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Background
Electron tomography is an important technology of 3D molecular structure reconstruc-
tion [1]. In cryo-EM, to build a reliable high-resolution 3D reconstruction of protein 
structures from Cryo-EM images, one must extract hundreds of thousands of single par-
ticle images from 2D cryo-electron microscopy [2, 3]. The use of high-energy electrons 
can result in radiation damage to specimens during imaging and result in extremely 
noisy micrographs, and consequently, a limited electron dose is preferred [4, 5]. The sig-
nal-to-noise-ratio (SNR) of original (2D) micrographs tends to be very low, with noise 
from a variety of sources including low contrast, particle overlap, ice contamination, 
and amorphous carbon [6]. Hence, the task of single particle picking is still challenging 
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in some cases [6]. Many different computational methods have been proposed for the 
semi-automated single particle picking over the past decades. Single particle picking 
using template-based matching methods are very sensitive to noise [7–13]. Thus, some 
initial “good references” have to be selected in advance to ensure that those manually 
selected examples have less noise compared with the other in the same (2D) micro-
graphs. Similarly, the edge-based [14, 15] and feature-based methods [16–18] show a 
significant reduction in performance since they are sensitive to the lower contrast of the 
(2D) micrographs [6]. Deep learning methods for single particle picking have been pro-
posed, including EMAN2.21 [18], DeepEM [6], DeepPicker [20], and FasetParticlePicker 
[21]. These deep learning methods made significant contributions to addressing the par-
ticle picking issue. However, there are some unsolved challenges such as lack of a diver-
sified training dataset, high false-positive rate, and the difficulty of dealing with low-SNR 
micrographs.

Over the past decade, many different computational methods have been proposed for 
automated and semi-automated single particle picking tasks. These methods are based 
on different techniques such as template-based matching, edge detection, feature extrac-
tion, and conversational computational vision [4]. Recently, Deep Learning has exponen-
tially grown in the field of machine learning [12, 13]. Many Deep Learning algorithms 
from the field of computer vision and bioinformatics such as [22, 23] use convolutional 
techniques to extract features from big data via layers in neural networks [12]. Further-
more, deep learning appears to be a suitable approach for cryo-EM image processing as 
the size and number of the micrographs per data set are continually increasing while the 
SNR of micrographs remains low [4].

EMAN2.21 [19] proposed to train two CNNs. One for pick particles from the (2D) 
micrographs while another to distinguish between “good particles” and “bad ones”. For 
the good and bad references, both should be precisely selected based on two criteria. 
First, the good training samples “references” should be in pure good particles. Second, 
the bad training samples are a collection form noisy background references that are 
selected from the bad noise region in the 2D micrograph in addition to some bad parti-
cle references such as large aggregation, ice contamination, or overlap particles.

DeepEM [6] To tackle the problem of the automated free-template particle pick-
ing, DeepEM proposed an automated particle recognition using a binary classification 
approach based on deep CNN learning. DeepEM requires manually select hundreds of 
particles (selected by humans) to create the training dataset that has both positive and 
negative examples of each training dataset. Then, using the sliding window to classify the 
sub-images to particles or background.

DeepPicker [20] proposed a fully automated particle picking approach using other 
molecules as training data to train the network based on using two CNNs modules 
(model training and particle picking). DeepPicker considers the absence of training 
data by suggesting an alternative training scheme called “semi-automated particle pick-
ing with an alternative training strategy”. This technique requires a small set of manu-
ally user’s selection training dataset (positive and negative particle samples) to train the 
CNN model and initialize the particle selection process. Then, the trained CNN classi-
fier is used to select particle images from different testing (2D) micrographs that have 
the same protein molecule shape.
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FastParticlePicker [21] proposed a fast-single particle picking in cryo-EM based on 
the standard approach of the object detection network using fast R-CNN and Caffe. 
The FastParticlePicker requires to extract the coordinates (upper-left and lower-right 
corners) of each particle bounding box for every single particle in each individual 
(2D) micrograph to train the fast R-CNN on good training examples while the rest 
regions are either a background or bad training examples. Then, cropping the (2D) 
micrographs with a sliding window and the testing performance relies on the classifi-
cation network.

The four deep learning methods present a significant contribution to the main par-
ticle picking and selection issue. However, there are some challenges that those meth-
ods are facing such as lacking diversified training datasets, false-positive numerosity, 
and low-SNR micrographs accommodation.

First, regularly for the particle picking methods that are based on the alternative 
molecules as training strategy such as DeepEM [6], there is no sufficient training 
dataset that is used to train such a model that able to pick different particle picking 
shapes in different 2D micrographs. Moreover, other previous works such as DeepEM 
[6] and FastParticlePicker [21] used insufficient and undiversified training datasets in 
which cannot accommodate very well in noisy data. In addition to that, some training 
dataset has been manually labeled and select such as FastParticlePicker [20] which an 
intensive labor work and against the general term of the fully automated approach. 
Second, all three previous methods rely on a sliding window technique in which gen-
erating a numerous number of false-positive particle detection (FP). Third, fully auto-
mated single particle picking has to deal with diversified of cryo-EM images. Different 
micrographs have different challenges like as intensive background details (local 
aggregates, overlapped particles, background noise fluctuations, carbon-rich areas, 
and ice contamination), and different levels of low-SNR micrographs. Previous works 
have not paid enough attention to propose a general framework that deals with differ-
ent low-SNR micrographs.

To address these issues, we propose a fully automated deep neural network for sin-
gle particle picking based fully automated training particle-selection using unsupervised 
learning algorithms. Hence, we propose a fully automated deep neural network for sin-
gle particle picking based on the fully automated training particle data generation using 
unsupervised learning algorithms. We use two clustering approaches (regular cluster-
ing algorithm using the Intensity-Based Clustering IBC) [24] and super clustering algo-
rithms using the super k-means [25]) to automatically generate training particle datasets 
for training the deep neural networks. To accommodate the low-SNR cryo-EM images, a 
general framework of micrograph preprocessing that has been used in both our last two 
models [24, 25] is applied to improve the quality of the low-SNR micrographs.

The method is tested on cryo-EM images of the Keyhole Limpet Hemocyanin (KLH) 
[26], Apoferritin [27], 80S ribosome [28], and β-galactosidase [29]. A key feature of our 
approach is the use of Non-Maximum Suppression (NMS) [30] during the testing phase 
in order to reduce the number of false-positive particle detections. Overall, the auto-
mated DeepCryoPicker improves the performance of particle picking over semi-auto-
mated methods such as DeepEM, DeepPicker, and RELION-2 (using referenced-based 
picking) [31].
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Results
Micrographs datasets collection

We consider three typical protein shapes in micrographs that are collected from dif-
ferent micrograph datasets as shown in Fig. 1. The first protein shape is circular, as 
exemplified by the apoferritin [30]. Its 3D Cryo-EM map is shown in Fig. 1b, while a 
picked particle is shown in Fig. 1c. The second protein shape is square, as seen in the 
side-view of KLH [26]. There are two main types of projection views in this dataset. 
The top view is circular (Fig. 1d, e), while the side view is square (Fig. 1f, g). The third 
protein shape that is considered is the general case of an irregularly shaped protein 
such as the 80S ribosome (Fig. 1h, i) [28] and β-galactosidase (Fig. 1j, k) [29].

Performance evaluation metrics

For the evaluation of the performance results we use one of the most popular eval-
uation metrics which is the precision-recall curve in addition to the accuracy and 
f1-score [34] that are defined by Eqs. (1), (2), (3), and (4) respectively.

where TP is true positives of particles that are correctly picked among the total particles 
number, FP is the false positives of other objects that are incorrectly detected as parti-
cles. FN (false negatives) are particles that are incorrectly predicted as non-particles.

The ground truth labels for the training and testing datasets are manually selected 
and the number of true-positive (TP) and false-positive (FP) particles are recorded to 
evaluate the methods.

Experiments on unsupervised learning framework for fully automated training 

particles‑selection

The automated training particle selection model has two steps: automated training 
particle picking, and automated training dataset generation. In the first step, 80% of 
the samples from the collected micrographs are used. Numerous particles are com-
posed and picked from micrograph images using the fully automated framework for 
particle picking based unsupervised learning approaches that we proposed in our 
previous models [24, 25]. Then, each single particle image is automatically isolated 

(1)Precision =
TP

TP + FP

(2)Recall =
TP

TP + FN

(3)Accuracy =
TP

TP + FP + TN + FN

(4)F1− score = 2×

(

Precision × Recall

Precision + Recall

)



Page 5 of 38Al‑Azzawi et al. BMC Bioinformatics          (2020) 21:509 	

and evaluated as a “good” or “bad” training sample. The total number of particles for 
each dataset is shown in Table 1.

Experiments on automated training dataset generation

To address the imbalance problem in the training data, a balanced training dataset is 
automatically generated. The final training dataset has five classes. Three classes that 
represent the original particle shapes (top-view, side-view, and irregular (complex) 

Fig. 1  Overview of the DeepCryoPicker procedure. a The general workflow of the training particle-selection 
based unsupervised scheme and single particle picking based on deep learning scheme. The gray part of the 
workflow shows the micrographs data collection. The blue part of the workflow shows the fully automated 
training particles-selection using clustering algorithms. The red part of the workflow shows the general flow 
of the single particle picking using a deep classification network. The yellow part of the workflow shows the 
external testing part of the DeepCryoPicker. b 3D Cryo-EM map of the Apoferritin. c Picked particle from an 
Apoferritin micrograph [27]. d 3D Cryo-EM map of KLH is viewed from the top. e Picked particle from a KLH 
micrograph [26] showing the top view (circular particle). f 3D Cryo-EM map of KLH is viewed from the side. 
g Picked particle from a KLH micrograph [26] showing the side-view (square particle). h 3D Cryo-EM map of 
the 80S ribosome. i Picked particle from a ribosome micrograph [28]. j 3D Cryo-EM map of β-galactosidase. k 
Picked particle from a β-galactosidase micrograph [29]
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protein shapes) are automatically selected from the “good” particle examples after evalu-
ating every single particle. The image samples of the other two classes are automatically 
generated from different micrograph’s background as “background class” or automati-
cally expanded and collected from the “bad” training samples as “negative detection 
class”. Then, a certain number of image samples are randomly selected from each train-
ing class to expand the size of the training dataset and generate a balanced training data-
set. A sample is rotated 90°, 180°, and 270° to generate three additional training samples. 
The total number of training particles before and after regeneration is shown in Table 2.

Experiments on training deep learning classification models

To understand the impact of the number of classes on the classification model, we varied 
the number of classes in the training dataset via three different experiments. In the first 

Table 1  The total number of  training particles-selection using fully automated good 
training particles-selection for apoferritin [27], KLH [26], and Ribosome [29] datasets

Criteria Apoferritin top-
view

KLH top-view KLH side-view Ribosome 
irregular 
shape

β-Galactosidase 
complex particle 
shape

Number of micro‑
graphs

20 82 260 84

Training micro‑
graph

10 65 208 67

Testing micrograph 10 17 52 15

Size of micrograph 1240 × 1200 2048 × 2048 4096 × 4096 4096 × 4096

Resolution (Å) 3.1 9.1 3.2 4.2

Voxel size resolu‑
tion (Å)

0.82 1.24 1.34 1.77

Total number of 
picked particles

2145 1086 862 5493 8289

Particle’s patch size 178 × 178 221 × 221 221 × 225 187 × 187 214 × 214

Number of good 
particles

1750 887 689 1076 4781

Table 2  Automated training particles-selection datasets

The second column illustrates the total of the particles picked from the training micrographs before applying the good 
training particles selection and automated training dataset generation and expansion, while the third column illustrates the 
total number of particles after applying the good training particles selection and automated training dataset generation 
and expansion

Dataset Before re-generation and selection After 
re-generation 
and selection

Apoferritin top-view 1750 1500

Ribosome
Ribosome irregular shape

1157 1500

KLH (top-view) 887 1500

KLH (side-view) 689 1500

β-Galactosidase complex particle shape 4781 1500

Negative detection – 1500

Background – 1500
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experiment, we used all five classes to train and validate the deep classification model. In 
the second experiment, we remove the “background” class while keeping the other four 
classes. In the third experiment, we remove the “negative detection” class while keeping 
the other four classes. The corresponding precision-recall curve of each experiment in 
the training dataset showing that in the third case (using three main classes and back-
ground class), yields the best result with an average precision of 100%. The average pre-
cision is reduced to 98% and 99% in the first and second cases respectively.

Experiments on testing deep learning classification models

To evaluate the three deep learning models above, we split our dataset into training, 
testing, and validation sets. Each class has 1500 particle images, we split the data to 80% 
for training and validation (1200 particle images, 960 for training and 240 for validation) 
and 20% testing (300 particle images). The total number of the training particles using 
5 classes in the first case is 5250 particles while the total number of the testing particles 
is 2250. For the second and third models with either background class or negative class, 
the training set contains 4200 particle images and the testing set contains 1800 particle 
images. The error or loss of the deep neural network was used as a feedback parameter 
to tune and adjust the weight and bias, including the number of the feature maps, ker-
nel size of the convolutional layers, and the subsampling kernel size of the subsampling 
layer. Moreover, the training/testing cycles were tuned based on the hyper-parameters 
and updated the training datasets until the accuracy of the deep neural network reached 
a satisfactory level. Figure 2 shows some testing examples of the deep classification net-
work after training based on the third experiment type (three main particle shape classes 
and background class). The testing accuracy of the deep classification networks using 
a different number of classes in Table  3. It is clear that the deep classification model 
achieves a higher accuracy of 99.89% based on using the three-particle classes plus the 
background cases.

Experiments on fully automated single particle picking on different micrographs datasets

The second component of our DeepCryoPicker is the fully automated single particle 
picking. It has three steps: scanning test, scoring cleaning, and filtering using non-maxi-
mum suppression. In the first step, a sliding-testing window is used to scan each micro-
graph in the testing dataset from the top left to the bottom right corner with a constant 
step size. To determine the prediction parameter, a fixed-size sliding window (square 
box) is chosen to be slightly larger than the particle size.

The test micrographs have a variety of different dimensions. Before the sliding win-
dow, the test micrographs are resized first (scaled up and down) to make sure that the 
input patches’ coordinates (box size of the sliding window) fit the dimension of the deep 
network input patch (i.e. 227 × 227).

This step is implemented to automatically use different scaling operations (up-sam-
pling or down-sampling) and different scaling factors. We rely on the two unsupervised 
models (AutoCryoPicker [24] and SuperCryoEMPicker [22]) to estimate the dimen-
sions of the original particle patches’ coordinates that are detected in the training 
particles picking and selection stage. First, for each test micrograph, we calculate the 
average particle patches’ coordinate form each dataset. If the average particle patches’ 
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coordinate is less than the input patch (i.e. 227 × 227), the whole testing micrograph 
needs to be scaled up. Otherwise, it needs to be scaled down using different factors 
with a step size of 0.125. The process automatically selects the best scaling factor that 
gives the best patches’ coordinate that is slightly smaller than the sliding window. Then, 

Fig. 2  Different examples of the deep classification network results using preprocessed particle images. a A 
typical testing image example showing high-density top-view particle’s predicted label and prediction score 
of the Apoferritin micrograph dataset [27]. b A typical testing image example showing high-density side-view 
particle’s predicted label and prediction score of the KLH micrograph dataset [26]. c A typical testing image 
example showing high-density background predicted label and prediction score. d A typical testing image 
example showing high-density irregular particle’s predicted label and prediction score of the β-galactosidase 
dataset [29]. e A typical testing image example showing high-density top-view particle’s predicted label and 
prediction score of the KLH micrograph dataset [26]. f A typical testing image example showing high-density 
background predicted label and prediction score
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the best scaling factor is used to scale the whole micrograph. Finally, the zero-padding 
operation is used to make the micrograph dimensions to be an even dimension. Table 4 
shows the experimental results of the particle patches’ coordinates before and after scal-
ing (resizing) as well as the whole testing micrographs size. For instance, Table 4 (first 
row) shows the test micrographs from the Apoferritin dataset [27] with dimensions 
of 1240 × 1200 pixels. Since the average size of the detected top-view particle patches’ 
coordinates is 94 × 94 pixels, which is less than our input patch size, the testing dataset 
needs to be scaled up. The best scaling factor of (2.375) is automatically selected which 
gives the best input patches’ coordinates of 224 × 224 pixels. The test micrographs are 
scaled up with the same scaling factor to give new testing micrographs dimensions of 

Fig. 2  continued
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3373 × 3373 pixels. Finally, the testing micrographs are unified to be 3374 × 3374 pix-
els. Table 4 (second and third rows) shows different micrographs from KLH [26] dataset 
with dimensions of 2048 × 2048 pixels. The average detected top- and side-view parti-
cle patches’ coordinates are 187 × 187 and 221 × 221 pixels respectively. In this case, no 
scaling operation is selected because the smallest scaling factor (1.125) that is applied to 
scale up the side-views particles gives particle size that is slightly larger than the sliding 
window (249 × 249 pixels). Also, Table 4 (fourth row) shows different micrographs from 
the Ribosome dataset [25] with dimensions of 4096 × 4096 pixels. The average detected 
irregular particle patches’ coordinates are 320 × 320 pixels which the particle image is 
larger than the sliding window. The best scaling factor that is used to scale down the 
particle patches’ coordinates is 0.625. That gives the best input patches’ coordinates of 
212 × 212 pixels. Then the test micrographs are scaled down to get the new dimension of 
4030 × 4030 pixels.

During the scanning-testing step, every single patch is extracted and fed to the trained 
deep classification network. Each sliding window receives a certain prediction value [0 
1] from the deep network model. The prediction scores represent the probability there is 
a particle at the center of the corresponding window. In the second step, a scoring map 

Table 3  Test results of using different parameters and datasets

Epochs: number of iterations of training

Deep learning model Learning patch Epochs Accuracy (%)

4 class “background” 16 20 99.83

32 99.89

64 99.72

4 class “negative” 16 20 97.83

32 97.78

64 97.83

5 classes 16 20 96.62

32 95.96

64 95.91

Table 4  The results of test micrographs scaling operations

The second column shows the original test micrographs dimensions, the third column the detected particle patches’ 
coordinates (dimensions) using AutoCryoPicker [24] and SuperCryoEMPicker [25], the fourth column the selected scaling 
operation and best factor, the fifth column the scaled particle size using the selected scaling factor, the sixth column the 
scaled micrograph dimensions, and the last column the unified micrograph size

Dataset Original 
micrograph 
dimension

Original 
particle size

Scaling 
operation 
and best 
factor

Scaled 
particle size

Scaled 
micrograph 
dimensions

Unified 
micrograph 
size

Apoferritin top-
view

1200 × 1240 94 × 94 Up-sampling 
(2.375)

224 × 224 3373 × 3373 3374 × 3374

KLH (top-view) 2048 × 2048 187 × 187 No-scaling 187 × 187 2048 × 2048 2048 × 2048

KLH (side-view) 2048 × 2048 221 × 221 No-scaling 221 × 221 2048 × 2048 2048 × 2048

Ribosome
Ribosome 

irregular shape

4096 × 4096 320 × 320 Down-
sampling 
(0.625)

200 × 200 4030 × 4030 4030 × 4030

β-Galactosidase 
complex parti‑
cle shape

4096 × 4096 188 × 188 Up-sampling 
(1.125)

212 × 212 4608 × 4608 4608 × 4608
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is generated for each tested micrograph. The scoring map describes the likelihood score 
distribution of the particles over the entire micrograph. In fact, some detected objects 
such as ice or noise can be predicted as a particle (i.e. false positive). To discard the false 
positive detection, a cleaning step is implemented which connects any two pixels in 
scoring maps whose prediction scores are close and both above the threshold. Then, a 
connected area (pixels) is regarded as a false positive if the size of the connected area 
is larger than a cutoff value and is removed from the candidate list. Finally, we use non-
maximum suppression (NMS) [30] to refine the current particle candidate list. NMS is 
used to filter the detection boxes based on their Intersection over Union (IoU) between 
the detected boxes. The candidate particle filtering based on the NMS has three main 
steps: sorting, selecting and repeating. First, all candidates’ boxes for each given parti-
cle category are sorted based on their prediction scores (from high to low). Second, the 
candidate box that has the highest prediction score is selected as the final candidate box. 
Then, all other candidate boxes within the selected IoU are discarded. Third, among the 
remaining boxes, the NMS repeats the two-second steps until there is no remaining box 
in the candidate list.

A typical result of DeepCryoPicker is shown in Fig. 3 and Table 5, which illustrates the 
results of the particle picking using the fully automated framework and different micro-
graphs from different datasets. The average precision-recall reached 97%. Figure 4 shows 
the precision-recall curves for each particle shapes individually using different datasets 
such as apoferritin, KLH [26] (the top-view particle shapes), KLH [26] (only the side-
view particle shapes), Ribosome and β-galactosidase (irregular and complex particle 
shapes). For instance, Fig. 4a shows the blue plotted curve of the precession-recall for 
top-view particle shapes picking, Fig. 4b shows the red plotted curve of the precession-
recall for side-view particle shapes picking, and Fig. 4c shows the black plotted curve of 
the precession-recall for irregular and complex particle shapes picking.

Experiments on unseen testing micrographs datasets

In addition to testing our model on different test micrographs (testing sets) split from 
the whole datasets and in terms of the generalization our model to unseen datasets, we 
further test our model on three different micrographs (external testing micrographs) of 
other proteins that are different from those of training and test datasets (Fig.  5). The 
external testing micrographs have been selected based on different particle shapes 
(Fig.  5a–c). For instance, Fig.  5a is an external testing micrograph from the bacterio-
phage MS2 (EMPIAR-10075) [38] where the particle shapes are identical top-view. Fig-
ure 5b, shows another external testing result on an external testing micrograph from the 
T. acidophilum 20 (EMPIAR-10186) [39] where the particle shapes are either top-view 
or side-view. Finally, Fig. 5c, shows the last external testing result on an external testing 
micrograph from β-galactosidase 2.2 Å (EMPIAR-10061) [40] where the particle shapes 
are irregular.

Comparing with the state‑of‑the‑art approaches

We compare the results from the DeepCryoPicker with different particle picking tools 
such as RELION-2 [31], PIXER [4], DeepPicker [20], and DeepEM [6] using the KLH 
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Fig. 3  DeepCryoPicker results (different shapes of single particle picking) using three different micrographs. 
a Top and side-view particles picking results using the KLH dataset [26]. b Top-view particle picking results 
using the Apoferritin dataset [27]. c Irregular (complex) particle picking results using the Ribosome dataset 
[28]
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[26] datasets. We evaluate the performance results of our DeepCryoPicker comparing 
with different particle picking tools such as RELION-2 [31], PIXER [4], DeepPicker [20], 
and DeepEM [6] based on the precision, recall, accuracy, and f1-score that are defined 
by Eqs. (1), (2), (3), and (4) respectively.

Figure 6 shows the precision-recall curves of these methods. The blue, green, black, 
yellow, and red curves represent the precision-recall curves for DeepEM [6], RELION 
[31], PIXER [4], DeepPicker [20], and DeepCryoPicker respectively. The results indi-
cate that DeepCryoPicker performance is slightly better than RELION-2 [31], with the 
advantage of being fully automated. The improvement of DeepCryoPicker’s performance 
over other methods is more pronounced.

In addition to the precision-recall curves, more quantitate analysis of performance 
different particle picking tools using the popular benchmark KLH [26] are provided. 
The detailed information on the KLH data [26] that is used to evaluate our DeepCry-
oPicker with other tools is illustrated in Table 6. First, the whole KLH dataset that has 
80 micrographs is divided into 80% of training (60 micrographs) and 20% testing (20 
micrographs). Second, each micrograph from the whole dataset is manually labeled from 
experts and used as a ground truth that contains the number of true-positive (TP) and 
false-positive (FP) particles. The total number of particles in the training datasets is 1587 
(725 top-views and 853 side-views) while the testing dataset has 545 particles (293 top-
views and 252 side-views) respectively.

The true particles picking results (TP) among all the total picking results (TP) and 
false particles picking results (FP) are represented in the precision while the true parti-
cles picking results among all the true particle images that the micrograph is contained 
are represented in the recall. To get a better measure, the F1-score is the harmonic mean 
of both precession and recall also, the accuracy represents the fraction of all true parti-
cles picking among all the classes and the F1-score represents.

The generated precision-recall curve relies on the varying threshold score that each 
particle picking algorithm used. Threshold balances between both the precision and 
the recall accordingly. For instance, once the threshold is increased, the precision is 
increased, and the recall is decreased. In general, the main criteria for any particle pick-
ing algorithm at a certain threshold score both precision and the recall are expected to 
reach higher scores.

For the DeepEM [6] method, we used 1600 particle images (800 positive and 800 
negative images) that have randomly selected from the training dataset to train their 
network. Some parameters need be set such as the particle size that is unified to be 
272 × 272 pixels, the classification network’s lower bound is set as a default value 0.6, 

Table 5  DeepCryoPicker evaluation table using different micrograph datasets

Our model is trained for all views (top-view, side-view, and irregular particles) in addition to two optional classes 
(background and negative samples)

Trained for Accuracy Precision Recall F1 score

4 classes with background 0.97 0.94 0.98 0.96

4 classes with negative 0.96 0.99 0.92 0.96

5 classes with background and 
negative

0.95 0.95 0.88 0.92



Page 14 of 38Al‑Azzawi et al. BMC Bioinformatics          (2020) 21:509 

Fig. 4  Precision-recall cures of the fully automated different single particle shapes picking result using deep 
classification network and different micrographs datasets, a precision–recall cure of the top-view particle 
shapes picking. b precision–recall cure of the side-view particle shapes picking. c precision–recall cure of the 
irregular and complex particle shape picking
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Fig. 5  DeepCryoPicker testing results (different shapes of single particle picking) using different micrographs 
from different external testing datasets (unseen micrographs). a Typical external micrograph from the 
bacteriophage MS2 (EMPIAR-10075) [38] showing the Top-View particles picking. b Typical external 
micrograph from the T. acidophilum 20 (EMPIAR-10186) [39] showing the top and side-view particles picking. 
c Typical external micrograph from the β-galactosidase 2.2 A

◦

(EMPIAR-10061) [40] showing the irregular 
(complex) particles picking
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and the maximum selected number of particles per micrograph. This parameter is set 
as a default value 500 to help to remove FP particles. For RELION [31] we selected 
approximately 200 particles to help to generate the template of particles. 100 particle 
images each top and side-views are manually from the first 10 micrographs. 10 classes 
are initially selected yielded to 2D classes (side and top-view) templates are low-pass fil-
tered with 20 Å. For PIXER [4], the classification training model includes 5000 particles 
from different datasets such as 10,017, 10,028, 10,081, 10,097, GroEl, and SIMU. For the 
classification training dataset, while the segmentation training model includes 10,000 
micrographs with 512 × 512 pixels from each training datasets. For DeepPicker [20], the 
training model includes 10,000 particle images (positive and negative) samples that are 
manually picked from the TRPV1 training dataset. Both positive and negative samples 
are normalized into a unified size of 64 × 64 pixels. Validation datasets are separated, the 
size of each validation dataset is chosen to be 1/9.

The AURPC values of all compared methods are shown in Table 7. It is noticed that 
the average precision and recall scores of our DeepCryoPicker is higher than other 

Fig. 6  The precision–recall curves of particle picking for different single particle picking tools. The green, 
yellow, black, blue, and red curves represent the precision-recall curves for RELION-2 [31], DeepPicker [20], 
DeepEM [6], PIXER [4], and DeepCryoPicker respectively

Table 6  KLH dataset details used to  evaluate our DeepCryoPicker with  other particle 
picking tools

Criteria Training Testing

Number of micrographs 60 20

Number of side-view particles 725 293

Number of top-view particles 853 252

Total number of training particle images 1,578

Total number of testing particle images 545

Side-view particle size 272 × 272

Top-view particle size 272 × 272

Size of micrograph 2048 × 2048

Single particle reconstruction resolution 2.1 Å

Voxel size 1.24 Å



Page 17 of 38Al‑Azzawi et al. BMC Bioinformatics          (2020) 21:509 	

tools by achieving 94.5% with F1-Score 95.50% while the RELION [31] reach to 94% 
with F1-Score 93.50%. Also, the average precision and recall scores for DeepEM [6], 
PIXER [4], and DeepPicker [20] are 89%, 87.5%, and 87.5% with f1-scores 89%, 87%, 
and 88% respectively. However, for a comparison between our DeepCryoPicker and 
other tools, Fig.  7 shows the particle picking results using different testing micro-
graphs. Figure 7a, c, e, g illustrate the particle picking results using DeepCryoPicker, 
while Fig. 7b, d, f, h illustrate the particle picking results using RELION [31], DeepEM 
[6]. PIXER [4], and DeepPicker [20] respectively. We use red and yellow arrows to 
denote the FP and FN particles picking results. The red arrows in Fig. 7b, c, d, h show 
the FP where the particles are incorrectly picked. The yellow arrows in Fig. 7a, b, f, h 
show the FN where some particles are missed (not picked).

Discussion
Our method tackles significant challenges that other particle picking approaches have 
faced such as lack of a diversified training dataset, high false-positive rate, and the 
difficulty of dealing with low-SNR micrographs. First, to generate such a sufficiently 
large training dataset, we design a fully automated training particle selection based 
on unsupervised learning algorithms. Most of the regular protein shapes (circles and 
squares) have been fully automated picked based on our IBC algorithm. And most 
of the irregular and complex protein shapes have been accurately picked based on a 
fully automated unsupervised learning approach using the super k-means clustering 
algorithm. Therefore, the generation of the training set is fully automated, eliminating 
the need for manual labeling or labor-intensive particle selection. Second, to accom-
modate the low-SNR images, a general framework of micrographs preprocessing [23, 
24] is applied to improve the quality of the low-SNR micrographs. In general, the pre-
processing steps increase the particle’s intensity, and pre-grouping the pixels inside 

Table 7  The AURPC values of  all compared methods using the  KLH micrographs dataset 
[26]

Model Class Accuracy (%) Precision Recall F1 score

DeepEM Top-view class 89.04 0.88 0.89 0.88

Side-view class 89.04 0.9 0.89 0.9

Average 89.04 89.00% 89.00% 89.00%

RELION Top-view class 93.98 0.94 0.93 0.93

Side-view class 93.98 0.94 0.95 0.94

Average 93.98 94.00% 94.00% 93.50%

PIXER Top-view class 87.58 0.86 0.88 0.87

Side-view class 87.58 0.89 0.87 0.87

Average 87.58 87.50% 87.50% 87.00%

DeepPicker Top-view class 87.71 0.87 0.86 0.87

Side-view class 87.71 0.88 0.89 0.89

Average 87.71 87.50% 87.50% 88.00%

DeepCryoPicker Top-view class 94.99 0.95 0.94 0.95

Side-view class 94.99 0.95 0.95 0.96

Average 94.99 95.00% 94.50% 95.50%
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Fig. 7  Particle picking results using different testing micrographs from the KLH dataset [26] and different 
particle picking tools. The red and yellow arrows to denote the FP and FN particles picking results. The 
red arrows show the FP where the particles are incorrectly picked while the yellow arrows show the FN 
where some particles are missed (not picked). a, c, e, g Top and side-views particles picking results using 
DeepCryoPicker. b Top and side-views particles picking results using RELION [31]. d Top and side-views 
particles picking results using DeepEM [6]. f Top and side-views particles picking results using PIXER [4]. h Top 
and side-views particles picking results using DeepPicker [20]
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each particle makes it easier to be isolated. Third, to reduce the number of false-pos-
itive (FP) particle detections, we use Non-Maximum Suppression (NMS) [30] during 
the testing phase. It removes duplicates of bounding boxes centered around the same 
region, consequently decreasing false-positive detections.

Data augmentation

During the training, instead of passing the original particle image, each image is aug-
mented by using the preprocessed version of the same particle image before passing it 
through the deep network instead of passing the original image through the network. 
Each particle patch is modified using different preprocessing methods. During the pre-
processing stage, we apply a guided filter operation on the whole micrograph as an edge-
preserving smoothing operator. Let us assume that I is a guidance image filter, p is an 
input micrograph, and q is an output micrograph. Both I and p are given beforehand and 
can be identical. The filtered output at a pixel i is expressed as a weighted average. We 
randomly select the SD value between 0 and 1 and then a corresponding filter mask is 
created. Then the created mask is convolved with the input micrograph using a random 
mask size selection of 3 and 5. Then, the mask is shifted over the whole micrograph at 
every single position where the center of the mask is replaced with the output of the 
guided filter. Also, other methods are applied to the input micrograph such as image 
normalization to improve the entire contrast between particles and the background. 
Histogram equalization is used to increase the global image contrast. Image restoration 
is applied to recover and improve the quality of an image. Adaptive histogram equaliza-
tion is used to improve the local contrast and enhancing the definitions of edges in each 
particle. Guided image filtering i performs edge-preserving smoothing of each particle. 
Morphological image operation is called to enhance the particle shape.

Computational efficiency

We used a desktop computer equipped with an NVIDIA GeForce GTX 1070 graphics 
card GPU with 4 GB memory and an Intel Core i7 6900 K CPU to train DeepCryoPicker. 

Fig. 7  continued
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The time needed for training was 22–144 min for the whole dataset (Fig. 8). The time of 
particle picking using different hardware systems (GPU and CPU on different micro-
graph dimensions is shown in Table  8. The average running time per micrograph is 
15.7 min on CPU and 1.95 min on a GPU in our experiment.

Conclusions
Our approach for single particle picking from micrographs tackles significant chal-
lenges such as lack of training datasets and low SNR micrographs. A manual train-
ing datasets preparation (selection and labeling) to train a deep learning approach is 
a time-consuming and tedious process. Numerous automated single-particle picking 
based deep learning approaches have been developed and presented a significant con-
tribution of the main particle picking and selection issue. However, there are some 

Fig. 8  The computational efficiency statistics of DeepCryoPicker training times

Table 8  Time of  particle picking using different hardware systems (GPU and  CPU) 
on different micrograph dimensions

The first column shows the original test micrographs dimensions. The second and third columns illustrate the testing time 
per micrograph on both CPU and GPU systems respectively

Dataset Evaluation metric

Micrograph 
dimension

Number 
of tested 
micrograph

Testing time (per 
micrograph) on CPU 
(min)

Testing time (per 
micrograph) on GPU 
(min)

Apoferritin top-view 
protein shape

3374 × 3374 10 15.8 1.7

KLH (top and side-
view) protein shape

2048 × 2048 17 11.3 1.2

Ribosome irregular 
protein shape

4030 × 4030 52 17.2 2.3

β-Galactosidase com‑
plex protein shape

4608 × 4608 15 18.6 2.6
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challenges that those methods are facing such as lacking diversified training datasets, 
false-positive numerosity, and low-SNR micrographs accommodation. Here, we pre-
sent a fully automated deep neural network for single particle picking based self fully 
automated training datasets generation based unsupervised learning approaches. Our 
approach solves the fully automated single particle in diversity cryo-EM images when 
it is tested on real-world datasets from different proteins. The results indicated that 
DeepCryoPicker performed accurately as good as particle picking state-of-the-art 
methods.

Methods
Overview of the DeepCryoPicker procedure

DeepCryoPicker is designed for fully automated single particle picking in cryo-EM. Our 
framework contains two components: The first component is a training particle-selec-
tion algorithm based on unsupervised learning (shown on the left side of Fig. 1a). The 
second component is single particle picking utilizing supervised deep learning (shown 
on the right side of Fig. 1a). The first component has two sections: automated training 
particles picking, and automated training dataset generation. The first section of the 
automated training particles selection is based on two steps. Firstly, the micrograph 
images are pre-processed using a set of advanced image processing tools to enhance and 
increase the quality of the micrographs. Secondly, each cryo-EM image is clustered using 
two different unsupervised learning clustering algorithms and then each clustered image 
is cleaned and used to detect and isolate each particle. Then, some irrelevant objects 
are removed. The second section of the automated training particle selection is based 
on automatically evaluating each isolated particle sample and classifying it as a “good” 
or “bad” training sample. The second component is the fully automated single particle 
picking method based on a deep learning scheme which has two steps. The first step is 
designing and training a deep convolutional neural network using the training dataset 
that has been automatically generated using the first component of our framework. In 
the second step, the trained model is used to test every micrograph after pre-processing 
them using the same preprocessing stage that is used to prepare the training dataset. 
Two different micrograph testing datasets are used for testing.

DeepCryoPicker consists of two components (Fig. 9): (1) Component 1: fully auto-
mated training particles-selection based on unsupervised learning; (2) Component 
2: fully automated single particle picking based on deep classification network. The 
orange rectangle marks the first part of the fully automated approach “fully train-
ing particles-section and dataset generation” while the dark blue rectangle marks the 
second part “fully automated single particles picking”. The green and gray rectangles 
mark the first and second stages of the preprocessing step. The blue boxes at the top 
denotes the datasets used in this work.



Page 22 of 38Al‑Azzawi et al. BMC Bioinformatics          (2020) 21:509 

Fig. 9  DeepCryoPicker workflow. The orange rectangle marks the first part of the fully automated approach 
“fully training particles-section and dataset generation”. The blue rectangle marks the second part “fully 
automated single particles picking”. The green and gray rectangles mark the first and second stages of the 
preprocessing step respectively
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Fig. 10  Illustration of the effects of the cryo-EM image analysis on a zoom-in selected particle region using 
two different examples from two datasets. a1, b1, c1, d1, e1 original zoom-in particle regions (different 
shapes) are selected from different micrograph Apoferritin (top-view particle) [27], KLH (top-view) [26], KLH 
(side-view) [26], Ribosome (irregular shape) [28], and β-galactosidase (complex shape) [29] respectively. a2, 
b2, b2, e2 normalized single particle image region. a3, b3, c3, d3, e3 single particle region after applying the 
contrast enhancement correction (CEC). a4, b4, c4, d4, e4 single particle region after applying the histogram 
equalization. a5, b5, c5, d5, e5 single particle region after applying image resonation with Wiener filtering. 
a6, b6, c6, d6, e6 single particle region after applying the contrast-limited adaptive histogram equalization. 
a7, b7, c7, d7, e7 single particle region after applying image guided filtering. a8, b8, c8, d8, e8 single particle 
region after applying morphological image operation
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Component 1: fully automated selection of training particles based unsupervised 

on learning approaches

This component consists of two stages: (1) Stage 1: fully automated training particle 
selection; (2) Stage 2: fully automated perfect “good” training particle selection and 
labeled training dataset generation.

Stage 1: fully automated single particle‑picking

Two different fully automated single particle picking approaches based on unsuper-
vised learning (AutCryoPicker [24] and SuperCryoPicker [25]), are used in this stage. 
AutCryoPicker [24] and SuperCryoPicker [25] used the same preprocessing proce-
dures to increase the SNR and the quality of each micrograph as shown in Fig.  9 
(green and gray rectangles). The results of the preprocessing procedures for apofer-
ritin  [27], KLH [26], Ribosome [28], and Β-galactosidase [29] images are shown in 
Fig. 10. The particle picking results that are based on using different unsupervised 
clustering approaches [24, 25] are shown in Fig. 11.

Stage 2: fully automated training particle selection

The second stage of the first DeepCryoPicker’s component is the fully automated 
selection of training particles. After the initial particles are picked and extracted 
from the first stage “fully automated single particle picking”, each single particle is 
evaluated to be considered as a good training example using three fully automated 
perfect “good” training particles-selection approaches such as good top- and side-
views particles selection, and irregular/complex training particles selection.

Fig. 10  continued
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Fig. 11  continued

(See figure on previous page.) 
Fig. 11  Micrograph clustering and single particle picking results using different cryo-EM datasets. 
a Apoferritin micrograph clustering image (binary mask) using AutoCryoPicker Approach [24] based 
Intensity-Based Clustering Algorithm (IBC) and Apoferritin dataset [27]. b Top-view (Circular) Particles 
Detection and Picking Results using Modified Circular Hough Transform (CHT) [24], the center of each particle 
illustrated by the ‘ + ’ sign and the radius of each particle by the blue circle around each particle from the 
Apoferritin dataset [27]. c KLH micrograph clustering image (binary mask) using AutoCryoPicker Approach 
[24] based Intensity-Based Clustering Algorithm (IBC) and KLH dataset [26]. d Top-view (Circular) Particles 
Detection and Picking Results using Modified Circular Hough Transform (CHT) [24], the center of each particle 
illustrated by the ‘ + ’ sign and the radius of each particle by the blue circle around each particle from the 
KLH dataset [26]. e KLH micrograph clustering image (binary mask) using AutoCryoPicker Approach [24] 
based Intensity-Based Clustering Algorithm (IBC) and KLH dataset [26]. f Top and side-view (square) Particles 
Detection and Picking Results using Feret diameters detection [32] and Modified Circular Hough Transform 
(CHT) [24] from KLH dataset [26], the center of each particle illustrated by the ‘ + ’ sign and the radius of each 
particle by the blue circle around each particle from the KLH dataset [26]. g Ribosome micrograph clustering 
image (binary mask) using SuperCryoPicker Approach [25] based super k-means clustering (SP-K-means) and 
Ribosome dataset [28]. h Irregular particle shape detection and picking by SP-K-means [25] on the Ribosome 
dataset [28]. i Β-galactosidase micrograph clustering image (binary mask) using SuperCryoPicker Approach 
[25] based super k-means clustering (SP-K-means) and β-galactosidase dataset [29]. j Complex particle shape 
detection and picking by SP-K-means on the β-galactosidase dataset [29]
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Perfect “good” top‑view training particle selection

We develop an additional step called “good top-view (circular) training particle selec-
tion” (see Algorithm 1).

This step is based on using the individual binary mask for each particle as shown in 
Fig. 12d, f, h, j. Then, we use the modified Circular Hough Transform algorithm (CHT) 
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in AutoCryoPicker [23] to generate a perfect circle on top of each particle’s mask. Then, 
we test each individual particle’s mask size and verify if it is a perfect full circle and label 
it as either a “good example” or as a “bad example”. We test each top-view particle by 
calculating the average roundness value for the whole top-view (circular) particles. This 
is determined by computing the area and perimeters using the connected component 
particle mask’s pixel index list and the circularity based on the Eq. (5):

where allAreas is the area of each selected particle and allPerimeters is the cemetery size 
of each particle. Then, each individual particle (circular) does achieve the average object 

(5)Circularities =
allPerimeters2

4 × pi × allAreas

Fig. 12  Top-view particles picking results using AutoCryoPicker [24] and different micrographs from the 
Apoferritin [27] and KLH [26] datasets. a Top-view single particle picking results using cryo-EM micrographs 
form the Apoferritin [27] dataset. b Top-view single particle picking results using cryo-EM micrographs 
form the KLH [26] datasets. c Apoferritin good top-view particle example that has been picked using 
AutoCryoPicker Approach [24]. d Apoferritin good top-view binary mask example (perfect “full” binary 
circular mask). e KLH good top-view particle example has been picked using AutoCryoPicker Approach [24]. 
f KLH good top-view mask example (perfect “full” binary circular mask). g Apoferritin bad top-view particle 
example has been picked using AutoCryoPicker Approach [24]. h Apoferritin bad top-view binary mask 
example (non-perfect binary circular mask). i KLH bad top-view particle example has been picked using 
AutoCryoPicker Approach [24]. j KLH bad top-view binary mask example (non-perfect binary circular mask)
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roundness class is considered as a “good” training example, otherwise as a “bad” training 
example. Figure  13 shows the results of the good top-view training particle selection. 
Figure  13a and e show individual top-view particle binary masks from the apoferritin 
[27] and KLH [26] datasets. It is noticed that a perfect circle has been successfully drawn 
on top of the particle’s binary mask using the modified CHT algorithm as shown in 
Fig. 13b, f. Figure 13c, g show the replaced artificial perfect circle binary masks that will 
be used later to test the particles for apoferritin [27] and KLH [26] datasets. Figure 13d, 

Fig. 13  Fully automated good training top-view training particles-selection results using AutoCryoPicker 
[24] approach and diferenrt micrographs from Apoferritin [27] and KLH [26] datasets. a, e Individual top-view 
particle binary mask form the Apoferritin [27] and KLH [26] datasets. b, f CHT [24] perfect circle on top of the 
particle’s binary masks. c, g Generated perfect top-view binary mask based on the center and dimeter that 
are automatically extracted from the CHT [24] using picked top-view particles form Apoferritin [27] and KLH 
[26]. d, h The full automated good top-view training particle selection results based on the perfect mask 
generation using CHT [24] and different top-view picked particles from different datasets (Apoferritin [27] 
and KLH [26]). i, k, m, o Other examples of the top-view particle’s binary masks that the modified CHT [24] 
has failed to draw perfect circles on top of them (dash red lines illustrate the missing part of the particle’s 
background while the dash blue lines illustrate the missing part of the circular object). j, l, n, p The full 
automated bad top-view training particle selection using different top-view picked particles from different 
datasets (Apoferritin [27] and KLH [26]) (dash red lines illustrate the missing part of the particle’s background 
while the dash blue lines illustrate the missing part of the circular object)
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h show the good apoferritin [27] and KLH [26] top-view training particles selection. In 
contrast, Fig. 13i, l, m, o show other examples of the top-view particle’s binary masks 
that the modified CHT has failed to draw perfect circles on top of them. Figure 13j, l, n, 
p show some bad top-view training particle examples.

Perfect “good” side‑view training particles‑selection

For the side-view particles picking, we do not have an issue with the overlapped par-
ticle selection since the only perfect side-view (square) particles are selected through 
the side view (square) training particle shape selection in cryo-EM based on using the 
“overlapped particles removal and perfect side-View particles selection algorithm” in 
the AutoCryoPicker [24]. Figure 14a, g show different KLH cryo-EM clustering results 
using the Intensity-Based Clustering Algorithm (ICB). Figure 14b, h show the KLH cryo-
EM clustered images after the circular and non-square object removal. The binary mask 
images have only the square particle shapes (side view) in the whole cryo-EM images. 
Some overlapped particles still exist in the cleaned binary mask as is shown in Fig. 14b. 
The overlapped particles are removed from the final cleaned masks (See Fig. 14e, f ) after 
applying the overlapped particles removal using the Feret diameter measures approach 
[32] (see Fig. 14d, j). Figure 14f, l show the same KLH binary mask images after the per-
fect side-view (square) particles shape generation is applied to the cleaned binary masks. 
Figure  15 shows an example of the perfect side-view (square) particle selection. Fig-
ure 15a, e, i illustrates the individual side-view particle binary masks, while Fig. 15b, f, j 
show the new binary particle’s mask dimensions using Feret diameters [32]. Figure 15c, 
g, k show the artificial perfect side-view (square) binary masks based on the new Feret 
object dimensions. Finally, Fig. 15d, h, l depict the good KLH side-view particles selec-
tion. Figure  16a, d show top and side-view particles picking using different cryo-EM 
micrographs form the KLH dataset. Figure 16b, e show the final results of side-view par-
ticles-selection using different micrographs form the KLH dataset based ICB clustering, 
and perfect square (side view) particle shape detection using Feret object diameter [32]. 
Figure 16c, f also show the top-view particles-selection results based on modified ICB 
clustering and modified CHT [21]. Also, Fig. 16a, d show the ground truth of both top 
and side-view particles.

Perfect “good” irregular and complex training particle‑selection

This step is also based on using the individual binary mask for each complex and irregu-
lar particle as shown in Fig. 17b, d, f, h. Then, we test each individual particle’s mask size 
and determine if it is a usable training sample. We develop a “good irregular (complex) 
training particle selection” algorithm (see Algorithm  2) to test each irregular binary 
particle, by calculating the average area for the whole particle binary masks which is 
determined by computing the total number of white pixels in each particle using the 
connected component particle mask’s pixel index list. Then the average area as is shown 
in Eq. (6):

where l is the total number of particles in each cryo-EM image.

(6)Area =

∑

l allAreas

Total number of particles
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Fig. 14  Fully automated side-view particles clustering results using different cryo-EM micrographs and 
Intensity-Based Clustering Algorithm (ICB) [24]. a, g KLH micrograph clustering images (binary masks) 
using the KLH dataset [26] were both top and side-view particles appear in additional to some cumulative 
ice and artificial objects. b, h Cleaned KLH micrograph binary mask images that have only the side-view 
particles after micrograph cleaning and small object and circular objects removal. c, i Binary particle objects 
smoothing micrographs. d, j Feret diameters measures [32] for the particle objects. e, k Perfect side-view 
(square) particle shapes generation on the top of the binary image of the KLH micrograph. f, l Show the 
overlapped particles removal and perfect side-view particles-selection results after remove the overlapped 
side-view binary masks
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Fig. 15  Fully automated perfect side-view masks generation and good training particles-selection results 
using the KLH dataset [26]. a, e, i The original individual side-view particle binary masks. b, f, j New binary 
particle’s mask dimensions using Feret diameters [32]. c, g, k The replaced artificial perfect side-view (square) 
binary masks based on the new Feret object dimensions. d, h, l The good KLH side-view particles selection
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Component 2: fully automated single particle picking based on deep classification network

The second component of the DeepCryoPicker is the particle picking based deep neural 
network shown in Fig. 18. It consists of many layers such as the input layer, pre-process-
ing layer, convolutional layers, sub-sampling layers, two fully connected layers, and one 
output layer. The main architecture of the DeepCryoPicker has in total thirteen layers 
as is summarized in Table 9. The first and second layers (input and the pre-processing 
layer) come from the first component of the DeepCryoPicker. The input layer takes the 
particles that have been already picked through the first model of the DeepCryoPicker. 
Each particle has been picked based on the preprocessed version of each of the micro-
graphs. The rest are five convolutional layers, three max-pooling (subsampling) layers, 
two fully connected layers, and one output layer. To use one deep network structure, we 
unify the variety of the particle sizes as shown in Table 1 to one fixed size. In this case, 
after each particle is detected, a bounding box is drawn around each particle object in 
the cryo-EM image which is used to crop the particle image from the original micro-
graph. We recalculate the bounding box dimension of each detected particle after cal-
culating the center of each box and specifying the fixed size of each (width and height). 
Then, the input size of the first and second layers (input and the preprocessing) in our 
DeepCryoPicker structure is 227× 227 . The third layer is the convolutional layer using 
96 kernels with size 11× 11 . the first convolutional layer (third layer in the structure) 
produces 96 feature maps with dimensions 55× 55 . The fourth layer is the max-pooling 

Fig. 16  Fully automated good top and side-View (square and circular) training particles-selection using 
AutoCryoPicker [24] approach and KLH dataset [26]. a, d The Ground truth (particles manually labeled) for 
the different cryo-EM images from the KLH dataset [26]. b, e Side-view particles-selection results using 
AutoCryoPicker based IBC algorithm [24] and perfect side-view (square) particles-selection algorithm. c, f 
Top-view particles-selection results using a modified CHT algorithm [24] (the red ‘ + ’ sign is the center of each 
particle, and blue circles around each particle are the radius of each particle by the blue circle around each 
particle
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layer with kernel size 3× 3 and the feature maps output dimension is 27× 27 . The fifth 
layer is another convolutional layer using 256 kernels with size 5× 5 . The fifth layer 
(convolutional) produces 256 feature maps with dimensions 27× 27 . The sixth layer is 
another max-pooling layer with kernel size 3× 3 and the feature maps dimensions out-
put is 13× 13 . The seventh, eighth, and ninth layers are convolutional layers using differ-
ent numbers of kernels 384, 384, and 256 respectfully. We use the same kernel size 3× 3 
for three convolutional layers. The output feature maps size for the last three convolu-
tional layers 13× 13 . The tenth layer is the third max-pooling later with kernel size 3× 3 
and output dimensions 6× 6 . The last two layers are the fully connected layers to the 
final output (prediction layer) where the particle class is predicted based on the weight’s 
matrix and the activation function.

The convolutional and sub-sampling layers, which are core building blocks of the 
convolutional neural networks (CNN), produce feature maps. The kernel sizes are 
selected to establish the local connections while expanding through the entire particle 
image. The learnable kernels are convolved with each feature map from the previous 
layer. The convolutional layers (in the same convolutional operations) share the same 
local connective weights W [l]

ij  based on the previous layer’s weights W [l−1]
ij  , in which 

the feature maps in the current layer X [l]
j  are produced based on Eq. (7) [33]:

Fig. 17  Fully automated irregular (complex) particles picking results using SuperCryoEMPicker approach 
[25] and good training particles-selection. a Particle detection and picking results using SuperCryoEMPicker 
approach [25] and cryo-EM micrographs form the Ribosome dataset [28]. b, d Good irregular particle binary 
mask examples. c, e Good training particle examples selection. f, h Bad irregular binary mask examples (dash 
red lines illustrate the missing part of the particle’s background while the dash blue lines illustrate the center 
of the object that the selected particle has to be in). g, i Bad particle examples (dash red lines illustrate the 
missing part of the particle’s background)
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where l represents the convolutional layer, W  and B is the shared weights and bias, M 
is extracted feature maps (in the previous layer), j is the output feature maps. Then, the 

(7)X
[l]
j = sigmoid





�

i∈Mj

X
[l−1
i W

[l]
ij + B[l]





Fig. 18  The architecture of the deep neural network used in DeepCryoPicker. a Training pipeline. The 
convolutional layer and the subsampling layer are abbreviated as C and S, respectively. C3:11 × 11 × 96 
means that in the third convolutional layer (C3) is comprised of 96 feature maps, each of which has a size of 
11 × 11, also. C3: @27 × 27 means that output feature maps dimensions are 27 × 27 pixels. b Testing pipeline

Table 9  The DeepCryoPicker network architecture

The convolutional layer and the subsampling layer are abbreviated as C and S, respectively. C3:11 × 11 × 96 means that in 
the third convolutional layer (C3) is comprised of 96 feature maps, each of which has a size of 11 × 11, also. C3: @27 × 27 
means that output feature maps dimensions are 27 × 27 pixels

Layer Type Filters Size

I1 Input layer – 227 × 227 × 3

P2 Pre-processing – 227 × 227 × 3

C3 Convolution 96 11 × 11

M4 Max-pooling – 3 × 3

C5 Convolution 256 5 × 5

M6 Max-pooling – 3 × 3

C7 Convolution 384 3 × 3

C8 Convolution 384 3 × 3

C9 Convolution 256 3 × 3

M10 Max-pooling – 3 × 3

F11 Fully connected – 1 × 4096

F12 Fully connected – 1 × 4096

O13 Output – 1 × 1
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feature maps are transformed to another layer by a non-linear activation function (sig-
moid) as is given in Eq. (8) [6]:

To reduce the positional over-fitting, the subsampling (max-pooling) layer is designed 
to subsample the input feature maps by decreasing the actual size and reduce the num-
ber of the parameters [33]: The max-pooling (subsampling) after each particular layer is 
computed based on Eq. (9) [33]:

where I and j are the positions of the output feature maps, M and N  are the subsampling 
size. In the training process, the weights and bias are randomly initialized [0–1]. Then, 
they are updated during the training process. In our model, we used the cross-entropy 
loss function as the objective function Eq. (10) [34]:

where i is the sample number and c is its label, x represents the predicted probability 
of the class c . N  is the total number of training samples, and C is the total number of 
classes. During the training process, the errors of the objective function is minimized 
propagating error via the backpropagation algorithm based stochastic gradient descent 
as follow [35–37].

where E is calculated as follow:

where tn is the label of the n th training sample, and yn is the value of the output layer cor-
responding to the n th training sample. ω(l) and ω(l + 1) represents the training param-
eter before and after the update of each iteration. The learning rate, η , is initially set to 
0.0001.
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