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1  Introduction

Mass spectrometry imaging (MSI) is a transformative tech-
nology in systems biology and clinical research (Addie et al. 
2015; Angel and Caprioli 2013). MSI enables the in situ 
analysis of tissue molecular composition for hundreds 
of metabolites and lipids simultaneously. Sophisticated 
approaches and software are therefore required in order 
to analyse and interpret the vast amount of data collected 
with each imaging experiment. As such, new bioinformatics 
tools and resources are needed to recreate molecular maps 
across tissue and probe statistical differences across a tissue 
slice using advanced pattern recognition tools, particularly 
in studies where disease processes need to be examined on 
a spatial basis (Alexandrov et al. 2010; Smentkowski et al. 
2007; Van de Plas et al. 2007).

There have been various software packages released to 
view and analyse MSI data (Bemis et al. 2015; Gibb and 
Strimmer 2012; Källback et al. 2016; Parry et al. 2013; Ver-
beeck et al. 2014). Many tools including Biomap, DataCube 
Explorer, msIQuant and MSiReader do not perform multi-
variate statistical analysis, whilst others are vendor specific, 
e.g., ImageQuest (Thermo Scientific). Omnispect and Cardi-
nal are freely available and perform multivariate analysis on 
data using non-negative matrix factorization and spatially-
aware clustering approaches, respectively. However these 
software packages do not provide lipid feature annotation. 
Recently, a framework for false-discovery rate-controlled 
metabolite annotation for MSI has been developed as part 
of the METASPACE consortium, with great potential for 
stream-lining MSI data analysis (Palmer et al. 2017).

Here, we have developed massPix, an R-based package 
which processes MSI data, plots single ion distributions and 
performs multivariate statistics [principal components analy-
sis (PCA) and clustering]. This software is different from 
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available tools, in that it has been designed specifically for 
lipidomics applications, enabling putative lipid annotations 
based on accurate mass. In addition, PCA and clustering 
may be performed to classify regions across tissue based on 
their lipid profiles (Hall et al. 2016, 2017). Furthermore the 
software is freely available, easy to implement by novices to 
R, and adaptable if required, by advanced users.

2 � Implementation

massPix supports data in imzML format (Race et al. 2012; 
Schramm et al. 2012). Free converters for raw data to imzML 
are available from http://www.imzML.org. Whilst massPix 
has been developed for high resolution matrix assisted laser 
desorption ionisation (MALDI) data acquired with Thermo 
Scientific instrumentation, the software is vendor agnostic 
and can be applied to any data in imzML format independent 
of mass spectrometry platform. massPix is compatible with 
Windows, Mac and Linux operating systems, and requires 
at least sufficient RAM to load the entire experimental 
dataset into memory (for instance to process 3 GB image 
file, ~3.2 GB memory is used). massPix is run from the R 
scripting interface, however a detailed knowledge of R is not 
required to install and use the software. Those with advanced 
knowledge of R programming can adapt the source code for 

their own needs. massPix outputs high quality images, a data 
frame of the final normalised and annotated image which 
can be further manipulated in R, and csv files for spectra 
corresponding to cluster centers, PCA loadings, and lipid 
annotations. The massPix R package, all R scripts, library 
files and the imzML Converter are available on GitHub 
(https://github.com/hallz/massPix). A brief introduction is 
provided with parameter descriptions, in addition to a step-
by-step presentation on software use and instructions on file 
conversion. Test data is available on the MetaboLights data 
repository (study ID: MTBLS487).

3 � Results and discussion

3.1 � Data acquisition

Most MSI workflows are based on MALDI or desorption 
electrospray ionisation (DESI) datasets. MALDI–MSI is 
currently more widely used within the field and these data-
sets have been used to developed massPix. In MALDI, a 
matrix is first applied to the tissue surface to aid ionisa-
tion. This is typically a small organic molecule, capable of 
absorbing the wavelength supplied by the laser and subse-
quently ionising surrounding analyte molecules (Fig. 1a). 
The laser raster-scans across the tissue surface, generating a 

Fig. 1   Overall MSI data 
acquisition and data analysis 
workflow. One of the most 
common mass spectrom-
etry imaging approaches uses 
matrix assisted laser desorption 
ionisation (MALDI). First, a 
tissue section is coated with a 
matrix to aid ionisation. Then a 
laser is fired across the tissue, 
generating a spectrum (m/z 
ratios, ion intensities) for each 
pixel analysed (x, y coordinate) 
(a). The overall data processing 
workflow followed by massPix 
is shown (b)
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mass spectrum for every pixel sampled. Spatial resolution is 
dependent on the optical design of the instrument, and varies 
from one to several hundred microns. The datasets generated 
are multi-dimensional, large and information-rich.

3.2 � massPix pipeline

The overall data processing workflow (Fig. 1b) consists 
of initial data pre-processing, filtering, image subsetting, 

Fig. 2   Imaging mouse cerebellum using MALDI-MSI. H&E stained 
section of mouse cerebellum, with major tissue regions highlighted 
(left). An adjacent section was coated in matrix (middle) and ana-
lysed by MSI (right). Single ion distributions for [PC(36:1)+K]+, 
[PC(38:6)+K]+

, [PC(40:6)+K]+, shown in red, blue and green, are 
predominantly located in white matter, granular layer and molecular 
layer, respectively (a). Overlaid image produced using ImageQuest 
(Thermo Scientific). Single ion distributions produced by massPix 

for [PC(36:1)+K]+, [PC(38:6)+K]+
, [PC(40:6)+K]+, in a sub-sec-

tion of cerebellum (b). Principal components analysis (PCA) (c) and 
k-means clustering (d) differentiate regions based on their lipid pro-
files. Average spectra for pixels located in cluster 1 (e). PCA loadings 
plot for the third principal component (f); lipids with more positive 
(negative) loadings correspond to regions with higher (lower) princi-
pal component scores
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deisotoping, annotation, normalisation, scaling, image 
“slicing” and multivariate statistics. First raw data must be 
converted to imzML format, which is then parsed to R. Ions 
with intensities greater than a threshold, from each spectra, 
are extracted and grouped to user-adjustable mass bins. The 
choice of bin width is dependent on the instrument mass 
resolving power (e.g. 10 ppm bin width for data acquired 
with 60,000 mass resolution at m/z 400; for lower/higher 
resolving power increase or decrease bin width, respec-
tively). Spectral features are defined by the median m/z value 
in each bin, and only features detected above a threshold 
proportion of spectra are retained. Average intensities for 
all features from a random subset of pixels are computed 
and used to perform deisotoping. The deisotoping algorithm 
identifies the molecular ion (M) and removes isotopes at m/z 
(M+1) and (M+2) which are within a calculated proportion 
of the intensity of M.

Putative lipid annotation by accurate mass is achieved 
by searching deisotoped ions against a generated library 
of lipid m/z ratios computed for all combinations of com-
mon fatty acids, lipid head-groups and anticipated adducts 
in each ionisation mode. The criteria for a match can be 
adjusted according to different MS performance capabili-
ties (for example. <3, <10 ppm etc). Lipid classes searched 
in positive ion mode are diacylglycerides (DAG), triacyl-
glycerides (TAG), phosphatidylcholines (PC), phosphati-
dylethanolamines (PE), phosphatidylserines (PS), LysoPC, 
cholesteryl esters (CE), sphingomyelins (SM) and ceramides 
(Cer). In negative ion mode, lipid classes searched are PC, 
phosphatidic acid (PA), PE, PS, phosphatidylglycerols (PG), 
phosphatidylinositols (PI), and free fatty acids (FFA). Whilst 
this list is not exhaustive, it does cover the most common 
lipid classes. Possible adducts considered are [M+K]+, 
[M+H]+

, [M+Na]+, [M+NH4]+ in positive ion mode and 
[M–H]−, [M+Cl]−, [M+OAc]− in negative ion mode. It is 
important to point out that a database hit based on accurate 
mass should only be considered the first step in metabolite 
identification, and confirmation carried out using MS/MS is 
required, where this appropriate. This is particularly critical 
where data has been collected at lower mass accuracy, for 
instance using lower resolution time-of-flight instruments, 
where the risk of false positives is higher. For example, 
using the test data provided, an additional 200 possible lipid 
annotations were made by changing the mass accuracy for 
annotation from 5 to 50 ppm.

massPix has the further capability to perform difference 
matching on deisotoped features to search for mass differ-
ences associated with measurement-introduced alternation 
(e.g. fragmentation) or biological modifications (e.g. oxi-
dation). Ion intensities are then normalised either to the 
median or total ion count, or to the average intensity of a 
set of standard ions. Single ion images can be produced, or 
normalised intensities used to create multivariate statistical 

images based on k-means clustering or PCA following cen-
tering and Pareto scaling (van den Berg et al. 2006). The 
analysis can be readily customised by replacing default 
parameters for filtering, normalisation and scaling, library 
composition, lipid assignment and image reporting.

3.3 � Test data

The power of multivariate statistics allows the differentiation 
of regions within tissue based on their lipid composition. 
This allows one to compare different regions in the same 
slice of tissue, for example tumour and adjacent tissue. As 
a test dataset, 15 micron tissue sections of wild type mouse 
cerebellum were coated with 2,5-dihydroxybenzoic acid 
(DHB) matrix (Sigma Aldrich, St Louis, MO; 10 mg/mL) 
and analysed by MSI (MALDI LTQ Orbitrap XL, Thermo 
Scientific, Hemel Hempstead, UK). The three major tis-
sue regions within the cerebellum - white matter, granular 
and molecular layers (Fig. 2a)—were clearly differenti-
ated by specific lipid profiles. Single ion distributions are 
shown for [PC(36:1)+K]+ (MSI Level 2; ChEBI:66857), 
[PC(38:6)+K]+ (MSI Level 2;  ChEBI:64519), 
[PC(40:6)+K]+ (MSI Level 2; ChEBI:64431) which are 
predominantly located in white matter, granular layer and 
molecular layers, respectively (Fig. 2a, b). massPix uses 
an unsupervised approach to classify pixels of high spec-
tral similarity using PCA (Fig. 2c) and k-means clustering 
(Fig. 2d). Spectra of cluster centres (Fig. 2e) and PCA load-
ings plots (Fig. 2f) provide detailed information about the 
relative lipid profiles of distinct regions and which lipid spe-
cies are important for classification. The use of massPix soft-
ware can thus aid interpretation of region-specific molecular 
changes. This is particularly important for understanding 
molecular mechanisms in disease processes.
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