only performed for research purposes as manual outlining can
be time-consuming, and it is susceptible to inherent intra-
observer and inter-observer variability (Wen et al., 2010).
Research efforts have focused on the development of computer-
aided techniques for tumor segmentation. Computer-aided
tumor segmentation techniques can be grouped in two major
categories based on the radiologist/user interaction with the tool;
(1) fully automated techniques that require no, or negligible
user input, and (2) semi-automated techniques that require
some localization or initialization from the user; then the
algorithm provides the majority of segmentation optimization.
Semi-automated techniques outperform automatic approaches,
resulting in sufficiently accurate and robust results (Zhao and Xie,
2013). However, semi-automated techniques do not scale well to
large number of labeled datasets, since developing and validating
interactive algorithms becomes laborious as the datasets grow.
Consequently, there is an unmet need for an approach to
simulate user interaction that will allow for efficient and cost-
effective evaluation of semi-automated techniques throughout
the development and validation stages.

In a recent publication we presented Semi-Automated Map-
BAsed Segmentation (SAMBAS), which allows for real-time
feedback by an expert radiologist (Gering et al., 2018). In short,
the user initializes the segmentation process by drawing a long
axis; during the long axis drawing, the 2D segmentation updates
in real-time for interactive feedback. In cases of suboptimal 2D
segmentation the user can refine the result by drawing a short
axis. Further optimization can be performed on the other two
planes prior to 3D segmentation initialization. This interactive
system outperformed the Deep Learning (DL) approach alone;
as demonstrated in our publication, using the Multimodal
Brain Segmentation Competition (BraTS) 2018 validation data
the interactive system resulted in an improved Dice similarity
coefficient over DL alone and the lowest Hausdorff-95% distance
on the BraTS leaderboard (Menze et al., 2015; Bakas et al., 2017a,
2018; Gering et al., 2018).

However, it is still unknown how real-time experiential input
affects Dice coefficient andHausdorff-95% distance. Therefore, in
this study, we designed an experiment to simulate the level of user
interaction. Specifically, we used the 2018 BraTS training data
as the ground-truth and a computer simulation mimicked the
process that a radiologist would follow to perform segmentation
with real-time interaction (Bakas et al., 2018). Clicks and drags

were placed only where needed in response to the deviation
between real-time segmentation results and assumed radiologist’s
goal, as provided by the ground-truth. Results of accuracy for
various levels of interaction are presented along with estimated
elapsed time, in order to measure efficiency.

MATERIALS AND METHODS

Rapid Precise MetricsTM (RPM) implements an interactive
algorithm as a probabilistic framework with efficient user
interaction and control in the HealthMyne R© Platform
(HealthMyne, Madison, WI). Additional details on how
RPM seamlessly merges DL with user interaction can be found
on Gering et al. (2018). For the purposes of this work, we
removed the DL component because access was needed to the
same ground-truth data on which the DL would have trained.
Indications by a skilled radiologist are another aspect of RPM
missing from this experiment. Consequently, the absolute values
of accuracy reported do not fully reflect clinical performance
of RPM, however, relative accuracy and timing measurements
should be representative.

The organization of the manuscript is as follows: the system
for interactive Multi-Plane Reformat (MPR) segmentation will
be described first, followed by the method for simulating a user’s
interaction with the system. Finally, the method for performing
timed tests will be presented.

Interactive Multi-Plane Reformat (MPR)
Segmentation
Like a digital simulation of a traditional light box on which
radiologists formerly viewed film, the 3D volume is visualized by
displaying 2D planes sequentially. A MPR refers to reformatting
more than one plane, such that a trio of planes is displayed side-
by-side corresponding to axial, coronal, and sagittal orientations
(Figure 1).

The user initializes the segmentation process by drawing a
long axis on one plane of the MPR. As the user draws the
long axis, a 2D segmentation updates in real-time for interactive
feedback. The feedback has proven to be very helpful for the
user to know precisely where to place the endpoint of the axis
(Gering et al., 2018). Upon release of themouse, 2D segmentation
occurs immediately on the other MPR planes. Figure 2 shows the
interactive feedback.

When the 2D contour is unsatisfactory, additional drags
may be drawn to complement the long axis. Furthermore,
single clicks may be used to “drop” points along the structure
boundary. Another available editing operation is a “ball tool”
for drawing with a digital brush. A correct 2D segmentation
is important since probability distributions are learned from
the 2D segmentation and employed in segmenting the other
MPR planes.

When the contours on other MPR planes are unsatisfactory,
then the user can further refine the segmentation by either
drawing long axes on these planes, or by editing the
segmentation masks with the ball tool. This is especially
useful for irregularly shaped lesions or lesions oriented

Frontiers in Computational Neuroscience | www.frontiersin.org 2 April 2020 | Volume 14 | Article 32

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Gering et al. Tumor Segmentation by Simulating User Interaction

FIGURE 1 | Multi-Plane Reformat: an example of Multi-Plane Reformat (MPR) slices of the 3D volume corresponding to axial, coronal and sagittal planes. The yellow

lines denote the position of the coronal plane (B), with respect to the axial plane (A) and the sagittal plane (C).

FIGURE 2 | Interactive segmentation: several instances during interactive segmentation (A–D) depicting the segmentation contour (red) updating in real-time as the

user drags the endpoint of the long axis (blue). In (C) a correct segmentation of core tumor is displayed, while (D) displays response to overdrawing.

FIGURE 3 | Separating adjoining tumors: three examples of adjoining tumors (A–C) which were manually separated to form distinct tumors, shown here in tan and

red.

obliquely to the anatomical axes. Once initial segmentation
is satisfactory, the user can initiate 3D segmentation by a
single click.

3D segmentation occurs quickly (approximate time = 1–2 s),
and the user may inspect the resulting contours by scrolling

through slices on any MPR plane. If unsatisfied, the user has
two options, either delete the lesion segmentation and re-draw a
better long axis, or alternatively edit the 3D segmentation using a
3D sphere tool.When satisfied, the user clicks a button to confirm
the 3D contours.
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FIGURE 4 | Medially placed longest axis: a demonstration of a more medially

placed longest axis obtained by fitting an ellipse (blue) to the ground-truth

(yellow) and finding the long and short axes (green) parallel to the major and

minor axes of the ellipse. The true longest axis is drawn in (A), while the more

medially positioned axis is drawn in (B).

Simulation System
The simulation system automatically draws a long axis on each
tumor. Depending on the accuracy of the resulting segmentation,
more drags or clicks are added as needed. The process by which
these are drawn aims to mimic a human user’s actions, as
described below.

Data Preparation
Multi-institutional, routine clinically-acquired, pre-operative,
multispectral MR scans were provided by the 2018 BraTS
challenge (Bakas et al., 2017b,c, 2018). The data have been
preprocessed to be co-registered to the same anatomical
template, interpolated to the same resolution (1 mm3),
and skull-stripped.

For the purposes of this work, we used only the post-contrast
T1-weighted MR scans. While BraTS provided labels for three
phenotypes: whole tumor, core tumor, and active tumor, we
combined the ground-truth masks for “core” and “active” to form
“core tumor,” and used this one tumor component exclusively in
this experiment, since this is representative of the gross tumor
extent assessed by a radiologist in the clinical setting.

Enumerating Tumors
While RPM is designed to segment individual lesions, BraTS
ground-truth presents a unified mask without separating
individual lesions. Therefore, we manually drew blank (zero-
valued) lines to separate adjoining lesions. After this one manual
step, lesions could be enumerated automatically by running 3D
connected-component analysis (CCA) to identify each distinct
“island” of the ground-truth mask, as illustrated in Figure 3.
Given the 285 patients, 232 had 1 lesion, 33 had 2 lesions, and
20 had 3 or more, with the maximum being 5.

Simulating the Drawing of a Long Axis
The first step toward drawing a long axis is selecting the axial slice
on which to draw. Our aim was to replicate the approach of an
expert radiologist briefly scrolling through the slices to eyeball the
one on which the tumor appears the largest. In the first step, for

each enumerated tumor, the range of slices containing ground-
truth was found, and the subset of slices in the central third was
considered. Given this subset, the slice with the largest area of
ground-truth was chosen.

In order to simulate the type of long axis that a user might
draw, we employed four different methods: (i) identification of
the true longest axis, (ii) selection of an axis that is located
more medially than the true longest axis, (iii) search for an axis
that includes pixels that statistically typify the tumor, and (iv)
sweeping a short distance to search for optimal results.

To draw the “medial” long axis, an ellipse is fit by Principle
Component Analysis (PCA) to the 2D segmentation (Duda et al.,
2012). The long axis with the same orientation as the major axis
of the ellipse is selected, as shown in Figure 4. This method is
driven by the fact that RPM tends to perform better on centrally
located drags where symmetry can be exploited.

Since RPM samples statistics under the long axis, it’s
important to consider that aspect in addition to length and
centrality. Therefore, the third method searches the set of N2

possible axes drawn between a set of N points spaced near
each endpoint of the medial axis. Based on the ellipse, these
points are spaced by a few degrees, and lie on the boundary of
the ground-truth. A score is computed for each axis, and the
axis with the best score is selected. Equation (1) describes the
score as a weighted combination of properties of the long axis,
namely length, centrality, and relative entropy, also referred to as
Kullback-Leibler divergence (DKL) (Cover and Thomas, 2012).

Score = α ∗ (1− DKL) + β ∗ Length+ γ ∗ Centrality (1)

where α, β and γ are scalar parameters. Since the Kullback-
Leibler divergence is a measure of how one probability
distribution is different from another, it is an appropriate
metric for evaluating how well the pixels along the long axis
relate to the pixels of the entire 2D structure. Equation (2)
expresses this relationship where the probability distribution, Q,
of pixels sampled under the long axis is estimated by Parzen
window density estimation, and the probability distribution, P, is
estimated similarly from pixels sampled under the ground-truth
mask (Duda et al., 2012).

DKL(P| |Q) = −
∑

x∈X

P (x) log

(

Q(x)

P(x)

)

(2)

The Length and Centrality in Equation (1) are terms with a range
[0, 1] and are computed as follows:

Length =
length of axis

length of true longest axis
(3)

Centrality = 0.1+ 0.9 ∗ C/(2r) (4)

Where C encodes the distance from center of ellipse obtained for
Equation (5):

C = |i− r| +
∣

∣j− r
∣

∣ (5)

Where indices, i and j, index the sets of N points on each side of
the axis, and r represents the index, N/2, of the middle point in

Frontiers in Computational Neuroscience | www.frontiersin.org 4 April 2020 | Volume 14 | Article 32

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Gering et al. Tumor Segmentation by Simulating User Interaction

FIGURE 5 | Comparing distributions: estimations of the probability distribution function (PDF) for tumor ground truth and pixels under the long axis are plotted. A high

discrepancy is plotted in (A) resulting in large Kullback-Leibler (KL) divergence, while the PDFs are more similar in (B) resulting in small KL divergence.

FIGURE 6 | Demonstration of sweeping approach for long axis identification:

while the leftmost endpoint of the long axis (green) is held fixed, the rightmost

endpoint is swept along a short path (pink) along the boundary of ground-truth

(dark blue). At each position, the similarity between the segmentation (light

blue) and ground-truth is measured.

a set. Furthermore, we favor axes that cross the center by halving
the expression above when i and j both lie on the same side of r.
Figure 5 presents examples of probability distribution functions
for a long axis that is representative of the tumor, and another
axis that is divergent.

To draw the “swept” long axis, the first endpoint of the long
axis is held fixed while the second endpoint is dragged along the
boundary of the structure, by a short distance in each direction,
as shown in Figure 6. At each position during the sweep, the
interactive 2D segmentation is performed, and the position with
the best comparison with ground-truth is selected (by DSC
defined below).

Simulating the Drawing of a Short Axis
While the RPM algorithm allows multiple drags of any
orientation, we simplified this experiment by drawing only

the “short axis,” which is defined as the longest axis that lies
perpendicular to the long axis.

Simulating Dropped Points Along Structure Boundary
Given a segmentation based on the long and short axes, the
contour point of greatest disagreement with the ground-truth is
identified. Subsequently, an editing operation is performed by
“dropping” a point on the structure boundary as indicated by the
ground-truth. As described earlier, these drops serve as inputs
into RPM’s algorithm that are quicker to draw than a line with
two endpoints.

Following the first dropped point, segmentation is
recomputed and the next contour point of greatest disagreement
is identified, if any, as there may be no remaining significant
discrepancies. New points cannot be placed too closely to
earlier points. In this manner, more points can be “dropped”
in succession, triggering new segmentations with each dropped
point (Figure 7).

Simulating Drawing on MPR
The center of the long axis is used to determine the center of the
reformatted sagittal and coronal planes that comprise the 3-plane
MPR. Long and short axes were drawn in similar manner on all
planes. The additional axes precipitate MPR segmentation.

Comparison of Volumes
While each tumor is segmented individually, the “ground-truth”
is provided per patient rather than per lesion. Consequently,
we took the union of the segmentations of all lesions for each
patient, and compared these aggregates with the “ground-truth”
for agreement. The Dice similarity coefficient (DSC) was used to
measure the similarity between two sets of segmentations andwas
calculated using the Equation (3):

DSC =
2(A ∩ B)

(A+ B)
(6)

where A represents the semi-automated segmentation and B
represents the “ground-truth” (Allozi et al., 2010). Scores were
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FIGURE 7 | Demonstration of dropping points: segmentation (yellow) relative to the ground-truth outline (blue) for a progression of dropping points to segment a

complex lesion: (A) green line denotes where a dropped point is most needed, (B) updated segmentation after dropping that point, (C) updated segmentation after

dropping five points, each indicated with a green line.

TABLE 1 | Timed tasks.

Load study

Scroll to lesion

Segment by dragging long axis

Optionally open MPR view for additional drags/clicks

Perform 3D segmentation

Scroll to inspect 3D contours

Confirm 3D contours

computed by uploading segmentations to the CBICA Image
Processing Portal.

Timing Tests
To estimate an average elapsed time, the entire population was
partitioned into three categories so that a weighted average could
be computed where the weights are determined based on the size
of each category. From each category, 10 cases were randomly
sampled (by Python script) to be segmented by a human user
with the interactive system; the user has extensive background
in the design and implementation of clinical software solutions,
though no specific radiology training. The total elapsed time
measured included all of the tasks listed in Table 1, which span
from beginning to load the study to confirming 3D contours.

The three categories were the following: (i) cases that
segmented well with drawing an axial long axis (DSC > 0.883;
n = 109); (ii) cases that required drawing long axis on all MPR
planes (n = 123); (iii) cases that required additional edits (n =

53). Prior to the random selection, the categories were whittled
down in size by more restrictive criteria in order to form subsets
of patients for which the interaction was more meaningful. These
subsets were cases that segmented extremely well (DSC>= 0.93)
with a single drag (n = 39), cases whose score increased by at
least 0.05 to achieve a total score of at least 0.85 given a long axis
drag on all MPR planes (n= 25), and cases whose score increased
further by at least 0.05 to achieve a total score of at least 0.85 given
additional edits on MPR (n= 41).

TABLE 2 | Comparison of various strategies for simulating the drawing of the long

axis.

Long axis style 3D dice

True longest

Mean 0.798

St. Deviation 0.130

Range [0.315–0.972]

Favoring medial position

Mean 0.812

St. Deviation 0.122

Range [0.232–0.963]

Searching for statistics

Mean 0.807

St. Deviation 0.130

Range [0.232–0.963]

Sweeping one endpoint

Mean 0.821

St. Deviation 0.120

Range [0.305–0.972]

To evaluate the realistic nature of simulations against real user
interaction, DSC score frommanual segmentation was compared
against DSC obtained from simulations. First, the fitness of DSC
scores to normal distribution was determined by Kolmogorov-
Smirnov test, and then the scores were compared using t-test
or Mann-Whitney test accordingly. A p-value of <0.05 was
considered statistically significant. Finally, for completeness we
calculated the DSC score between the segmentation obtained
from real user interaction and from simulation.

RESULTS

Of the 285 patients, 232 had a solitary lesion, and 53 had more
than one lesion resulting in a total of 365 brain lesions available
for segmentation.
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Long Axis Simulation
We simulated four different strategies for drawing the long axis:
(i) obtaining the true longest axis, (ii) assigning the long axis
more medially than the true longest axis, (iii) searching for an
axis that statistically typifies the tumor, and (iv) sweeping a short

TABLE 3 | Varying levels of interaction.

User input Axial plane only All 3 MPR planes

Long axis only

Mean 0.821 0.851

St. Deviation 0.120 0.079

Range [0.305–0.972] [0.517–0.965]

Long and short axes

Mean 0.823 0.858

St. Deviation 0.110 0.068

Range [0.385–0.973] [0.512–0.965]

Long and short axes and

few dropped points

Mean 0.834 0.864

St. Deviation 0.103 0.063

Range [0.309–0.973] [0.557–0.965]

Edited to perfection

Mean 0.839 0.890

St. Deviation 0.105 0.050

Range [0.431–0.970] [0.681–0.970]

TABLE 4 | Progression through processing stages.

Stage True

long

Sweep

long

Long and

short

Long, short

and drops

Axial

perfect

MPR

perfect

2D 0.886 0.916 0.919 0.947 0.972 0.968

3-plane

Scout

0.845 0.859 0.866 0.878 0.886 0.960

3D 0.798 0.821 0.823 0.834 0.839 0.890

distance to search for optimal results. Using the aforementioned
strategies as initialization step, the 3D segmentations were
compared with the “ground-truth.” Table 2 summarizes the
results for DSC between the four strategies, with swept being
noticeably superior (DSC= 0.821).

Simulating User Interaction
We simulated a varied degree of user interaction from drawing
only one axis to editing 3D segmentation to perfection.
Additionally, simulations allowed for drawing on the axial plane
only, or on all 3 MPR planes: axial, coronal, and sagittal. Table 3
summarizes the results of 3D segmentations with varying degrees
of user interaction. Our results indicate that drawing long axes
on MPR planes compared to drawing only one long axis on the
axial plane resulted in significantly (by at least 0.05) improved
DSC scores in 76 patients out of a total of 285. Similarly,
drawing short axes and dropping points on MPR planes resulted
in significantly higher DSC scores in 88 patients, while in 14
patients the DSC score worsened significantly. Finally, editing
segmentation outcome to perfection on MPR planes significantly
improved the DSC score in 123 patients while significantly
worsening only 2.

Table 4 presents results from a few intermediate stages of
the algorithm. For responsive interaction, RPM segments first
in 2D, corresponding to the first row of Table 4, and then it
initializes the 3D segmentation by segmenting on a 3-plane
“scout” reformat, corresponding to the second row of theTable 4,
and then it finally segments in 3D. There is a column for each
level of user interaction.

Timing Tests
The average elapsed time for each patient in the entire population
was estimated to be 46.2 s; this was a weighted average computed
over three categories whose boundaries were described in section
Timing Tests. The number of cases in the first category (drawing
an axial long axis) is the total number of cases whose scores were
above 0.883, which was 109. The number of cases in the second
category (drawing long axes on all MPR planes) was the number

TABLE 5 | Timing measurements.

User input Mean elapsed time

(seconds)

DSC (user vs.

ground-truth)

DSC (simulation vs.

ground-truth)

p-value DSC (user vs.

simulation)

Long axis only

Mean 30.38 0.934 0.943 0.1041 0.951

St. Deviation 6.41 0.013 0.008 0.021

Range [23.65–44.92] [0.911–0.952] [0.933–0.954] [0.918–0.985]

Long axis on 3 MPR planes

Mean 52.0 0.882 0.876 0.3075 0.877

St. Deviation 17.70 0.063 0.035 0.059

Range [31.75–86.61] [0.719–0.935] [0.8162–0.928] [0.792–0.962]

Long and short and few dropped

points, on MPR

Mean 65.31 0.844 0.857 0.5205 0.825

St. Deviation 18.01 0.054 0.029 0.063

Range [46.73–107.75] [0.729–0.923] [0.817–0.907] [0.718–0.921]
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FIGURE 8 | Accuracy Comparison: segmentation outlines by simulation (green), user (red) relative to the ground-truth (yellow) for one case in each of the three

categories (A) drawing an axial long axis, (B) drawing long axes on all MPR planes, and (C) performing additional edits required by dropping points.

of the remaining patients whose scores were at least 0.796 given
MPR drags, which is 123. Finally, 53 cases comprised the third
category (additional edits required).

Table 5 summarizes the results of measuring elapsed time for
a user to segment a batch of 10 cases from each of the three
categories of interaction. Regarding the first category where the
long axis is drawn only on the axial plane, the average time the
segmenter reported was 30.38 s, ranging from 23.65 to 44.92 s.
One of the 10 cases was large and highly heterogeneous, and
therefore the user had more slices to sort through to determine
a good place to drag; it should be noted that the initial drag for
this case was deleted and redrawn from a better angle. Similarly,
drawing the long axis on all three MPR planes resulted in an
average time of 52.0 s (range: 31.75–86.61 s). In the final category,
dragging lines and dropping points, as well as drawing using the
ball tool, as needed onMPR, resulted in an average time of 65.31 s
(range: 46.73–107.75 s).

DSC scores obtained from manual segmentation and
simulations are presented in Table 5. Simulated interaction
performed marginally better in the first and third categories,
while real interaction scored moderately better in the second
category, though none of those differences were statistically
significant. Further, DSC scores obtained by comparing user
segmentation and simulation are in the same range as DSC scores
with ground-truth. Given the three levels of user interaction,
segmentation results are depicted in Figure 8. In most cases, the
“between” DSC score was higher than both individual scores
computed relative to ground-truth (Figure 8B). In Figure 8A,
the “between” score is between the individual scores, which
in this case, occurs because the user under-segmented the
tumor area. Lastly, Figure 8C illustrates the third pattern of
the “between” score lying below both individual scores. In
this case the user under-segmented while the simulation over-
segmented, resulting in great disparity between the two. Note, in
the case depicted in Figure 8C there is no enhancing component
surrounding the necrotic core, a typical presentation of a GBM,
which would aid identification of tumor border and increase
agreement between user and simulation.

DISCUSSION

As large-scale labeled image datasets are being curated for
academic challenges and training DL models, the most
common application tends to be the development of fully
automatic methods for tumor segmentation that do not
involve user interaction. One driver of this trend might
be that developing and validating interactive algorithms
becomes laborious as the datasets grow, owing to the
time required to interact with every case in the validation
dataset. Further, validation ideally occurs very frequently,
interspersed between algorithm updates, and throughout
the process of algorithm development. However, for a
segmentation algorithm to be clinically applicable its outcome
should be optimal, i.e., similar to the ground-truth, and
therefore it’s expected to require “some” user input (Langlotz
et al., 2019). Our research aims to provide an approach to
automate many aspects of user interaction and thus expedite
large-scale validation.

Given a labeled dataset, it seems natural to employ it for
validation by measuring the true longest axis, and then using
that as an input to an interactive algorithm such as RPM.
However, our results showed that the true longest axis would
be a poor choice, as it scored the lowest of the four strategies
listed in Table 2, where “sweeping” the long axis proved the
optimal approach.

Further, our results showed a steady improvement in 3D
accuracy as interaction increases on axial plane; DSC scores
increased from 0.82 to 0.89. We demonstrate that drawing on
MPR markedly improves accuracy vs. drawing on axial planes
alone. Somewhat surprisingly, drawing a short axis in addition
to the long axis made a rather insignificant improvement in DSC.
Motivated by this finding, we changed RPM’s design to accept
multiple arbitrary lines rather than a single line constrained to be
perpendicular to the long axis. Therefore, the user may draw the
line through image content whose brightness needs to be sampled
in order to complement the sampling already performed by the
long axis.
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Future work will be inspired by the results of Table 4, which
suggest that accuracy in the 2D segmentations falls offmoderately
as the algorithm advances to the scout segmentations, and
does so again during advancement to the 3D segmentation.
Although each stage of the algorithm performs some machine
learning to glean information from the results of the prior stage,
perhaps more can be done in this regard. Future work will also
investigate why additional editing operations worsened scores
for certain patients as the statistical sampling from the initial
long axis appears to have been better suited for application to
3D segmentation.

Table 5 reveals that accuracy was comparable between the
simulated interaction and the real human interaction. Simulated
interaction performed marginally better in the first and third
categories, while real interaction scored moderately better in
the second category. Human interaction scores lower when
the segmenter and creators of ground-truth have a difference
of opinion. This effect is somewhat canceled out by the fact
that human interaction scores higher when the segmenter
can apply more intelligence than that embodied by the
simulation algorithm.

Timing results were extremely fast when comparing with
the limited number of reports currently published; one study
measured lung lesion contouring to require an average of
10.31min (Velazquez et al., 2013). Our sub-minute timing
confirms that RPM enables segmentation in routine clinical use.

For a technical description of how the algorithm compares
with popular interactive methods, the reader is referred to Gering
et al. (2018). Recent works have also introduced simulated user
interaction to either identify the object and initiate segmentation
(Xu et al., 2016) or refine the segmentation output obtained by
DL (Wang et al., 2018; Zhou et al., 2019). In contrast, our goal
in this manuscript was to simulate the approach a radiologist
would follow for initiating a segmentation and providing input
real time until the optimal result is achieved. When comparing
the approach Xu et al. followed for object identification, their
mode of interaction was to drop points, in contrast to our
mixture of lines and points (Xu et al., 2016). Further, their
objective was to generate tens of thousands of training samples
and points are sampled randomly from the foreground and

background object interiors with spacing constraints (Xu et al.,
2016). For comparison with other methods which accept user
strokes instead of just points, these randomly sampled points
are expanded to circles of radius 5 pixels. Observe that human
users would draw free-form strokes rather than perfect circles, so
our method differs by its intention to more realistically mimic
the actions of a human user, and by its purpose of facilitating
continuous algorithm development. Last but not least, in our
work we performed direct comparison of the outcome obtained
from simulations with the outcome obtained by a human user
to demonstrate that our simulations realistically capture real user
interaction (Table 5 and Figure 8).

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

ETHICS STATEMENT

Ethical review and approval was not required for the study
on human participants in accordance with the local legislation
and institutional requirements. Written informed consent for
participation was not required for this study in accordance with
the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

DG conceived the idea, developed the theory, and performed the
computations. BY-M performed the user segmentations for the
Timing Tests. DG contributed to the interpretation of the results.
DG and AK wrote the manuscript. NM, AA, and TM provided
critical feedback during manuscript preparation. LK, HK, JH,
RC, and LP provided critical feedback in RPM discussions and
design sessions. All authors approved the final manuscript.

FUNDING

This study was partially supported by NSF #1345927 (RC).

REFERENCES

Allozi, R., Li, X. A., White, J., Apte, A., Tai, A., Michalski, J. M., et al. (2010).

Tools for consensus analysis of experts’ contours for radiotherapy structure

definitions. Radiother. Oncol. 97, 572–578. doi: 10.1016/j.radonc.2010.

06.009

Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J. (2017c).

Segmentation Labeld and Radiomic Features for the Pre-Operative Scans of the

TCGA-LGG Collection. The Cancer Imaging Archive.

Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J. S.,

et al. (2017a). Advancing the cancer genome atlas glioma MRI collections

with expert segmentation labels and radiomic features. Sci. Data 4:170117.

doi: 10.1038/sdata.2017.117

Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J. S., et al. (2017b).

Segmentation Labels and Radiomic Features for the Pre-Operative Scans of the

TCGA-GBM Collection. The Cancer Imaging Archive.

Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A.,

et al. (2018). Identifying the best machine learning algorithms for

brain tumor segmentation, progression assessment, and overall

survival prediction in the BRATS challenge. arXiv preprint arXiv:

181102629.

Cover, T. M., and Thomas, J. A. (2012). Elements of Information Theory.NewYork,

NY: John Wiley & Sons.

Duda, R. O., Hart, P. E., and Stork, D. G. (2012). Pattern Classification. New York,

NY: John Wiley & Sons.

Eisenhauer, E. A., Therasse, P., Bogaerts, J., Schwartz, L. H., Sargent, D., Ford, R.,

et al. (2009). New response evaluation criteria in solid tumours: revised RECIST

guideline (version 1.1). Eur. J. Cancer 45, 228–247.

Gering, D., Sun, K., Avery, A., Chylla, R., Vivekanandan, A., Kohli, L., et al.

(2018). “Semi-automatic brain tumor segmentation by drawing long axes on

multi-plane reformat,” in International MICCAI Brainlesion Workshop (Berlin:

Springer), 441–455.

Frontiers in Computational Neuroscience | www.frontiersin.org 9 April 2020 | Volume 14 | Article 32

https://doi.org/10.1016/j.radonc.2010.06.009
https://doi.org/10.1038/sdata.2017.117
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Gering et al. Tumor Segmentation by Simulating User Interaction

Langlotz, C. P., Allen, B., Erickson, B. J., Kalpathy-Cramer, J., Bigelow, K., Cook, T.

S., et al. (2019). A roadmap for foundational research on artificial intelligence

in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop.

Radiology 291, 781–791. doi: 10.1148/radiol.2019190613

Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.

(2015). Themultimodal brain tumor image segmentation benchmark (BRATS).

IEEE Trans. Med. Imaging 34, 1993–2024. doi: 10.1109/TMI.2014.2377694

Omuro, A., and DeAngelis, L. M. (2013). Glioblastoma and other

malignant gliomas: a clinical review. JAMA. 310, 1842–1850.

doi: 10.1001/jama.2013.280319

Sorensen, A. G., Batchelor, T. T., Wen, P. Y., Zhang, W. T., and Jain, R. K.

(2008). Response criteria for glioma. Nat. Clin. Pract. Oncol. 5, 634–644.

doi: 10.1038/ncponc1204

Velazquez, E. R., Parmar, C., Jermoumi, M., Mak, R. H., van Baardwijk, A.,

Fennessy, F. M., et al. (2013). Volumetric CT-based segmentation of NSCLC

using 3D-Slicer. Sci. Rep. 3:3529. doi: 10.1038/srep03529

Wang, G., Zuluaga, M. A., Li, W., Pratt, R., Patel, P. A., Aertsen, M., et al.

(2018). DeepIGeoS: a deep interactive geodesic framework for medical

image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1559–1572.

doi: 10.1109/TPAMI.2018.2840695

Wen, P. Y., Macdonald, D. R., Reardon, D. A., Cloughesy, T. F., Sorensen, A. G.,

Galanis, E., et al. (2010). Updated response assessment criteria for high-grade

gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol.

28, 1963–1972. doi: 10.1200/JCO.2009.26.3541

Wolchok, J. D., Hoos, A., O’Day, S., Weber, J. S., Hamid, O., Lebb,é, C., et al.

(2009). Guidelines for the evaluation of immune therapy activity in solid

tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412–7420.

doi: 10.1158/1078-0432.CCR-09-1624

Xu, N., Price, B., Cohen, S., Yang, J., and Huang, T. S. (2016). Deep interactive

object selection. Paper presented at: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (Las Vegas, NV).

Zhao, F., and Xie, X. (2013). An overview of interactive medical image

segmentation. Ann. BMVA 2013, 1–22.

Zhou, B., Chen, L., and Wang, Z. (2019). Interactive deep editing framework for

medical image segmentation. Paper presented at: International Conference on

Medical Image Computing and Computer-Assisted Intervention (Shenzhen).

Conflict of Interest: DG, AA, and RC are named co-inventors on a patent

application (Patent Application No. PCT/US2018/040473. DG, AA, JH, BY-M,

LK, HK, RC, and LP are named co-inventors on a patent application (Patent

Application No. PCT/US2019/059897). TM declares an equity interest and

advisory role to HealthMyne, Inc. DG, BY-M, NM, AA, LK, HK, JH, RC, and LP

declare equity interest to HealthMyne, Inc. AK declares salary support from The

University of Texas MD Anderson Cancer Center, and HealthMyne, Inc.

Copyright © 2020 Gering, Kotrotsou, Young-Moxon, Miller, Avery, Kohli, Knapp,

Hoffman, Chylla, Peitzman and Mackie. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 10 April 2020 | Volume 14 | Article 32

https://doi.org/10.1148/radiol.2019190613
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1001/jama.2013.280319
https://doi.org/10.1038/ncponc1204
https://doi.org/10.1038/srep03529
https://doi.org/10.1109/TPAMI.2018.2840695
https://doi.org/10.1200/JCO.2009.26.3541
https://doi.org/10.1158/1078-0432.CCR-09-1624
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Measuring Efficiency of Semi-automated Brain Tumor Segmentation by Simulating User Interaction
	Introduction
	Materials and Methods
	Interactive Multi-Plane Reformat (MPR) Segmentation
	Simulation System
	Data Preparation
	Enumerating Tumors
	Simulating the Drawing of a Long Axis
	Simulating the Drawing of a Short Axis
	Simulating Dropped Points Along Structure Boundary
	Simulating Drawing on MPR

	Comparison of Volumes
	Timing Tests

	Results
	Long Axis Simulation
	Simulating User Interaction
	Timing Tests

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


