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A B S T R A C T   

The world is significantly affected by infectious coronavirus disease (covid-19). Timely prognosis and treatment 
are important to control the spread of this infection. Unreliable screening systems and limited number of clinical 
facilities are the major hurdles in controlling the spread of covid-19. Nowadays, many automated detection 
systems based on deep learning techniques using computed tomography (CT) images have been proposed to 
detect covid-19. However, these systems have the following drawbacks: (i) limited data problem poses a major 
hindrance to train the deep neural network model to provide accurate diagnosis, (ii) random choice of hyper-
parameters of Convolutional Neural Network (CNN) significantly affects the classification performance, since the 
hyperparameters have to be application dependent and, (iii) the generalization ability using CNN classification is 
usually not validated. To address the aforementioned issues, we propose two models: (i) based on a transfer 
learning approach, and (ii) using novel strategy to optimize the CNN hyperparameters using Whale optimization- 
based BAT algorithm + AdaBoost classifier built using dynamic ensemble selection techniques. According to our 
second method depending on the characteristics of test sample, the classifier is chosen, thereby reducing the risk 
of overfitting and simultaneously produced promising results. Our proposed methodologies are developed using 
746 CT images. Our method obtained a sensitivity, specificity, accuracy, F-1 score, and precision of 0.98, 0.97, 
0.98, 0.98, and 0.98, respectively with five-fold cross-validation strategy. Our developed prototype is ready to be 
tested with huge chest CT images database before its real-world application.   

1. Introduction 

Covid-19, the disease caused by the SARS-CoV-2 was officially 
declared as a pandemic by World Health Organization (WHO), if not 
detected early, can be fatal and evolve as Acute Respiratory Disease 
Syndrome (ARDS). Thus, early prediction of risk factors and screening of 
patients is crucial to curb the spread in society thereby preventing 
mortality [1]. Limited access to health monitoring facilities hinders the 
development of sustainable cities. With the global pandemic swaying its 
way in the lives of people in a capricious manner, causing unprece-
dential damage to health, economy. It is necessary to combat the spread 

of covid-19 in early stages and provide proper treatment. Currently, 
RT-PCR is the most common screening method for the detection of 
covid-19. However, the method is laborious and also has low detection 
sensitivity in the initial stages. At the onset of covid-19, few changes are 
observed in the CT-scans of patients [2]. For instance, consolidation and 
dilation were observed by Zhao et al. [3], in covid affected patients. 

A CT scan provides information regarding the size, shape, texture, 
and density of various anatomical regions of the body. Fig. 1 illustrates 
the sample CT images of covid affected and non-covid affected images. 
In contrast, to the conventional X-Rays, much information is embedded 
in a CT scan image. This information is usually analyzed by clinicians to 
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provide the diagnosis. However, due to the subjectivity involved and 
also due to the scarcity of clinicians in fighting this global pandemic, it is 
necessary to develop an objective diagnostic mechanism, that could 
speed up the diagnosis and aid in the early detection. 

Off late, deep learning tools have been used to automate and speed 
up the diagnosis [4–15]. A self-trans approach using transfer learning 
and feature extraction methods was proposed by He et al. [5], achieving 

an F1-score of 0.85. A precision of 0.84, recall of 0.95, was obtained by 
Mobiny et al. [6], using a detailed oriented capsule network. Polsinelli 
et al. [7], achieved an accuracy of 0.83 by using SqueezeNet Convolu-
tion Neural Networks (CNN) architecture. A voting-based scheme using 
certain deep learning models was proposed by Silva et al. [4], achieving 
an accuracy of 0.87. A weakly-supervised method using deep learning 
was utilized by Hu et al. [8], achieving covid classification accuracy of 

Fig. 1. Sample chest CT images: covid-19 affected patients (first row images), and normal subjects (second row) [4].  

Table 1 
Overview of the studies conducted on automated detection of covid-19 using chest CT images.  

Ref. Dataset Feature types Feature 
Selection 

Classification Computational 
Complexity 

Runtime Accuracy Sensitivity 

[5] Chest Dataset 746 
images 

Self-trans approach for 
feature representation 

– ResNet-50 
Densenet-16 

Computational 
expensive 

– 0.86 – 

[6] Chest Dataset 746 
images 

– – Decapsulated 
architecture built using 
ResNet 

– – – 0.91 

[7] Chest Dataset 746 
images and Italian 
dataset 

– – CNN based on 
SqueezeNet 

– 7.8s for a 
single image 

0.85 – 

[8] Real time Hospital 
dataset 480 patient 
scans 

– – Inspired by VGG Time consuming 
manual labelling 
process 

– 0.96 0.94 

[9] Real time Hospital 
dataset 630 patient 
scans 

– – 3D deep CNN  1.93s 0.90 0.84 

[10] Real time Hospital 
dataset 612 patient 
scans 

Pattern location 
distribution 

– Decision Trees 
KNN 
Naive Bayes 
SVM 
Ensemble 

– – 0.91 0.93 

[11] SARS CoV2 2482 
scans 

– – Convolutional SVM – 25min 36s 0.96 0.92 

[12] 126 images GLCM 
LBGLCM 
GLRLM 
SFTA 

PCA 
SAE- 
method 

SVM – – 0.94 0.91 

[13] 339 CT images 
collected from 
various sources 

– – One convolutional layer 
with 10 filters 

– – 0.94 – 

[15] Real time Hospital 
dataset 1020 patient 
scans 

– – AlexNet 
VGG-16 
SqueezeNet 
GoogleNet 
MobileNet-V2 
ResNet-18, 50, 101 
Xception 

– – 0.99 
(ResNet- 
101) 

0.99 
(ResNet- 
101) 

Note: GLCM- Grey Level Co-occurrence Matrix, LBGLCM- Local Binary Grey Level Co-occurrence Matrix, GLRLM- Grey Level Run Length Matrix, SFTA- Seg-Based 
Fractal texture analysis, SAE- Stacked Encoder, PCA-Principal Component Analysis. 
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0.89. An accuracy of 0.9 and sensitivity of 0.8 was obtained by Wang 
et al. [9], by employing U-net architecture on 3D CT volumes. However, 
the method was trained on imperfect ground truth masks thereby 
resulting in misleading results [9]. Ardakani et al. [10], developed a 
CAD tool termed as CovidDiag by extracting a set of twenty radiological 
features using CT images and further classifying into covid and 
non-covid classes using five different supervised classifiers. Ozakya et al. 
[11], achieved a sensitivity of 92% using a convolutional support vector 
machine. Further few other pre-trained models were also evaluated for 
the CT covid images. A sensitivity of 68% was obtained by Ozturk et al. 
[12], using a set of 495 shrunken features obtained by employing 
stacked auto encoder and principal component analysis. Maghdid et al. 
[13], obtained an accuracy of 94% using pre-trained AlexNet architec-
ture, additionally, a dataset of images was also created [13]. A detailed 
review of methods for detection of covid19 using deep learning tech-
niques and lung segmentation is given in Ref. [14]. A set of ten promi-
nent CNN’s were investigated by Ardakani et al. [15], for distinguishing 
covid and non-covid CT images, it was observed that ResNet 101 and 
Xception resulted in good classification performance [15]. Table 1 
provides a summary of the studies pertaining to CT image based 
covid-19 detection techniques. 

In the proposed work, two covid-19 classification architectures are 
proposed, the first architecture is built using features extracted from five 
standard CNN architectures and classified using AdaBoost of decision 
stump trees created using ensemble selection techniques. The second 
architecture is a novel concept, which is built by optimizing the 
hyperparameters of a CNN using Whale Optimization and Bat (WOA- 
BAT) swarm heuristics algorithm, to obtain features from CT images, 
and the extracted features are further classified using a robust classifi-
cation set-up. A CNN hyperparameter optimization methodology is 
proposed by Pathan et al. [16], however, the proposed method is 
different from the method in Ref. [16], in the following ways, (i) An 
optimized CNN is used for extraction of features and further dynamic 
ensemble of classifiers are used to classify CT images, into covid-19 and 
non covid-19, whereas in Ref. [16], a GWO optimized CNN is used for 
three class classification of images, (ii) The proposed method addressed 

the limited dataset and overfitting problem, since a dynamic and robust 
classifier set-up is used for classification, rather than a complex CNN, 
which requires a larger dataset for achieving good classification 
accuracy. 

1.1. Motivation 

CNNs possess excellent capability to analyze the images with very 
high level of semantics by learning from abstract representations. The 
filter bank approach adopted in a CNN aids in exploiting the texture 
content in the images, in contrast to the handcrafted filter bank ap-
proaches. One of the major bottlenecks associated with the studies re-
ported in the literature (Table 1) is the availability of huge data. Since 
deep learning models perform better with larger datasets, the applica-
tion of the above-reported methods in clinical scenario lacks reliability. 
Also, these methods have employed standard parameters to develop the 
models. The classification performance of a CNN is mainly influenced by 
the hyperparameters chosen and dataset [26]. Since the choice of 
hyperparameters is application dependent and may lead to 
low-performance metrics. Rather than randomly choosing the hyper-
parameter values, application specific values derived from an optimi-
zation methodology is adopted. In this regard, the WOA-BAT 
optimization algorithm is adopted, in contrast to other swarm meta 
heuristic optimization algorithms. Also, the WOA avoids local optima 
and reaches a global optimum solution without any structural refor-
mation [28,29]. Additionally, we aim to improve the classification 
performance of covid-19 images, thus we created an ensemble of clas-
sifiers, and based on the test sample characteristics, a classifier is chosen 
in a dynamic fashion using ensemble selection techniques. This not only 
addresses the limited data problem without increasing the computation 
time and cost, but also improves the classification accuracy, which are 
needed in the current scenario. 

1.2. Novelty and contributions 

The novelty of the methodology is the application of WOA-BAT 

Fig. 2. Overview of the proposed model.  
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algorithm to determine the hyperparameter values of optimized CNN 
architecture. This will help to obtain reduced and efficient feature set for 
image classification. The major contributions of the paper are given 
below: 

1. Presented a compact deep learning-based dynamic ensemble classi-
fier for prediction of covid-19 using chest CT images.  

2. Developed an optimized CNN using WOA-BAT algorithm to extract 
features. These features are classified using robust ensemble of dy-
namic classifiers built using decision stump trees. Appropriate choice 
of hyperparameters determine the accuracy of the classification. In 
most of the CNN based classification algorithms, the hyper-
parameters are selected randomly, irrespective of the application, 
thereby yielding poor classification performance. In the proposed 
design, hyperparameters are selected based the features extricated 
from the chest CT images. To the best of our knowledge, the proposed 
optimized set-up is the first of its kind in the literature to date for the 
prediction of covid-19 using chest CT images. 

2. Methodology 

The proposed classification architectures are briefed as follows:  

1. The first classification model deploys an ensemble of five standard 
CNN architectures for feature extraction and features are further 
selected using Binary Grey Wolf Optimizer (BGWO).  

2. In the second classification model, the CNN hyperparameters are 
optimized through WOA-BAT algorithm, for the extraction of 
features. 

In both the classification models, the same classifier set-up is used for 
determining the class of the CT images using the features extracted from 
the respective CNN architectures. 

2.1. Deep learning ensembles for feature extraction 

The overview of the model 1 is given in Fig. 2. The first step includes 
the extraction of features from the CT images. Transfer learning is useful 
when the dataset is small. In this study, five standard CNN architectures 
namely ResNet-50, AlexNet, VGG19, Densenet, and Inception V3 are 
used to extract the features.  

• AlexNet- This architecture can classify more than 1000 different 
classes and built using 60 million parameters [17]. It comprises of 5 
Convolutional Layers (CL) with three pooling, with two fully con-
nected layers, and softmax layer. The first convolution layer has 96 
kernels of size 11x11x3 and takes an input image of dimension 
227x227x3. The two CL layers are followed by overlapping 
max-pooling layers. The Rectified Linear Unit (ReLu) is applied as 
the activation function. In this work, from the last layer, a set of 1000 
features are extracted. 

• ResNet- It is introduced to solve the vanishing gradient and degra-
dation problem in CNN’s [18]. Depending on the number of layers, it 
has different versions like ResNet 18, 50, and 101. During training, it 
learns from the residual features. In our work, we have used 
ResNet-50 architecture and generated 1000 features.  

• VGG19- It is a 19 layer deep CNN similar to AlexNet from the visual 
geometry group and can classify images into 1000 classes [19]. The 
input dimensions are 224x224x3 and VGG19 consists of 16 CL with 3 
fully connected layers. We have extracted 1000 features from the last 
fully connected layer (fc8).  

• DenseNet- It is an extension of ResNet, it exploits the potential of 
network through feature reuse [20]. Dense nets are divided into 
dense blocks, wherein feature map dimensions remain constant 
within a block, with variations in the number of filters.  

• Inception V3- It is a 48 layer deep CNN that takes an input image of 
size 299x299x3 [21]. The model consists of techniques such as fac-
torized convolutions, regularizations, dimension reduction, and 
parallelized computations to obtain optimum network performance. 
Thus from the five standard architectures, 5000 features are 
extracted. 

In this work, we have obtained large number of features, hence 
redundant features are to be eliminated. Thus, a swarm-based binary 
grey wolf optimization algorithm is applied to each of the individual 
feature vectors from each architecture, leading to 3320 feature vectors. 
The feature vectors are then concatenated and subjected to the feature 
selection process, resulting in final set of 2185 features. The procedure 
for feature selection is described below. 

2.2. Feature selection using Binary Grey Wolf Optimizer (GWO) 

Over the recent years swarm based optimization methods have been 
used for several applications [22–24]. Mirajalili et al. [25], proposed a 
GWO optimization algorithm that mimics the hunting mechanism of 
wolves. The wolves are named as alpha (∝), beta (β), delta (δ), and 
omega (ω). The initial three wolves are the fittest wolves and ω wolves 
are considered as subordinates. The nature of prey-hunt is given in (1-2). 

D=
⃒
⃒CXp(t) − X(t)

⃒
⃒ (1)  

X(t+ 1)=Xp − AD (2)  

where, t indicates the iteration, the distance is given as D, C and A are 
the coefficients computed as given in (3). The prey’s position is denoted 
as Xp, X is the current location of wolf. 

A= 2ar1 − a, C = 2r2 (3)  

r1 and r2 are assigned random values in the range [0–1], and ‘a’ varies 
from 2 to 0. The initial solutions are stored as alpha, beta and delta, the 
subordinate wolf position (ω) is iterated as given in (4-7). 

Dα
̅→

=

⃒
⃒
⃒ C1
̅→Xα

̅→
− X→

⃒
⃒
⃒ (4)  

Dβ
̅→

=

⃒
⃒
⃒ C2
̅→Xβ

̅→
− X→

⃒
⃒
⃒ (5)  

Dδ
̅→

=

⃒
⃒
⃒ C3
̅→Xδ

̅→
− X→

⃒
⃒
⃒ (6)  

X→(t+ 1)= X1
̅→

+ X2
̅→

+ X3
̅→

/
3 (7) 

Here, X1
̅→

, X2
̅→and X3

̅→ are approximate distances as given in 
Ref. [25]. Random candidate solutions are initially created and updated 
over the iterations considering probable positions of the prey. The value 
of A→>1 and A→<1 describe the divergence and convergence of solutions. 
Upon reaching the maximum iterations, optimum solution is obtained 
using GWO. 

For the selection of the features, the binary version of GWO termed 
BGWO is used [25,27]. Considering a feature vector of size N, 2N, feature 
sets are searched exhaustively, such that the best feature combination is 
obtained. In this work, best feature combination refers to the feature set 
which gives the best classification performance. The objective function 
is the minimization of fitness function as given in (8). 

F= αER(D) + β
|R|
|C|

(8)  

where, ER(D) is the classifier error rate. R is the feature subset length 
selected. C is the sum of all the features. The constants α ∈ [0,1], β = 1 −

α, control the accuracy of classification and feature reduction. After 
applying BGWO to the entire deep learning-based features, a set of 2185 
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features are obtained for the corresponding class. 

2.3. Feature extraction from CNN optimized using ensemble of WOA-BAT 
algorithm 

The images are initially divided into a ratio of 80:20, such that each 

set consists of images from both the classes. The first step includes 
feature extraction using 80% of the image data from ResNet-50 archi-
tecture, and second step involves determining the hyperparameters of 
CNN using WOA-BAT optimization methodologies. As illustrated in 
Fig. 3, a fully connected, soft-max layer, and classification layer form the 
last three layers of ResNet-50 architecture. The transfer learning 

Fig. 3. Proposed Covid-19 detection system using hyperparameter optimization with WOA-BAT.  

Fig. 4. Graphical illustration of parameter and objective space using WOA-BAT.  
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approach is used to extract the features, by replacing last three layers of 
pre-trained ResNet-50 without freezing. The WOA algorithm [28], 
mimics the humpback whales hunting pattern. The prey is initially 
chased and a bubble net strategy is simulated. Prey encircling and 
exploitation are the two main phases in the algorithm. In the proposed 
work, the weights and bias of the MLP are randomly initialized. For a set 
of features, appropriate choice of bias and weight results in achieving 
good performance of the MLP. Thus MLP parameters are optimized to 
tune the CNN hyperparameters. 

At each iteration stage, the search agents are randomly chosen, or the 
current best solution at the preceding iteration is retained. The hunting 
nature for the best solution is given as (9–10) 

X→(t+ 1)= X→
*
(t) − A

→ D̅→ (9)  

D→=

⃒
⃒
⃒C
→X→

*
(t) − X→(t)

⃒
⃒
⃒ (10)  

X→
∗

(t) is the preceding prey position, X→(t+1) is the present position of 
the whale. Similar to (3), D→, C→ and A→ are computed as (11). 

C→= 2r, A→= 2ar + a (11) 

The convergence speed is increased by incorporating few modifica-
tions in the nature of bats mechanism. Initially, there is 50% of chance to 

employ either simulating model or spiral mechanism to update the 
current position [28,29]. The present iteration is given in (12). 

X→(t+ 1)= D→ ebk cos(2πk) + X→ (t) (12) 

For simplicity we consider, b = k = 1, hence, 

X→(t+ 1)= 2.7 * D→ + X→(t) (13) 

If p < 0.5, then the value of the present iteration is updated as given 
in (14-16). 

fi = fmin + (fmax − fmin) (14)  

vt+1
i = vt

i +
(
xt
i − x*

)
fi (15)  

xt+1
i =

(
xt
i + vt+1

i

)
(16) 

Here, xi is position of bat, and vi is bats velocity. Lower and upper 
bound the algorithm corresponds to the frequency of waves. The bats 
position is updated using the computed velocity, because as per the law 
of nature when bat detects the food or prey, the rate of loudness is 
inversely proportional to instinct direction [30]. 

Based on the new velocity, the bat location is changed. The loudness 
rate and emission rate are inversely related. The best positions which 
minimize the MSE objective function are chosen as the hyperparameters 
of CNN. The graphical illustration of parameter space and objective 
space pertaining to the average MSE is depicted in Fig. 4. The steps 
followed to compute the best values of parameters are described in Al-
gorithm I. 

ALGORITHM 1.  

Our proposed CNN model is illustrated in Fig. 5. At each offset, the 
CNN extracts the image features. Using the hyperparameter values ob-
tained during WOA-BAT optimization, CNN is trained. The extracted 
features are mapped into the feature space using ReLu. The normaliza-
tion of gradients and activations is performed using batch 
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normalization. The most relevant information from the image is retained 
by the max-pooling layer. The image is classified using fully connected 
and softmax layers. The details of filter sizes are given in Fig. 5. Adam 
solver or stochastic gradient is used to tune the hyperparameters. 
However, the rate of convergence and performance of CNN, mainly rely 
on the appropriate choice of hyperparameters. If the learning rate is very 
small, the training time increases. The CNN model is updated at every 
epoch depending on the error, and the change is decided by the learning 
rate hyperparameter. Similarly, L2 regularization prevents the model 
from overfitting. These hyperparameters are computed by best positions 
obtained using WOA-BAT optimization. The hyperparameters obtained 
by optimization are given in Table 2. 

Once the values of hyperparameters are obtained, the CT images are 
fed to CNN to extract the features. A set of 2 features are obtained from 
the proposed model 2. Further, the feature sets obtained from two 
models are subjected to classification using AdaBoost in conjunction 
with dynamic ensemble selection techniques. To depict the separability 
between the two classes of data (covid & non-covid), the scatter plot 
distribution of features is shown in Fig. 6. A high degree of separability 
can be observed in two features extracted from proposed method 2, 
compared to the features extracted from model 1. 

2.4. AdaBoost of stump trees built from dynamic ensemble selection 
techniques 

The last step in computer-aided detection of any disease is classifi-
cation [31]. Usually, in an ensemble approach to test the samples, 
several classifiers are used, and most suitable classifier is chosen. 

However, in dynamic ensemble selection technique, depending on the 
characteristics of test sample, a different classifier is dynamically cho-
sen. We created a dynamic ensemble of stump trees and by adopting 
dynamic classifier selection technique, we chose a classifier for every 
test pattern. For every test sample, a set of training samples are created, 
and the most accurate classifier is chosen. Intuitively, depending on the 
diversity of classifier ensemble better performance is obtained. The 
major advantage of this method is that the risk of overfitting and 
generalization is reduced. 

The classifier is constructed by ensemble of AdaBoost of stump trees, 
and applying the dynamic classification selection techniques namely, 
Static Ensemble (EN), Local Class Accuracy (LCA), Overall Local Accu-
racy (OLA), A-Posterior (A-Po), A-Priori (A-Pr), KNORA-U(K–U), 
KNORA-E (K-E), Ensemble refers to a set of stump trees are formed by 
boosting with a maximum tree depth chosen as 2. Initially, five neigh-
bors of a particular test sample are selected using the training data to 
identify the most appropriate classifier among the classifier pool to 
predict the test sample. Further, the classifiers are tested on the K-NN 
samples from the training set and the corresponding accuracy is 
computed. Whereas for OLA, the K nearest training samples may not 
belong to the similar group, compared to OLA, the LCA, takes into ac-
count the class of K nearest samples (similar to the test sample). Further, 
the classifier that achieved the maximum good accuracy during classi-
fication of training samples is selected. If two classifiers have the same 
accuracy then K is increased, the detailed explanation can be found in 
Refs. [32,37,38]. KNORA-techniques in contrast to the above mentioned 
dynamic ensemble selection techniques create an ensemble using the 
pool of classifiers to decide the test label, using the majority voting 
scheme, and the nearest training samples are selected in a similar 
fashion. 

3. Results and discussion 

3.1. Dataset 

The study is carried out using a publicly available dataset [33], 

Fig. 5. Illustration of CNN architecture.  

Table 2 
Hyperparameters obtained from WOA-BAT.  

Training 
solver 

Initial 
learning 
Rate 

L2 
regularization 

Max 
Epochs 

Gradient 
Decay 
Factor 

Validation 
Frequency 

WOA- 
BAT 

0.0004 0.0005 20 0.9 35  
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containing 347 COVID-19 and 397 normal (non-COVID) images asso-
ciated with various kinds of pathologies. The images are in portable 
network graphics format. 

3.2. Training and testing 

The proposed methodology was designed and tested in MATLAB 
2020a. For model 1, the features are extracted from the entire dataset. 
For model 2, initially, the features are extracted using 80% of the data 
for obtaining the optimized hyperparameters. Once, the hyperparameter 
values are obtained, then the features are obtained from the entire 
dataset. The images are subjected to resizing to reduce the processing 
time. The average difference between the height and width of the images 
is small (approximately ±87), hence irrespective of the aspect ratio, the 
images were resized to 448x448x1. The optimized CNN is proposed for 
extracting features from the two categories (covid-19, no-covid-19). 
Further, five-fold cross-validation (CV) is carried for validating the 
proposed methodologies. The performance is computed as given in (17- 

21). 

Accuracy (ACC)=
(TP + TN )

TP+ TN + FP+ FN
(17)  

Sensitivity (SE)=TP/(TP+FN) (18)  

Specificity (SP)= TN/(TN+FP) (19)  

Precision (PR)= TP/(TP+FP) (20)  

F1  score  F − 1
)

= 2
(

Precision*Recall
Precision+ Recall

)

(21) 

Accuracy quantifies the average predictive ability into the covid and 
non-covid classes. Sensitivity indicates the rate of correctly identified 
positive instances into two classes, whereas the rate of correctly iden-
tified negative instances is quantified using specificity. Precision de-
termines the rate of accurately identified true cases. Similarly, precision 

Fig. 6. Distribution of features obtained for the two class problem: (a) Features extracted from optimized CNN (model 2), (b–d) Features obtained after applying 
BGWO to the features extracted using model 1. 

Table 3 
Results of classification obtained using five-fold cross-validation for Model 1.  

DES Technique SE SP ACC F-1 PR 

Ensemble 0.89±0.042  0.85±0.052  0.87±0.037  0.87±0.037  0.87±0.037  
OLA 0.78±0.024  0.76±0.039  0.77±0.030  0.77±0.030  0.77±0.030  
LCA 0.95±0.026  0.79±0.046  0.80±0.020  0.87±0.019  0.87±0.019  
A-Pr 0.83±0.024  0.78±0.069  0.80±0.035  0.80±0.035  0.80±0.035  
A-Po 0.95±0.026  0.79±0.046  0.88±0.020  0.87±0.019  0.89±0.018  
K-E 0.91±0.048  0.84±0.040  0.88±0.027  0.88±0.268  0.88±0.027  
K–U 0.89±0.042  0.85±0.048  0.87±0.032  0.87±0.032  0.87±0.032   
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and recall are combined using F-1 score. The following subsections 
provide the quantitative results of the proposed methodologies. 

3.3. Results of classification using deep learning based features and 
dynamic AdaBoost classification ensemble 

The features extracted from the standard CNN architectures are 
divided into five distinct groups, with one set used for testing, and four 
sets used for training at each iteration. Table 3 shows the average results 
of classification obtained using model 1, and the ROC corresponding to 
the best results using KNORA-U dynamic ensemble is given in Fig. 7. The 
confusion matrices for each of the five folds obtained using various 
dynamic ensemble selection techniques with deep learning based fea-
tures and dynamic AdaBoost classification ensemble is illustrated in 
Fig. 8. 

3.4. Results obtained using WOA-CNN and dynamic AdaBoost 
classification ensemble 

The features extracted from the standard CNN architectures are 
divided into five distinct groups, with one set used for testing, and four 
sets used for training at each iteration. Table 4 presents the classification 
results in the form of mean±standard deviation using model 2, and the 
ROC corresponding to the best results using KNORA-U dynamic 
ensemble is given in Fig. 9. The confusion matrices obtained for each of 
the five folds, for various dynamic ensemble selection techniques using 
WOA-CNN and dynamic AdaBoost classification ensemble is shown in 
Fig. 10. 

A pairwise statistical test has been performed for the 21 combina-
tions to check the statistical significance of each of the dynamic selection 
method with respect to the other. It was observed that the p-values for 
OLA and A-priori with respect to the other dynamic selection techniques 

were lesser than 0.05 (significance level) [35,36]. Hence these methods 
(OLA and A-priori) are statistically different from the other methods. 
But, Ensemble, A-posterior, LCA, KNORA-E and KNORA-U are found to 
be statistically equivalent. Similarly, for method 2, (results reported in 
Table 4), statistical equivalence is observed. Since, the sensitivity of 
covid-19 detection using KNORA-U is higher, as compared to the other 
dynamic selection techniques, the ROC for the same is given in Figs. 7 
and 9 for the two methods, respectively. 

3.5. Comparison between the proposed optimized classification 
methodology and the unoptimized CNN architecture 

Unoptimized CNN architecture refers to the standard hyper-
parameter values. The comparison is performed to provide an insight 
regarding the proposed classification set-up and the normal layered CNN 
with standard values of hyperparameters. Fig. 11, provides the graphical 
illustration of performance of optimized and unoptimized CNNs. It can 
be observed from Fig. 11 that, classification performance using proposed 
optimized CNN outperformed the standard CNN performance using all 
the evaluation metrics. 

A student’s t-test was also performed to compare the means of the 
two population. The first population consists of performance parameters 
obtained using unoptimized CNN and the second population consists of 
performance parameters obtained using optimized CNN. The t-test as-
sumes normal distribution of population for testing the hypothesis 
which states that, “Optimized CNN improves the accuracy of covid-19 
detection”. The significance value considered was α = 0.05. The statis-
tical test resulted in with a p-value of 0.0012, which is lesser than 0.05. 
Hence the hypothesis is accepted, which proves that optimized CNN 
significantly performs better in contrast to unoptimized CNN. 

3.6. Comparative analysis 

Summary of comparison with literature based approaches developed 
for covid-19 detection obtained from the same dataset is shown in 
Table 5. He et al. [5], used 25% of the images for testing. The self-trans 
approach was based on ResNet-50 and Densenet architecture with Adam 
optimizer default hyperparameter values, resulting in classification ac-
curacy of 86%. Mobiny et al. [6], proposed the detailed oriented capsule 
network derived from ResNet with three residual blocks with Adam 
optimizer default hyperparameter values, 20% data was used for testing. 
In Ref. [7], the values for the learning rate, momentum and L2 regula-
rization were tuned experimentally, depending on the performance of 
SqueezeNet model. Cruz et al. [35], proposed an ensemble of deep 
learning methods, 27% of the image data was used for testing the model, 
and data augmentation was also performed to enlarge the dataset using 
rotation and vertical flips. Inspite of the data augmentation and robust 
ensemble, an accuracy of 86.7% was obtained, with an inference time of 
14s. The methods reported in the comparative analysis were based on 
the same dataset, with variation in train and test ratio with standard 
values for hyperparameters. The comparative analysis performed is fair, 
since in the proposed work a five-fold cross validation is performed, 
which indicates that each sample in the dataset has been a part of the 
test set in either of the five iterations, and moreover the average per-
formance of the five iterations is reported. It can be observed from the 
comparative study that, the proposed design comparatively performed 
better. It can be inferred from Table 5, that the method proposed 
overcomes the approaches reported in literature in terms of all the 
evaluation parameters. 

Fig. 7. ROC obtained for model 1 using five-fold CV.  
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Fig. 8. Confusion matrices obtained for each fold for model-1 using various ensemble techniques: (a) Ensemble, (b) OLA, (c) LCA, (d) A-Pr, (e)A-Po, (f) K-E, (g) K–U 
[Column 1: First fold, Column 2: Second fold, Column 3: Third fold, Column 4: Fourth fold, Column 5: Fifth fold]. 
* N– 
C refers to non covid samples, and C refers to covid samples. 
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4. Discussion and remarks 

The major objective of the proposed study is the classification of 
covid-19 and non-covid-19 classes using chest CT images with higher 
classification performance. To avoid problems pertaining to overfitting 
and under fitting, a computer-aided diagnostic experts need to address 
three major issues: (i) sufficient data is required to prevent under fitting, 
(ii) achieving a balance between sensitivity and specificity, and (iii) 
hyperparameters used to use build the CNN architecture should be 
carefully chosen to avoid overfitting. The proposed study aims to 
address the aforementioned limitations. At present, the number of 
publicly available covid-19 CT images is limited. Hence, to improve the 
classification performance, a robust set of AdaBoost of stump trees are 
built using dynamic selection techniques. Additionally, to avoid over-
fitting the training parameters are chosen until the best values obtained 
from a WOA-BAT optimizer with MSE of the MLP as objective function. 
To prove the robustness and reliability of the proposed design, the fea-
tures extracted from the standard CNN architectures and the features 
extracted from the optimized CNN architectures are compared. As it can 
be seen from Fig. 6, the separability between the two classes of the data 
is quite high using WOA-BAT optimized CNN as compared to the fea-
tures extracted from the standard CNN architectures (AlexNet, ResNet, 
VGG-19, Densenet, and Inception). Also, the classification performance 
of covid-19 images improved to 98% using the proposed method 

compared to the standard CNN architecture. The salient features of the 
proposed study are as follows:  

1. Hyperparameters of the classifier play a major role in classification. 
Thus, an appropriate choice of hyperparameters is crucial in 
improving the classifier performance.  

2. The features extracted from the optimized CNN, although few in 
number (2), exhibit a great degree of separability between the two 
classes. 

3. AdaBoost of ensemble classifiers built using dynamic ensemble se-
lection techniques produced considerably better performance in the 
classifying covid-19 and non-covid-19 CT images. 

The proposed system was implemented on a 64-bit CPU based system 
with 8 GB RAM, and processor speed of 2.3 GHz. Hence the processing 
time required to test a single image was 30s, which is a limitation of the 
proposed system, However, a higher end GPU based system can reduce 
the processing time. 

5. Conclusion 

In this study, an optimized CNN-based architecture is proposed for 
detection of covid-19 cases from non-covid CT images accurately. The 
hyperparameters of CNN are application dependent and play a major 
role in the performance of the classifier. Hence, we have incorporated an 
ensemble of WOA-BAT technique to optimize CNN parameters. The 
optimized CNN is used for feature extraction. In this work, we have 
observed that, in contrast to the features extracted from five standard 
CNN architectures (2185), the features extracted from the optimized 
CNN (2 features), showed better discriminative ability. Although a 
BGWO technique is used to eliminate the redundant features, from the 
original 5000 features obtained from the well-known CNN designs, the 
two features extracted from optimized CNN outperformed, and signifi-
cantly improved the classification accuracy. We have obtained the 
highest classification accuracy of 96% for predicting covid-19. Further, 
the optimized CNN is also compared with performance obtained from 
the unoptimized CNN built using standard values of hyperparameters. 
Our proposed method yielded better performance with standard CNN 
architecture irrespective of the limited dataset. The summary of com-
parison with the state-of-the-art techniques developed for automated 
detection of covid-19 using chest CT images obtained from the same 
dataset given in Table 5 proves the superiority of the proposed method 
[5,6,34]. Our developed prototype can be used as a pre-screening soft-
ware for covid-19, especially in remote villages with limited access to 
health monitoring facilities. The proposed diagnosis method also elim-
inates the need for the CNN model to be trained using large datasets. The 
developed system can also be used for the automated detection of 
various pathologies using medical images of followed by the 

Table 4 
Results of classification obtained using five-fold cross-validation for model 2.  

DES Technique SE SP ACC F-1 PR 

Ensemble 0.96±0.038  0.98±0.027  0.96±0.038  0.96±0.038  0.96±0.038  
OLA 0.96±0.038  0.95±0.031  0.95±0.031  0.95±0.031  0.95±0.031  
LCA 0.96±0.038  0.96±0.038  0.96±0.038  0.96±0.038  0.96±0.038  
A-Pr 0.96±0.038  0.96±0.038  0.96±0.038  0.96±0.038  0.96±0.038  
A-Po 0.96±0.038  0.96±0.038  0.96±0.038  0.96±0.038  0.96±0.038  
K-E 0.96±0.038  0.96±0.038  0.96±0.038  0.96±0.038  0.96±0.038  
K–U 0.97±0.020  0.96±0.038  0.96±0.038  0.96±0.038  0.96±0.038   

Fig. 9. ROC obtained for model 2 using five-fold CV.  
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Fig. 10. Confusion matrices obtained for each fold for model-2 using various ensemble techniques: (a) Ensemble, (b) OLA, (c) LCA, (d) A-Pr, (e)A-Po, (f) K-E, (g) K–U 
[Column 1: First fold, Column 2: Second fold, Column 3: Third fold, Column 4: Fourth fold, Column 5: Fifth fold]. 
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optimization methodology, however with a variation in the hyper-
parameter values based on the type of dataset. 

In the future, we intend to evaluate the robustness of our developed 
design using more chest covid-19 CT images collected from local hos-
pitals and polyclinics. This generated economical user-friendly system 
can be accessed by clinicians to obtain a second opinion about their 
manual diagnosis. Also, we intend to extend this work with more classes 
like pneumonia in addition to covid-19 and normal classes. 
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Proposed 746 Optimized CNN + Dynamic Ensemble selection technique 0.97±0.020  0.96±0.038  0.96±0.038  0.96±0.038  0.96±0.038   
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