Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diaquabis(1H-imidazole-4-carboxylato$\left.\kappa^{2} N^{3}, O\right)$ zinc

Wenlin Shuai, ${ }^{\text {a* }}$ Songliang Cai ${ }^{\text {b }}$ and Shengrun Zheng ${ }^{\text {b }}$
${ }^{\text {a }}$ Guangdong Test Center for Green Labelling, Guangzhou 510440, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemistry and Environment, South China Normal
University, Guangzhou 510006, People's Republic of China
Correspondence e-mail: S2371386@yahoo.com.cn

Received 20 May 2011; accepted 30 May 2011
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.023 ; w R$ factor $=0.066$; data-to-parameter ratio $=10.9$.

In the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, the $\mathrm{Zn}^{\mathrm{II}}$ ion is situated on a twofold rotation axis and exhibits a distorted octahedral coordination configuration. The equatorial plane contains two cis-oriented bidentate 1 H -imidazole-4-carboxylate ligands and the axial positions are occupied by two coordinated water molecules. In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into a three-dimensional supramolecular network. There are $\pi-\pi$ interactions between the imidazole rings, with a centroid-to-centroid distance of 3.504 (3) A.

Related literature

For general background, see: Yin et al. (2009); Zheng et al. (2011); Alkordi et al. (2009); Lu et al. (2009). For related structures, see: Haggag (2005); Starosta \& Leciejewicz (2006); Gryz et al. (2007); Yin et al. (2009).

Experimental

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Zn}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]} \\
& M_{r}=323.57 \\
& \text { Orthorhombic, Pccn }
\end{aligned}
$$

$V=1133.9(5) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Data collection
Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.513, T_{\text {max }}=0.558$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.066$
$S=1.08$
1037 reflections
95 parameters
2 restraints
$\begin{aligned} \mu & =2.20 \mathrm{~mm}^{-1}\end{aligned}$
$T=298 \mathrm{~K}$
$0.35 \times 0.32 \times 0.30 \mathrm{~mm}$

5336 measured reflections 1037 independent reflections 913 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	1.93	$2.784(2)$	174
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 2^{\text {ii }}$	$0.83(2)$	$2.04(2)$	$2.850(2)$	$167(3)$
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 2^{\text {iii }}$	$0.82(2)$	1.96 (2)	$2.778(2)$	$175(3)$
Symmetry codes: (i) $-x+\frac{3}{2}, y, z+\frac{1}{2} ;$ (ii) $-x+2, y-\frac{1}{2},-z+\frac{1}{2} ;$; (iii) $-x+\frac{3}{2},-y+\frac{3}{2}, z$.				

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was financially supported by the National Natural Science Foundation of China (grant No. 21003053) and the Natural Science Foundation of Guang Dong (grant No. 10451063101004667).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5098).

References

Alkordi, M. H., Brant, J. A., Wojtas, L., Kravtsov, V. C., Cairns, A. J. \& Eddaoudi, M. (2009). J. Am. Chem. Soc. 131, 17753-17755.
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Gryz, M., Starosta, W. \& Leciejewicz, J. (2007). J. Coord. Chem. 60, 539-546.
Haggag, S. S. (2005). Egypt. J. Chem. 48, 27-41.
Lu, W. G., Jiang, L., Feng, X. L. \& Lu, T. B. (2009). Inorg. Chem. 48, 6997-6999.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Starosta, W. \& Leciejewicz, J. (2006). Acta Cryst. E62, m2648-m2650.
Yin, W. P., Li, Y. G., Mei, X. L. \& Yao, J. C. (2009). Chin. J. Struct. Chem. 28, 1155-1159.
Zheng, S. R., Cai, S. L., Pan, M., Xiao, T. T., Fan, J. \& Zhang, W. G. (2011). CrystEngComm, 13, 883-888.

supplementary materials

Diaquabis(1H-imidazole-4-carboxylato- $\kappa^{2} N^{3}, O$)zinc

W. Shuai, S. Cai and S. Zheng

Comment

Recently, we were interested in constructing coordination polymers based on N-heterocyclic carboxylic acids (Zheng et al., 2011). The imidazole-4-carboxylatic acid $\left(\mathrm{H}_{2} \mathrm{imc}\right)$, which contains two N atoms of an imidazole group and one carboxylate group, remains largely unexplored, compared with its analogue imidazole-4,5-dicarboxylic acid (Alkordi et al., 2009; Lu et al., 2009). To date, only a few mononuclear complexes based on the $\mathrm{H}_{2} \mathrm{imc}$ ligand have been documented (Haggag, 2005; Starosta \& Leciejewicz, 2006; Gryz et al., 2007; Yin et al., 2009). For instance, Yin et al. (2009) reported the structure of a mononuclear complex $\left[\mathrm{Cd}(\mathrm{Himc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, which was prepared by the solvent evaporation method. Herein, we report a new $\mathrm{Zn}^{\text {II }}$ coordination polymer $\left[\mathrm{Zn}(\operatorname{Himc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, (\mathbf{I}), which is isomorphous with the $\mathrm{Cd}^{\mathrm{II}}$ analog.

The asymmetric unit of (\mathbf{I}) contains a half of $\left[\mathrm{Zn}(\mathrm{Himc})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ formula unit. The $\mathrm{Zn}^{\mathrm{II}}$ ion exhibits a distorted octahedral geometry (Fig. 1), in which two cis-oriented bidentate chelating Himc ligands are located in the equatorial plane, forming two stable five-membered rings with metal ion, and the axial sites are occupied by two coordinated water molecules (Fig. 1). The $\mathrm{Zn}-\mathrm{O}$ distances range from 2.1623 (17) to 2.1626 (14) \AA and $\mathrm{Zn}-\mathrm{N}$ bonds have the value of 2.0751 (16) \AA. All $\mathrm{Zn}-\mathrm{O}$ and $\mathrm{Zn}-\mathrm{N}$ bond distances are shorter than those of $\mathrm{Cd}^{\mathrm{II}}$ analog [the axial $\mathrm{Cd}-\mathrm{O}$, the equatorial $\mathrm{Cd}-\mathrm{O}$ and $\mathrm{Cd}-\mathrm{N}$ bond distances are 2.343 (2), 2.325 (2) and 2.274 (2) \AA, respectively].

In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) link the molecules into a three-dimensional supramolecular network, which demonstrate $\pi-\pi$ interactions between the imidazole rings (Fig. 2) with the centroid-to-centroid distance of 3.504 (3) Å.

Experimental

$13.6 \mathrm{mg} \mathrm{ZnCl} 2(0.10 \mathrm{mmol})$ and $16.8 \mathrm{mg} \mathrm{H} \mathrm{H}_{2} \mathrm{imc}(0.20 \mathrm{mmol})$ were mixed in $6 \mathrm{ml} \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(1: 1)$. The aqueous NaOH $(0.20 \mathrm{M})$ solution was dropwise added to the above solution and the pH was adjusted to about 7 . Then, the resulting mixture was sealed into a 10 ml Teflon-lined stainless-steel reactor, which was heated at $100^{\circ} \mathrm{C}$ for 48 h under autogenous pressure, and then slowly cooled to room temperature at a rate of $2^{\circ} \mathrm{C} / \mathrm{h}$. Colorless block crystals of (I) were isolated, washed with distilled water, and dried in air (yield: 56\%). IR (KBr, $\mathrm{n} / \mathrm{cm}^{-1}$): $3382 \mathrm{~m}, 3147 \mathrm{~s}, 2997 \mathrm{w}, 2941 \mathrm{w}, 2849 \mathrm{w}, 1688 \mathrm{~m}, 1584 \mathrm{~s}$, $15581 \mathrm{~m}, 1462 \mathrm{~m}, 1402 \mathrm{w}, 1395 \mathrm{~s}, 1237 \mathrm{~s}, 1094 \mathrm{~m}, 1003 \mathrm{~s}, 931 \mathrm{w}, 847 \mathrm{w}, 820 \mathrm{w}, 793 \mathrm{~m}, 713 \mathrm{w}, 656 \mathrm{~m}, 610 \mathrm{w}, 494 m$.

Refinement

C - and N -bound H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93$ and $\mathrm{N}-\mathrm{H}=$ $0.86 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C}, \mathrm{N}) . \mathrm{H}$ atoms of the water molecule were located from a difference Fourier map and isotropically refined with $\mathrm{O}-\mathrm{H}$ bond lenghts restrained to 0.82 (2) \AA.

supplementary materials

Figures

Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level [symmetry code: (i) $-x+5 / 2,-y+3 / 2, z$.]

Fig. 2. A portion of the crystal packing showing $\pi-\pi$ interactions between the imidazole rings as dashed lines.

Diaquabis(1H-imidazole-4-carboxylato- $\kappa^{2} N^{3}, O$)zinc

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=323.57$
Orthorhombic, Pccn
$a=7.1399$ (19) \AA
$b=11.757$ (3) \AA
$c=13.508$ (4) \AA
$V=1133.9(5) \AA^{3}$
$Z=4$
$F(000)=656$
$D_{\mathrm{x}}=1.895 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2272 reflections
$\theta=3.3-27.3^{\circ}$
$\mu=2.20 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, colourless
$0.35 \times 0.32 \times 0.30 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.513, T_{\text {max }}=0.558$
5336 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.066$
$S=1.08$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0338 P)^{2}+0.618 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

1037 reflections

95 parameters
2 restraints

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.33 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Zn1	1.2500	0.7500	$0.37215(2)$	$0.02665(15)$
N1	$1.0565(2)$	$0.81059(14)$	$0.47393(11)$	$0.0263(4)$
N2	$0.8608(2)$	$0.87069(15)$	$0.58685(12)$	$0.0318(4)$
H2	0.8123	0.8836	0.6440	0.038^{*}
C2	$0.9100(3)$	$0.86538(16)$	$0.42860(13)$	$0.0229(4)$
C1	$0.9084(3)$	$0.87026(16)$	$0.31884(14)$	$0.0229(4)$
C3	$0.7885(3)$	$0.90319(19)$	$0.49823(15)$	$0.0291(4)$
H3	0.6781	0.9433	0.4875	0.035^{*}
C4	$1.0207(3)$	$0.81514(18)$	$0.56937(14)$	$0.0322(5)$
H4	1.0966	0.7838	0.6182	0.039^{*}
O1	$1.04760(19)$	$0.82909(12)$	$0.27495(9)$	$0.0304(3)$
O2	$0.76821(19)$	$0.91520(13)$	$0.27745(10)$	$0.0303(4)$
O1W	$1.0979(2)$	$0.59370(14)$	$0.34656(12)$	$0.0356(4)$
H1WA	$1.150(4)$	$0.550(2)$	$0.3077(18)$	$0.062(9)^{*}$
H1WB	$0.989(3)$	$0.595(3)$	$0.328(2)$	$0.072(10)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn 1	$0.0242(2)$	$0.0358(2)$	$0.0200(2)$	$0.00824(13)$	0.000	0.000
N 1	$0.0267(9)$	$0.0336(10)$	$0.0187(8)$	$0.0059(7)$	$0.0010(7)$	$0.0021(7)$
N 2	$0.0338(10)$	$0.0426(11)$	$0.0189(8)$	$0.0024(8)$	$0.0070(7)$	$-0.0012(7)$
C 2	$0.0220(10)$	$0.0252(10)$	$0.0214(10)$	$0.0008(8)$	$0.0003(8)$	$0.0002(8)$
C 1	$0.0246(10)$	$0.0238(10)$	$0.0205(9)$	$-0.0028(8)$	$-0.0016(8)$	$0.0009(8)$
C 3	$0.0254(10)$	$0.0344(11)$	$0.0275(11)$	$0.0040(9)$	$0.0007(9)$	$-0.0018(9)$
C 4	$0.0344(12)$	$0.0421(13)$	$0.0203(10)$	$0.0044(9)$	$-0.0009(9)$	$0.0046(9)$
O1	$0.0283(8)$	$0.0434(9)$	$0.0194(7)$	$0.0063(6)$	$0.0021(6)$	$-0.0011(6)$
O2	$0.0249(8)$	$0.0433(9)$	$0.0227(7)$	$0.0044(6)$	$-0.0045(6)$	$0.0051(6)$
O1W	$0.0264(8)$	$0.0386(9)$	$0.0417(9)$	$0.0049(7)$	$-0.0033(7)$	$-0.0108(7)$

Geometric parameters ($A,{ }^{\circ}$)

Zn1-N1	2.0751 (16)
$\mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	2.0751 (16)
Zn1-O1	2.1626 (14)
$\mathrm{Zn} 1-\mathrm{Ol}{ }^{\text {i }}$	2.1626 (14)
Znl-O1W ${ }^{\text {i }}$	2.1623 (17)
Zn1-O1W	2.1623 (17)
N1-C4	1.315 (2)
N1-C2	1.373 (2)
N2-C4	1.336 (3)
N2-C3	1.358 (3)
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	97.01 (9)
N1-Zn1-O1	79.04 (6)
$\mathrm{N1}{ }^{\text {i }}$ - $\mathrm{Zn} 1-\mathrm{O} 1$	174.10 (5)
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{O} 1^{\text {i }}$	174.10 (5)
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 1^{\text {i }}$	79.04 (6)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 1^{\text {i }}$	105.24 (7)
N1-Zn1-O1W ${ }^{\text {i }}$	98.53 (7)
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 1 \mathrm{~W}^{\text {i }}$	93.64 (7)
O1-Znl-O1W ${ }^{\text {i }}$	82.71 (6)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 1 \mathrm{~W}^{\mathrm{i}}$	86.15 (6)
N1-Zn1-O1W	93.64 (7)
N1 ${ }^{\text {i }}$-Zn1-O1W	98.54 (7)
O1-Zn1-O1W	86.15 (6)
O1 ${ }^{\text {i }} \mathrm{Z} \mathrm{Zn} 1-\mathrm{O} 1 \mathrm{~W}$	82.71 (6)
O1W ${ }^{\text {i }}$-Zn1-O1W	161.60 (9)
C4-N1-C2	105.65 (16)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{Zn} 1$	142.45 (15)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Zn} 1$	111.89 (12)
C4-N2-C3	107.84 (17)
$\mathrm{N} \mathrm{I}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 4$	-5.0 (2)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 4$	179.4 (3)
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 4$	42.6 (7)
O1W ${ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 4$	-99.8 (2)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 4$	94.1 (3)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2$	175.82 (16)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2$	0.25 (13)
$\mathrm{O} 1^{\text {i}}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2$	-136.6 (5)
O1W ${ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2$	81.05 (14)
O1W-Zn1-N1-C2	-85.11 (14)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	0.6 (2)
$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	-179.92 (14)

N2-H2	0.8600
C2-C3	1.354 (3)
C2-C1	1.484 (3)
C1-O1	1.255 (2)
C1-O2	1.262 (2)
C3-H3	0.9300
C4-H4	0.9300
O1W-H1WA	0.828 (17)
O1W-H1WB	0.818 (18)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2$	126.1
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2$	126.1
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	109.40 (16)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	132.55 (17)
N1-C2-C1	118.02 (15)
$\mathrm{O} 1-\mathrm{Cl}-\mathrm{O} 2$	125.47 (17)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	116.81 (15)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	117.71 (16)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	106.05 (18)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	127.0
N2-C3-H3	127.0
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{N} 2$	111.05 (18)
N1-C4-H4	124.5
N2-C4-H4	124.5
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Zn} 1$	114.11 (11)
$\mathrm{Zn} 1-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{WA}$	114 (2)
Zn1-O1W-H1WB	121 (2)
H1WA-O1W-H1WB	104 (3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 2$	-1.8(3)
N1-C2-C1-O2	176.18 (18)
N1-C2-C3-N2	-0.3 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	177.80 (19)
C4-N2-C3-C2	0.0 (2)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4-\mathrm{N} 2$	-0.6 (2)
$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{N} 2$	-179.84 (17)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 4-\mathrm{N} 1$	0.4 (3)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1-\mathrm{Zn1}$	-176.15 (15)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1-\mathrm{Zn} 1$	3.9 (2)
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{Cl}$	-2.39 (14)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{Cl}$	-50.7 (6)

supplementary materials

$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$-177.86(17)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 1$	$173.43(15)$
$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$1.6(2)$	$\mathrm{O} 1 \mathrm{~W}^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 1$	$-102.60(14)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	$178.1(2)$	$\mathrm{O} 1 \mathrm{~W}-\mathrm{Zn} 1-\mathrm{O} 1-\mathrm{C} 1$	$92.07(14)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	$-3.9(2)$		

Symmetry codes: (i) $-x+5 / 2,-y+3 / 2, z$.

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{ii}}$	0.86	1.93	$2.784(2)$	174
$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 1 \mathrm{WA} \cdots \mathrm{O}^{\mathrm{iii}}$	$0.83(2)$	$2.04(2)$	$2.850(2)$	$167(3)$
$\mathrm{O}^{\mathrm{in}} \mathrm{H} — \mathrm{H} 1 \mathrm{WB} \cdots \mathrm{O}^{\text {iv }}$	$0.82(2)$	$1.96(2)$	$2.778(2)$	$175(3)$

Symmetry codes: (ii) $-x+3 / 2, y, z+1 / 2$; (iii) $-x+2, y-1 / 2,-z+1 / 2$; (iv) $-x+3 / 2,-y+3 / 2, z$.

supplementary materials

Fig. 1

Fig. 2

