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ABSTRACT

Background. The measurement of human fetal-maternal blood concentration ratio
(logEM) of chemicals is critical for the risk assessment of chemical-induced develop-
mental toxicity. While a few in vitro and ex vivo experimental methods were developed
for predicting logFM of chemicals, the obtained experimental results are not able to
directly predict in vivo outcomes.

Methods. A total of 55 chemicals with logFM values representing in vivo fetal-
maternal blood ratio were divided into training and test datasets. An interpretable linear
regression model was developed along with feature selection methods. Cross-validation
on training dataset and prediction on independent test dataset were conducted to
validate the prediction model.

Results. This study presents the first valid quantitative structure-activity relationship
model following the Organisation for Economic Co-operation and Development
(OECD) guidelines based on multiple linear regression for predicting in vivo logFM
values. The autocorrelation descriptor AATSClc and information content descriptor
ZMICI1 were identified as informative features for predicting logFM. After the adjust-
ment of the applicability domain, the developed model performs well with correlation
coefficients of 0.875, 0.850 and 0.847 for model fitting, leave-one-out cross-validation
and independent test, respectively. The model is expected to be useful for assessing
human transplacental exposure.

Subjects Bioinformatics, Toxicology, Gynecology and Obstetrics, Pharmacology, Data Mining
and Machine Learning
Keywords Transplacental transfer, Machine learning, logFM, Developmental toxicity

INTRODUCTION

The placenta, a barrier between fetal and maternal circulation, plays important roles in the
maintenance of fetus growth and development. The blood-placenta barrier protects the
fetus from exposure to pharmaceuticals and environmental pollutants (Myllynen, Pasanen
& Pelkonen, 2005). Placental permeability of chemicals is one of the critical endpoints

to evaluate the chemical-induced developmental toxicity (Myllynen, Pasanen ¢ Pelkonen,
2005; Myren et al., 2007). Traditionally, the assessment of teratogenic and fetotoxic effects
of chemicals was based on rodent models. In that way, placental transfer of chemicals can be
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measured in intact biological systems. However, since placenta is the most species-specific
organ, human cell lines and tissue models are considered more appropriate for evaluating
the transfer of chemicals across the human placental barrier (Leiser & Kaufmann, 1994;
Mpyllynen, Pasanen ¢ Pelkonen, 2005; Giaginis, Theocharis & Tsantili-Kakoulidou, 2012).

Several methods were developed for evaluating the placental transfer of chemicals
including in vitro assays based on primary trophoblastic cells and immortal placental
human cell lines (Vihdikangas & Myllynen, 2006; Myren et al., 2007) and an ex vivo human
placental perfusion model (Miller et al., 1993). The ex vivo human placental perfusion
model preserving intact structural integrity is able to mimic maternal and fetal blood
circulation and is therefore useful for studying the placental transfer of chemicals (Miller
et al., 1993). While the in vitro and ex vivo models provide valuable tools for analyzing
placental transfer of chemicals, they are both labor-intensive and time-consuming. Most
importantly, the results from in vitro and ex vivo methods are not able to directly predict
in vivo outcomes making the assessment of placental transfer difficult (Hutson et al., 2011).

In contrast, in vivo data provides the most direct evidence for the assessment of chemical
toxicity. in vivo data can be obtained by measuring drug concentrations in the umbilical
cord blood and maternal blood at delivery. The fetal-maternal concentration ratio is a
widely used indicator of placental permeability that has been applied to drug monitoring
(Chappuy et al., 2004; Ripamonti et al., 2007; Boyce, Hackett ¢ Ilett, 2011). Despite the
usefulness of in vivo data, ethical concerns in maternal-fetal medicine prohibit the in vivo
studies for new drugs and toxic substances (Bourget, Roulot ¢ Fernandez, 1995; Fukata et
al., 2005; Zhang et al., 2017). in vivo data of placental transfer is therefore very scarce. The
development of computational models capable of predicting in vivo placental transfer of
chemicals is desirable both for providing a better understanding of placental transfer and
prioritization of chemicals of toxicity concerns for further testing.

To date, three computational models have been developed to address the quantitative
structure-activity relationship (QSAR) between chemical descriptors and the placental
transfer of chemicals. Two out of the three models are focused on the prediction of ex
vivo human placental perfusion results due to the availability of data (Giaginis et al.,
2009; Zhang et al., 2015). Only one model has been developed for predicting in vivo
fetal-maternal blood concentration ratio data (logFM) (Takaku et al., 2015). The in vivo
data was manually curated from published literature of clinical studies. Three features of
molecular weight (MW), topological polar surface area (TopoPSA), and maximum E-state
of hydrogen atom (Hmax) were found to be correlated to logFM. While an acceptable
test performance was reported with a moderate correlation coefficient of 0.714 between
observed and predicted logFM values, the QSAR model is focused on the theoretical
investigation of structure-activity relationship and is not ready for practical uses due to two
major issues. First, its performance should be further improved to fit the widely accepted
performance criterion with an R? value larger than 0.6 to be considered as a good model
(Alexander, Tropsha & Winkler, 2015). Second, its applicability domain (AD) should be
defined to be practically useful according to the Organisation for Economic Co-operation
and Development (OECD) QSAR guideline (OECD, 2007).
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This work presents the first valid QSAR model for predicting logFM values of chemicals.
To provide an interpretable prediction of logFM, the QSAR model was developed based on
multiple linear regression. A four-step feature selection method was utilized to identify two
informative features with reasonably good performance whose correlation coefficient values
are 0.796, 0.759 and 0.808 for model fitting, leave-one-out cross-validation (LOOCV) and
independent test, respectively. Subsequently, a novel AD adjustment method was proposed
to generate exclusion rules for identifying chemicals out of the AD based on the classification
and regression tree (CART) (Breiman, 2017) analysis. After the application of the defined
AD, the developed QSAR model achieved high performance with correlation coefficients
of 0.875, 0.850 and 0.847 for model fitting, leave-one-out cross-validation (LOOCV) and
independent test, respectively. The QSAR model is expected to be useful for predicting in
vivo placental permeability of chemicals.

MATERIAL AND METHODS

Dataset

The logFM values representing in vivo fetal-maternal blood ratio of 55 chemicals were
obtained from a previous work collecting in vivo data from 16 published studies (Takaku
et al., 2015). The 55 chemicals were randomly divided into a training dataset and a test
dataset with 41 and 14 chemicals, respectively. The training dataset is utilized for feature
selection, cross-validation of models, and training the final model for independent tests
on the test dataset. For the development of quantitative structure-activity relationship
(QSAR) models, 1-dimensional (1D) and 2-dimensional (2D) descriptors including
physicochemical properties were calculated for each chemical using the PaDEL-Descriptor
v2.21 software (Yap, 2011). PaDEL-Descriptor has been shown to be useful for developing
QSAR models for several endpoints (Takaku et al., 2015; Huang et al., 2015; Tseng et al.,
2017) and currently it is able to calculate 1,875 descriptors (1,444 1D, 2D descriptors and
431 3D descriptors) and 12 types of fingerprints. In this study, a 1,444-dimensional feature
vector for each chemical was generated consisting of 1,444 1D and 2D descriptors for
model development. The data tables of training and test datasets are available as Tables S1
and S2, respectively.

Model development and feature selection

To construct an interpretable model for logFM prediction, a four-step feature selection
method was developed to identify the most important feature set for developing multiple
linear regression models. The first three steps of the feature selection are to remove features
with (1) extreme values that are at least 100-fold larger than average, (2) more than or equal
to 50% zero values (scarcity), and (3) small variation (less than 8 unique values). In the
fourth step, the Lasso method (Tibshirani, 1996) was applied to select informative features
from the remaining feature set based on a leave-one-out cross-validation (LOOCV).
Subsequently, Z-score (Kreyszig, 1979) was applied to normalize the informative features
for training multiple linear regression models as shown in Eq. (1).

z=(x—w/o, (1)
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where z, x, pand o represent the normalized feature value, original feature value, mean
of the feature and variance of the feature, respectively. Since features with scarcity and
small variation are less informative descriptors that are not useful for modeling chemicals,
these features were excluded from subsequent analysis. In this study, the LassoCV and
LinearRegression functions of the scikit-learn package (Pedregosa et al., 2011) were utilized
to implement the Lasso-based feature selection and model training, respectively.

Applicability domain

To determine the applicability domain (AD) of the developed models, a decision tree-
based method was proposed to identify the structural descriptors of chemicals prone to
be incorrectly predicted. We conducted a rigorous method (Tung, Lin & Wang, 2019) to
adjust the AD of the developed models solely based on the training dataset and evaluate
the AD based on the test dataset. A four-step algorithm was described as follows. First,
the absolute error for each chemical was calculated based on the LOOCYV on the training
dataset. Second, the feature vectors and absolute errors of chemicals were analyzed by

a classification and regression tree (CART) (Breiman, 2017) to identify the structural
rules with the highest absolute errors. The DecisionTreeRegressor function of scikit-learn
package was utilized to conduct the decision tree analysis. Third, the rule with the highest
absolute error was recursively identified and applied to exclude chemicals out of the AD.
Finally, the adjusted AD was applied to identify chemicals in the test dataset within the AD
for calculating the performance of the developed models.

RESULTS AND DISCUSSION

Model development

To develop a prediction model for logFM, a four-step feature selection method was applied
to identify informative features. The 1,444 features were firstly analyzed following the first
three feature selection steps. A total of 18, 507 and 22 features with extreme values, scarcity
and small variation, respectively, were excluded from the subsequent study. The Lasso
feature selection was then applied to identify two informative features of AATSClc and
ZMICI1 representing the average centered Broto-Moreau autocorrelation (lag 1, weighted
by charges) and Z-modified information content index (neighborhood symmetry of
1-order), respectively, from the remaining 897 features based on the training dataset.

The two features were utilized to train and cross-validate a model based on the training
dataset. The fitting results of logFM for chemicals in the training dataset is shown in Table 1
and the leave-one-out cross-validation (LOOCV) results are shown in Fig. 1. Please note
that the feature values shown in Table 1 are z-score normalized values. Their corresponding
mean and variance are 1.32E-04 and 8.35E-06 for AATSClc and 4.65E+01 and 3.33E+02
for ZMIC1, respectively. The developed model is shown in the following Eq. (2).

logFM = —0.0882 x AATSC1c—0.2139 x ZMIC1 —0.3161. (2)

The negative coefficients in Eq. (2) indicate a negative correlation between the two
features and the logFM, i.e., an increase of the two features of AATSClc and ZMIC1
result in a decrease of the logFM value. To further clarify the importance of the features,
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Table 1 Training dataset with normalized features, logFM values and applicability domain (AD) in-

formation.
Name AATSCIc ZMIC1 Observed logFM Predicted logFM AD
Oxychlordane 0.90 1.90 —1.02 —0.80 Y
DDE 1.06 1.10 —0.98 —0.64 Y
Mifepristone 1.10 —0.03 —0.96 —0.41 N
Atazanavir —0.36 1.94 —0.89 —0.70 Y
Nonachlor 1.54 2.54 —0.84 —1.00 Y
Chlordane 1.46 1.88 —0.78 —0.85 Y
HCB 1.69 1.23 —0.70 —0.73 Y
Flupenthixol 0.58 0.70 —0.62 —0.52 Y
Lopinavir 0.11 1.76 —0.62 —0.70 Y
Propranolol 0.57 —0.34 —0.59 —0.29 Y
Disopyramide 0.86 0.17 —0.59 —0.43 Y
Piperacillin —1.09 0.76 —0.57 —0.38 Y
Heptachlor epoxide 1.25 1.41 —0.48 —0.73 Y
Etidocaine 0.85 —0.59 —0.47 —0.26 Y
Buprenorphine 0.77 0.33 —0.46 —0.45 Y
Oxprenolol 0.25 —0.68 —0.43 —0.19 Y
Didanosine —1.41 —1.18 —0.42 0.06 N
Norbuprenorphine 0.47 —0.09 —0.31 —0.34 Y
Clindamycin —0.27 —0.12 —0.30 —0.27 Y
Lidocaine 0.73 —0.83 —0.26 —0.20 Y
Clonazepam 0.57 —0.16 —0.23 —0.33 Y
Flecainide —0.96 0.47 —0.20 —0.33 Y
Nevirapine 0.07 —0.77 —0.17 —0.16 Y
Remifentanil 0.03 0.07 —0.14 —0.33 Y
Ethabutol —0.06 —0.86 —0.12 —0.13 Y
Nifedipine —0.07 —0.31 —0.11 —0.24 Y
Acebutolol 0.08 —0.61 —0.10 —0.19 Y
Clonidine —0.42 —0.72 —0.05 —0.13 Y
Ticarcillin —1.67 —0.20 —0.04 —0.13 Y
Lamivudine —2.50 —1.24 —0.03 0.17 Y
Chlorpyrifos —1.46 0.04 —0.01 —0.20 Y
Indomethacin —0.33 —0.13 —0.01 —0.26 Y
Metronidazole —0.49 —1.39 0.00 0.03 Y
Diazinon —0.73 —0.51 0.00 —0.14 Y
Metoprolol 0.54 —0.74 0.00 —0.20 Y
Abacavir —0.97 —0.71 0.01 —0.08 Y
Procainamide 0.35 —0.62 0.04 —0.21 Y
Zidovudine —1.45 —1.07 0.09 0.04 Y
Diazepam 0.79 —0.12 0.10 —0.36 N
Stavudine —2.09 —1.13 0.12 0.11 Y
Valproic acid —0.27 —1.15 0.18 —0.05 Y
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Figure 1 The leave-one-out cross-validation results based on the training dataset and two informative
features. Abbreviations: AD, applicability domain; Y, the chemical is in the AD (red dot); N, the chemical
is out of the AD.

Full-size Gal DOI: 10.7717/peerj.9562/fig-1

standard partial regression coefficients were calculated based on a piecewiseSEM package
(Lefcheck, 2016). The partial regression coefficients for AATSClc and ZMIC1 are —0.2586
and —0.6297 suggesting that a full shift in AATSClc and ZMIC1 would result in a shift
of 26% and 63% along the range of logFM. The correlation coefficient values of model
fitting and LOOCV on the training dataset were 0.796 and 0.759, respectively. The small
difference between the correlation coefficients of model fitting and LOOCV indicates a
small chance of overfitting problems that is consistent with a similar correlation coefficient
value of 0.808 obtained from the independent test on the test dataset. Detailed prediction
results on the test dataset are shown in Table 2 and Fig. 2 presents the plot of observed and
predicted logFM values. Please note that the feature values shown in Table 2 are z-score
normalized values.

The y-randomization test, a widely used method for assessing the quality of a developed
model by comparing the model performance with random models (Riicker, Riicker ¢
Meringer, 2007), was also utilized to test the model. A total of 100 runs of LOOCV were
conducted based on 100 modified training datasets whose corresponding logFM values
were randomly shuffled. The mean and standard deviation of the y-randomization test are
—0.202 and 0.288, respectively. The y-randomization performance is much lower than the
original model (0.759) showing the uniqueness of our model.

Adjustment of applicability domain

While the model is with acceptable performance, it is extremely important to determine the
applicability domain (AD) as the number of chemicals in the training dataset is relatively
small compared to the huge chemical space. By properly adjusting the AD, the chemicals
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Table 2 Test dataset with normalized features, logFM values and applicability domain (AD) informa-

tion.
Name AATSClIc ZMIC1 Observed Predicted AD
logFM logFM
Indinavir 0.44 1.54 —1.10 —0.68 Y
Duloxetine 1.13 0.04 —0.92 —0.43 N
17-Hydroxyprogesterone caproate 0.90 0.71 -0.70 —0.55 Y
Nelfinavir 0.34 0.82 —0.60 —0.52 Y
Bupivacaine 0.91 —0.38 —0.52 —0.31 Y
Cefoperazone —1.48 0.65 —0.46 —0.32 Y
Naloxone 0.15 —0.75 —0.30 —0.17 Y
Isoniazid —0.31 —1.35 —0.21 0.00 Y
Midazolam 0.80 —0.22 —0.13 —0.34 N
Phthalimide —0.80 —0.85 —0.09 —0.06 Y
Chloroquine 1.24 —0.39 —0.03 —0.34 Y
Sotalol —0.09 —0.71 0.00 —0.16 Y
Dicloran 0.24 —0.62 0.03 —0.21 Y
Carnitine —0.28 —1.27 0.11 —0.02 Y
0.0 -
=
uc‘, -0.2 -
°
©
B -0.4 -
2
©
2
& _o06-
-0.8 -
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Observed logFM

Figure 2 The independent test results based on the test dataset and two informative features. Abbrevi-
ations: AD, applicability domain; Y, the chemical is in the AD (red dot); N, the chemical is out of the AD.
Full-size Gl DOI: 10.7717/peerj.9562/fig-2

within the defined AD of the developed model can be identified and the prediction
performance is expected to be improved (Tung, Wang ¢ Wang, 2018; Tung, Lin ¢ Wang,
2019). To accurately evaluate the usefulness of AD for predicting unseen chemicals, the AD
of the developed model was adjusted by using only the training dataset and independently
tested by using the test dataset.
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Table 3 Exclusion rules for identifying chemicals out of the defined applicability domain.

Exclusion rule AATSClc ZMIC1

#1 0.782 <x —0.077 <x <=0.073
#2 —1.957 <x <= —0.838 —1.315 <x <= —1.141
#3 0.782 <x —0.359 <x <= —0.077

In this study, we proposed a novel AD adjustment method based on the CART
algorithm to identify exclusion rules for removing chemicals out of the AD. While the
model performance can be continuously improved by appending more exclusion rules, a
decreased coverage of chemicals within the AD can limit the practical use of the model. To
balance the tradeoff between performance and coverage, we applied a stopping criterion
for determining the optimal number of exclusion rules as follows. The exclusion rules were
iteratively selected until no significant improvement (<1%) on the correlation coefficient
was obtained by an additional exclusion rule. A total of three exclusion rules (Table 3) were
selected to exclude chemicals out of AD. The exclusion rules shown in Table 3 indicate that
chemicals with a relatively large AATSClc value (0.782 <x) and medium ZMIC1 values
(—0.359 <x <= 0.073) are out of AD. In addition, chemicals with small values of AATSCIc
(—1.957 <x <= —0.838) and ZMICI1 (—1.315 <x <= —1.141) are out of AD. Please note
that the exclusion rules are based on normalized feature values.

After the adjustment of AD, three corresponding chemicals in the training dataset were
identified to be out of AD as shown in Table 1. Mifepristone, didanosine, and diazepam were
excluded based on rules of #1, #2, and #3 (Table 3), respectively. The model performance
was largely improved with correlation coefficient values of 0.875 and 0.850 for model
fitting and LOOCYV on the training dataset, respectively. The coverage of chemicals within
AD is 92.68% (38/41). The defined AD was subsequently applied to exclude chemicals
in the test dataset. As shown in Table 2, two chemicals were identified to be out of AD.
Duloxetine and midazolam were excluded based on rules of #1 and #3, respectively. The
test performance was substantially improved with a correlation coefficient of 0.847 and
coverage of 85.71% (12/14) on the test dataset.

Analysis of informative features

Two features of AATSClc and ZMIC1 were identified as informative features. AATSClc
belongs to the autocorrelation descriptor representing the average centered Broto-Moreau
autocorrelation of lag 1 weighted by charges (Todeschini ¢» Consonni, 2009). The spatial
charge descriptor is relevant to lipophilicity that is considered an important factor for
placental transfer (Pacifici & Nottoli, 1995). ZMICL1 is an information content descriptor
representing the Z-modified information content index (neighborhood symmetry of 1-
order) (Todeschini ¢ Consonni, 2009). ZMIC1 is correlated with the molecular branching,
size and ring closure and size is another important factor for placental transfer (Pacifici
& Nottoli, 1995). The selected features of AATSClc and ZMICI are only moderately
correlated with a correlation coefficient of 0.449 showing no multicollinearity problems.
To compare with the three features (MW, Hmax and TopoPSA) identified by a previous
study (Takaku et al., 2015), the correlation coefficients among the two informative features
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Table 4 The correlation among features identified in this study and a previous study (Takaku et al.,
2015).

Correlation coefficient MW Hmax TopoPSA
AATSClc 0.107 —0.611 —0.645
ZMIC1 0.778 —0.199 —0.013

of this study and previously identified three features were calculated as shown in Table 4.
The analysis showed that ZMICI1 positively correlates to MW (molecular weight) with a
high correlation coefficient of 0.778. In contrast, AATSCIc negatively correlates to Hmax
and TopoPSA with moderate correlation coefficients of —0.611 and —0.645, respectively.

The test performance of the proposed model using the two informative features
(correlation coefficient = 0.808) is much better than the previous study using three
features (0.714). As a strong correlation (correlation coefficient = 0.613) between Hmax
and TopoPSA and a moderate correlation (correlation coefficient = 0.494) between
MW and TopoPSA were observed, multicollinearity might be responsible for the worse
performance of the previous study. The three features of MW, Hmax and TopoPSA were
all excluded by the fourth step of feature selection using the Lasso method and LOOCV.
The proposed algorithm coped well with the multicollinearity problem, compared with
the previous study based on Akaike Information Criterion (AIC) and the whole training
set. After the AD adjustment, the performance was further improved to 0.847. The two
informative features are considered more relevant to logFM values.

CONCLUSIONS

The development of computational models for predicting fetal-maternal blood
concentration ratio of chemicals in humans can help the design of safer drugs and avoid
unwanted toxicity by exposure to chemicals. This study presents the first valid QSAR model
following the OECD principles with good prediction performance under the defined AD.
The five principles are (1) a defined endpoint, (2) an unambiguous algorithm, (3) a
defined domain of applicability, (4) appropriate measures of goodness-of-fit, robustness
and predictivity, and (5) a mechanistic interpretation, if possible (OECD, 2007). The
QSAR model is a multiple linear regression model based on two features of AATSClc
and ZMIC1 selected by the Lasso method. The AD of the QSAR model was determined
by a novel decision tree-based analysis method and gave high correlation coefficients of
0.875, 0.850 and 0.847 for model fitting, leave-one-out cross-validation and independent
test, respectively. The QSAR model is expected to be useful for predicting logFM values
in humans that is an important endpoint for assessing the developmental toxicity of
chemicals. Future work could be the integration of the transplacental prediction model to
the weight-of-evidence framework (Tung et al., 2020) as one evidence. The combination
of multiple in silico models could further improve the overall accuracy for prioritizing
chemicals of developmental toxicity.
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