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At present, heart disease is the number one cause of death worldwide. Traditionally, heart disease is commonly detected using blood
tests, electrocardiogram, cardiac computerized tomography scan, cardiac magnetic resonance imaging, and so on. However, these
traditional diagnostic methods are time consuming and/or invasive. In this paper, we propose an effective noninvasive computerized
method based on facial images to quantitatively detect heart disease. Specifically, facial key block color features are extracted from
facial images and analyzed using the Probabilistic Collaborative Representation Based Classifier. The idea of facial key block color
analysis is founded in Traditional Chinese Medicine. A new dataset consisting of 581 heart disease and 581 healthy samples was
experimented by the proposed method. In order to optimize the Probabilistic Collaborative Representation Based Classifier, an
analysis of its parameters was performed. According to the experimental results, the proposed method obtains the highest accuracy

compared with other classifiers and is proven to be effective at heart disease detection.

1. Introduction

Heart disease (HD) is actually a broad term used for a
wide variety of diseases of the heart and blood vessels such
as coronary artery disease (CAD) [1] and heart rhythm
disorders called arrhythmias (ARR) [2]. According to the
World Health Organization (WHO), HD is the number one
cause of death globally [3]. In 2012, it was estimated that
HD caused about 175 million deaths, which means a person
died from HD every 2 seconds [4]. There are many tests to
diagnose HD; the main traditional diagnostic methods of
HD are [5] blood tests, Electrocardiogram (ECG) [6], Holter
monitoring [7], echocardiogram [8], cardiac catheterization
[9], cardiac computerized tomography (CT) scan [10], and
cardiac magnetic resonance imaging (MRI) [11].

Many clues about the health of a person’s heart can be
discovered in his/her blood. However, a single blood test
cannot reflect the risk of heart disease. Two common blood
tests for heart disease are a cholesterol test and a C-reactive
protein (CRP) test. These tests analyze cholesterol and CRP

contents in the blood, respectively, while overall the results
can help create a clear picture of a person’s heart health [12].
An ECG records electrical signals, while a Holter monitor is a
portable device the patient wears to record a continuous ECG,
usually for 24 to 72 hours. An echocardiogram uses sound
waves to produce images of a person’s heart, while a stress test
records a person’s signs and symptoms during exercise using
an ECG or echocardiogram. For cardiac catheterization, a
special dye needs to be injected into a persons coronary
arteries through a long, thin, and flexible tube (catheter)
usually in the leg. The dye then outlines narrow spots and
blockages that appear in X-ray images. A CT scan and MRI
can also help doctors detect calcium deposits in the patient’s
arteries that can narrow it.

Blood tests performed on individuals with HD are con-
sidered invasive as bodily fluids are removed and can take
time for the laboratory technician to reach a result. ECG on
the other hand might not be as invasive as a blood test, but
in the case of Holter monitoring, it is time consuming. As
for cardiac catheterization, the injection of a special dye is
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FIGURE 1: Gender distribution of the dataset.

the definition of invasive. Therefore, given these issues, there
is a need to develop a noninvasive computerized method to
detect HD.

In 2008, Kim et al. proposed one such method to conduct
the color compensation of a facial image based on the analysis
of facial color [13] rooted in Traditional Chinese Medicine
(TCM). In [13], they extracted the center forehead and lips
of a person and analyzed the red color value distribution of
the center forehead and lips. The authors wanted to survey
real clinical data of HD patients and group them into different
cases based on the analysis that facial color can help doctors
diagnose HD. However, the authors just proposed a method
and did not experiment on a real dataset.

Recently, Zhang et al. [14] used facial block color features
to detect diabetes in a noninvasive manner with the Sparse
Representation Based Classifier (SRC). Even though their
detection results are relatively high, further analyses using
other representation algorithms have not been studied nor
have these algorithms been applied to detect other nondia-
betic diseases. To resolve these issues, we propose an effective
noninvasive computerized method to detect HD through
facial image analysis via the Probabilistic Collaborative Rep-
resentation Based Classifier (ProCRC) and apply our pro-
posed method on a real dataset. ProCRC was first proposed in
[15] and applied in pattern recognition, being developed from
the Collaborative Representation Based Classifier (CRC) of
[16]. Zhang et al. [16] proved that Collaborative Representa-
tion played a more important role than sparsity in pattern
recognition and proposed CRC, which outperformed the
SRC [17] and also runs much faster. In our work, the ProCRC
was modified to be applied for HD detection based on facial
key block color features. The ProCRC combines CRC and the
probabilistic theory.

For the proposed method, facial images are first captured
through a specially designed facial image capture device
and four facial key blocks are extracted from each image.
A color gamut with six-facial-color centroids is employed
to extract color features from each block. The dataset used

in this paper has two distinctive classes: (1) HD with 581
samples and (2) healthy (H) consisting of 581 samples. Based
on the seven facial key block permutations, ProCRC with its
optimal parameters is applied to classify HD versus H. To
the best of our knowledge, this is the first time noninvasive
computerized heart disease detection has been proposed in
the literature.

The organization of this paper is given as follows. The
details about the dataset are represented in Section 2. Feature
extraction of the facial key blocks is given in Section 3,
succeeded by a description of our proposed method in
Section 4 using ProCRC. Section 5 describes and discusses
the experimental results and Section 6 concludes this paper.

2. Dataset

The dataset we collected and used in this work consists of 581
H and 581 HD samples from the Guangdong Provincial TCM
Hospital, Guangdong, China, in 2015. Individuals were diag-
nosed as healthy by medical professional practicing Western
medicine, while heart disease patients were determined using
the methods described in Section 1. Please note the handling
of human subjects was done according to the principles
outlined in the Declaration of Helsinki and each individual
gave their consent to be a part of this study. Ethical approval
was obtained from the Science and Technology Development
Fund (FDCT) of Macao for this study with the project
number FDCT 124/2014/A3.

The gender and age distributions of H and HD are
described in this section. During data collection, it is
sometimes difficult to record the information of everyone
due to many circumstances. Therefore, in gender and age
distributions, there are cases of no record (NR). The following
pie charts (Figurel) are used to show the dataset gender
distribution. In the pie chart, blue represents males, yellow
is for females, and NR is illustrated in gray. In Figurel,
there are two pie charts describing the gender distributions
of the dataset: (1) H (Figure 1(a)) and (2) HD (Figure 1(b)).
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TABLE 1: Age distribution of the dataset.
Class 1-17 18-24 25-60 61-80 >81 NR Sum
H 1 327 179 4 0 70 581
0.17% 56.28% 30.81% 0.69% 0% 12.05% 100%
HD 6 38 398 115 18 6 581
1.03% 6.54% 68.5% 19.79% 3.1% 1.03% 100%

According to Figure 1(a), 72 people are missing their gender
information in H and about half of the healthy dataset is
female (295), while the number of males is 214. Different from
the H dataset, the HD dataset has only 6 NR cases. About 1/3
of the HD patients are female (171) with 404 male HD patients
2/3 (see Figure 1(b)).

The age distribution is given through a table (see Table 1).
To show the age distribution (in years) clearly, the age is
split into 5 parts: [1-17], [18-24], [25-60], [61-80], and [>81].
From this table, the first column is the class name, where
each class has two rows: the first row is the number of the
people belonging to the age range and the second row is the
corresponding percentage of people out of the total. For the
H dataset, the age of most people is from 18 to 60 (56.28% +
30.81% = 87.09%) with no healthy person above 80 and
it contains only 4 people above 60. As for the HD dataset
consisting of 581 samples, the majority of HD patients are
aged from 25 to 80 (68.5% + 19.79% = 88.29%).

It should be noted that the missing gender and age
information does not affect our study since we are only
interested in each individual’s health status.

3. Facial Key Block Feature Extraction

In order to decrease the effects of the capture environment,
a specially designed facial image capture device was applied.
Using the device, the individual just needs to place his/her
head on the chin rest and the device operator clicks the
capture button. More details about the device can be found
in [14]. A color correction procedure [18] was also performed
to portray the facial images in an accurate way after image
capture.

In Traditional Chinese Medicine (TCM), it is believed
that the status of the internal organs can be determined
from different regions of the face [19-21]. Figure 2 shows
a human face partitioned into various regions according to
TCM [22]. Facial blocks were previously defined in [23]
to detect hepatitis from digital facial images. The authors
extracted 5 facial blocks, one between the eyebrows, two
below the eyes, one under the bridge of the nose, and one
underneath the lower lip. Applying this idea to our proposed
method, four facial key blocks are automatically extracted
from each facial image representing the main regions. No
facial block is used to represent region C in Figure 2 due to
the existence of facial hair.

Hence, according to the five facial regions, four facial key
blocks are automatically extracted from each calibrated facial
image. Furthermore, the dimensionality of the whole facial
image is much larger than four facial key blocks. Therefore,

FIGURE 2: Different facial regions according to TCM.

using four facial key blocks instead of the whole facial image is
more appropriate and efficient. Figure 3 depicts an example of
a facial image with its four marked facial key blocks. The four
facial key blocks are forehead block (FHB) on the forehead,
left and right cheek blocks (LCB and RCB) below the left
and right eyes which are symmetrical, and nose bridge block
(NBB) on the nose, the midpoint of LCB and RCB. The four
facial key block sizes are the same at 64 x 64 pixels.

In the automatic key blocks extraction procedure, the
pupils are first detected and marked. The positions of the
two pupils are denoted as L;, = (x,, y;,) (left) and L,, =
(%,p> Vrp) (right). Based on L, and L,,, the four facial key
blocks are located through

rp’

1
Licp = (xlp’ Yip — ZH> >

1
Lygcp = (xrp’ Vrp ~ ZH> >
)

xlp+xrp ylp+yrp 1 )

L = 5 + _H
FHB < 2 2 3

Xip ¥t Xep Vipt Vep 2 )
Lygg = , -ZH),
NBB < 5 5 9
where L, ey block name Means the position of ith key block,
such as Ly is the position of FHB, and W and H are the
width and height of the facial image, respectively. Figure 3
depicts the locations of the four facial key blocks based on
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FIGURE 3: Four facial key block positions.

FIGURE 4: Three typical examples of four facial key blocks from the
two classes.

the left and right pupil positions. Three typical examples from
each class are illustrated in Figure 4.

The color features are extracted from each facial key
block. A color gamut (see Figure5) with six-facial-color
centroids are applied for color feature extraction, where
6 color values are extracted from each facial key block.
Figure 5 illustrates the six-color centroids from the facial
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FIGURE 5: Facial color gamut with its six-color centroids marked by
red crosses.

color gamut as a solid colored square, whose label is on top
and correspondingly RGB value is below.

Each pixel in a facial block is compared to one of the
six-color centroids and assigned to its nearest centroid. After
evaluating all pixels of a facial block, the total of each color
(based on the six-color centroids) is summed and divided
by the total number of pixels. This ratio forms the facial
color feature vector k, where k = [r|,1,,13,14,75,7¢] and 7;
represents the sequence of the six-color centroids in Figure 5.

By comparing the four facial color feature vectors (per
facial image) in groups of two (using all images in the dataset),
and calculating the mean absolute difference of each group,
LCB and RCB are shown to have the smallest difference [14].
This is not surprising given LCB and RCB are symmetrical
and located on either side of the face. Therefore, in the
following experiments, RCB is removed.

4. Representation Based Classifiers

4.1. Sparse Representation Based Classifier (SRC). The SRC
was first proposed by Wright et al. [17] and used for face
recognition. Since then, this classifier has been applied in
numerous fields such as pattern recognition [14, 24], object
detection [25], image restoration [26], image denoising [27],
video restoration [28], image super-resolution [29]. For the
following, D represents a dataset; s donates a sample; X, Y, or
Z stands for a coefficient; and « or 3 is a positive scalar.

The principle of the SRC is using the linear combination
of the training data (D) to represent the query testing sample
(s) while keeping the coefficients (Y) sparse enough. The
coeflicients of the class that the testing samples belong to have
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(1) Input: D, D;, D/, L a B ands
(2) Output: id(y)
(3) Code s with D via [,-norm:

(7) Compute the residual for each
8)forl=1;1<L;l++ do

(9)  r(s) = IDX - DX

(10) end for

(12) id(s) = arg min;{r,(s)}

(4) (X) = argminy{[ls - DX + al X2 + (B/L) ¥ IDX - D,X; |2}
(5) Calculate the solution of the coefficient:
(6) X = (D'D+ (B/L) Y-, (D,)'D, +al)'D's

(11) With the residuals, determine the class label of s:

class:

ALGORITHM 1: ProCRC algorithm procedure.

significant values, while the other coefficients are nearly zero.
The SRC is defined as

(1?) = arg myin {||s - DY} + agpc ||Y||1} > (2)

where agy can be set to obtain the real sparse coding vector
Y of s over D.

4.2. Collaborative Representation Based Classifier (CRC).
In [16], Zhang et al. established the Collaborative Repre-
sentation (CR) mechanism, but not the /;-norm sparsity
constraint, that truly improved the method’s effectiveness
and further proposed a Collaborative Representation Based
Classifier (CRC).

The authors of [16] proposed CRC by modifying the [;-
norm of the SRC (2) to a [,-norm:

(2) = argmin {ls - DZI; + acac 121} G)

where g is the regularization parameter. The solution of
(3) can be easily and analytically derived as
Z=(D"D+agc-1) DTs. (4)
The first part (DD + Acpe 1 )"'DT) of (4) is independent of
s. Therefore, it can be precalculated and once a query sample
s is available, it is projected to get Z. This makes calculating

7 faster than Y in (2). More details about CRC can be found
in [16].

4.3. Probabilistic Collaborative Representation Based Classifier
(ProCRC). Cai et al. [15] proposed the Probabilistic Collab-
orative Representation Based Classifier (ProCRC) algorithm
for pattern classification. Let D = [D,, D,,...,D;] € RM™¥
denote the training samples, where D, € R represents
the training samples from the [ class with N; samples
(N = ZIL:1 N;), and the dimension of each sample is M. The

coefficient X of D representing a test sample s € R via
ProCRC is solved with the following:

()?) = arg m}}n 4{“5 - DX”% ta "Xllé

B 2
S ox- o]
1

where « and f8 are regularization parameters.

Using ProCRC, the class label of the test sample is
determined through locating the minimum value of the
residual error for each class:

id (5) = arg min | DX - DX [, 6)
2

where X represents the coefficients of the test sample s in

the I, class. Algorithm 1 shows the procedure of ProCRC.

In order to show the ProCRC procedure clearly, let D,

[0,...,D,,...,0] € RMN andﬁ,’ = D - D] have the same
size of D. More details about ProCRC can be found in [15].

5. Experimental Results

The experimental results are represented in this section.
The settings for HD detection are first given followed by
the detection results using 10 classifiers to compare and
contrast with the ProCRC. Finally, the analysis of the ProCRC
parameters o and f is represented in Section 5.3.

5.1. Experimental Setting. We randomly selected close to
half (580) of the data for training and the remaining data
(582) for testing, where accuracy (which is the proportion
of the correctly classified samples divided by all samples)
is the performance measurement used. To overcome the
shortcoming of different results for different data partitions
[30], 5 random partitions were applied, where the final
accuracy is its mean. The following experimental results were
conducted on a PC with 8i7-6700 CPU @3.40 GHz processor,
16.0 GB RAM, and a 64-bit OS.



Eleven classifiers accuracy with various block combinations
. . . .

38 T T T

Accuracy (%)

: 8 8 8§ 8 § 4
a8z =2z oz 8,
L S S
2 @, o@m tZ
Z T O m
mm»—lm
2%}

Block combination

m x-NN = Softmax

m SVM = Decision Tree
m SRC = AdaBoost
m DL with SRC = LogitBoost
m ProCRC = Gentle Boost
= CRC

FIGURE 6: HD detection accuracies of all 11 classifiers including
ProCRC.

The dataset we collected and used in this work consists of
581 H and 581 HD samples from the Guangdong Provincial
TCM Hospital, Guangdong, China, in 2015.

Based on Section 3, three facial key blocks (FHB, LCB,
and NBB) are used instead of the whole facial image.
Therefore, there are seven combinations for the three facial
keyblocks and all seven combinations were applied separately
for each classifier. The seven block combinations consist of 3
cases with one block (FHB, LCB, and NBB), 3 cases with 2
blocks (FHB + LCB, FHB + NBB, and LCB + NBB), and all
blocks combined together (FHB + LCB + NBB).

5.2. HD Detection Results. Other than the ProCRC, 10 other
classifiers were applied to detect HD representing an array of
traditional and the state of the art. The 10 classifiers are (i) k-
Nearest Neighbor (k-NN) [31] with k = 1, (ii) Support Vector
Machines (SVM) [31] with linear kernel function, (iii) SRC
[17] with A = 0.1, (iv) Dictionary Learning (DL) with SRC
[32] using Aggc = 0.1, Ay, = 0.1, and a dictionary size equal
to half of the feature dimensionality, such as 3 for one key
block, (v) CRC [16] with A = 0.01, (vi) Softmax [33], (vii)
Decision Tree [34], (viii) AdaBoost [35] with Tree Leaner,
(ix) LogitBoost [36] with Tree Leaner, and (x) Gentle Boost
[37]. The classifier parameters were fine-tuned based on its
best performance and for the ProCRC its two parameters are
analyzed in Section 5.3.

Figure 6 illustrates the best accuracies of all 11 classifiers
based on facial key block color features for all seven block
combinations. From this bar chart, it is obvious that the
ProCRC results (in red) outperformed or came close to
achieving the highest accuracy for almost each combination.

To be thorough, the complete set of results including
accuracy, sensitivity, and specificity [38] of the 11 classifiers
using seven block combinations is shown in Table 2. In the
table, ACC, SEN, and SPC represent accuracy, sensitivity,
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TaBLE 2: Comprehensive HD detection results using 11 classifiers.

Block combination ACC SEN SPC
k-NN
FHB 80.45% 67.56% 93.33%
LCB 81.27% 68.11% 94.43%
NBB 76.80% 63.99% 89.62%
FHB + LCB 81.89% 69.69% 94.09%
FHB + NBB 81.72% 71.27% 92.16%
LCB + NBB 80.89% 69.69% 92.10%
FHB + LCB + NBB 83.13% 72.30% 93.95%
SVM
FHB 83.71% 75.74% 91.68%
LCB 84.36% 76.01% 92.71%
NBB 79.11% 69.83% 88.38%
FHB + LCB 87.32% 82.47% 92.16%
FHB + NBB 85.26% 80.07% 90.45%
LCB + NBB 85.33% 78.28% 92.37%
FHB + LCB + NBB 87.66% 83.78% 91.55%
SRC
FHB 79.76% 77.18% 82.34%
LCB 81.24% 77.73% 84.74%
NBB 72.44% 69.62% 75.26%
FHB + LCB 84.12% 81.44% 86.80%
FHB + NBB 82.37% 78.35% 86.39%
LCB + NBB 82.92% 79.31% 86.53%
FHB + LCB + NBB 85.09% 79.52% 90.65%
DL with SRC
FHB 75.74% 64.88% 86.60%
LCB 76.22% 62.75% 89.69%
NBB 78.63% 68.45% 88.80%
FHB + LCB 76.77% 66.39% 87.15%
FHB + NBB 82.54% 73.13% 91.96%
LCB + NBB 82.85% 73.47% 92.23%
FHB + LCB + NBB 83.54% 76.49% 90.58%
ProCRC
FHB 83.57% 73.61% 93.54%
LCB 84.30% 73.75% 94.85%
NBB 78.08% 63.71% 92.44%
FHB + LCB 87.11% 82.06% 92.16%
FHB + NBB 85.74% 79.73% 91.75%
LCB + NBB 85.43% 78.42% 92.44%
FHB + LCB + NBB 88.01% 84.95% 91.07%
CRC
FHB 78.76% 59.04% 98.49%
LCB 78.97% 59.86% 98.08%
NBB 76.19% 59.86% 92.51%
FHB + LCB 82.51% 67.42% 97.59%
FHB + NBB 82.65% 69.48% 95.81%
LCB + NBB 81.68% 68.45% 94.91%
FHB + LCB + NBB 84.43% 72.23% 96.63%
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TaBLE 2: Continued.

Block combination ACC SEN SPC
Softmax
FHB 83.68% 90.09% 79.15%
LCB 84.30% 91.48% 79.40%
NBB 78.97% 85.71% 74.48%
FHB + LCB 87.39% 91.14% 84.41%
FHB + NBB 85.15% 89.25% 81.92%
LCB + NBB 84.88% 89.67% 81.22%
FHB + LCB + NBB 87.39% 90.30% 85.00%
Decision Tree
FHB 78.21% 76.63% 79.79%
LCB 79.97% 78.76% 81.17%
NBB 73.61% 72.65% 74.57%
FHB + LCB 83.30% 81.44% 85.15%
FHB + NBB 80.86% 78.56% 83.16%
LCB + NBB 81.65% 79.79% 83.51%
FHB + LCB + NBB 81.58% 80.34% 82.82%
AdaBoost
FHB 83.40% 76.29% 90.52%
LCB 83.81% 76.70% 90.93%
NBB 79.97% 74.23% 85.70%
FHB + LCB 86.53% 84.81% 88.25%
FHB + NBB 84.40% 81.92% 86.87%
LCB + NBB 84.57% 80.27% 88.87%
FHB + LCB + NBB 86.56% 84.60% 88.52%
LogitBoost
FHB 83.40% 76.29% 90.52%
LCB 84.40% 79.59% 89.21%
NBB 79.90% 74.23% 85.57%
FHB + LCB 87.08% 84.47% 89.69%
FHB + NBB 84.78% 83.92% 85.64%
LCB + NBB 84.91% 81.10% 88.73%
FHB + LCB + NBB 87.70% 85.29% 90.10%
Gentle Boost

FHB 83.26% 76.43% 90.10%
LCB 83.81% 79.52% 88.11%
NBB 79.97% 73.75% 86.19%
FHB + LCB 87.04% 85.02% 89.07%
FHB + NBB 84.67% 84.12% 85.22%
LCB + NBB 85.02% 81.37% 88.66%
FHB + LCB + NBB 87.08% 84.26% 89.90%

and specificity, respectively. As can be seen in Table 2, the
ProCRC using FHB + LCB + NBB (highlighted) achieved
the highest result (88.01%) amongst all classifiers. Using this
grouping, the second highest result was 87.7% obtained by
LogitBoost. The biggest difference between the ProCRC and
the 10 other classifiers with FHB + LCB + NBB was 6.43%,
where the classifier was Decision Tree. When compared to
the representation based algorithms (SRC, DL with SRC, and
CRC), the ProCRC achieved on average a 3.65% increase in
accuracy using FHB + LCB + NBB.

FIGURE 7: Three examples of FHB from HD and H that cannot be
recognized with the naked eye.

To further demonstrate the effectiveness of the proposed
method, Figure7 shows three examples of FHB for HD
and H, respectively. In this figure, the top row is FHB
from HD and the bottom row is from H. Looking at the
figure, it is difficult to distinguish the blocks with the naked
eye. However, the proposed method can classify each block
correctly.

5.3. ProCRC Parameters Analysis. Based on Section 4.3, both
of the two parameters range from [0.001,0.01,0.1:0.1:1.0].
In order to find the optimal values of « and f3 for HD detec-
tion, experiments using each of the seven block combinations
were analyzed. These results are shown in Figure 8. In each
subfigure, the red line represents the accuracies of a fixed 8
with & changing its values, while in the blue line it is the
opposite with « being equal to a constant and f3 changing.

o and f results based on FHB are shown in Figure 8(a).
After « = 0.7 and 8 = 0.4, the red and blue lines remained
constant, respectively. The best accuracy of FHB was 83.71%,
where « = 0.3 and f = 0.2. Figure 8(b) depicts the
ProCRC parameter results for LCB. Except for § = 0.001,
the accuracies of the other 3 values were the same. For «,
the accuracies also had only two values, which were the
same with f3, where 0.4 caused a change. The ProCRC with
o = 0.4 and f = 0.001 based on LCB obtained the best
accuracy of 84.33%. The results for NBB are represented
in Figure 8(c). For f3, the top accuracy was achieved at the
initial point (8 = 0.001). The result of a from 0.01 to
0.3 did not change and the highest accuracy was 78.08%.
Figure 8(d) illustrates « and 8 for FHB + LCB. The best
accuracies of « were the same (87.18%) from 0.3 to 0.7. The
two parameters of ProCRC based on FHB + NBB are depicted
in Figure 8(e). The f3 results decreased with the increasing
of B. In contrast, the accuracies of « increased with the
increasing of «. The highest accuracy of FHB + NBB was
85.77%, where &« = 0.3 and = 0.001. Figure 8(f) shows
the result of « and 8 for LCB + NBB. With the increasing of
« and 3, its accuracies increased and decreased, respectively.
The best result of 85.53% was obtained from LCB + NBB with
a = 0.8 and B = 0.001. The final subfigure (Figure 8(g))
represents the two parameters for FHB + LCB + NBB. Similar
to Figure 8(f), the results decreased with an increasing f3.
From 0.001to 0.1, the w accuracies increased with « increasing
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and had small fluctuations after 0.2. The best accuracy in this
case, which was also the highest accuracy in all 11 classifier,
was 88.01%, where « = 0.1 and 3 = 0.001.

6. Conclusions

This paper proposed a noninvasive computerized method to
detect HD based on facial key block color analysis classified
using the ProCRC. The experiments were conducted on a new
dataset consisting of 581 HD samples and 581 H samples. The
facial images are first captured through a specially designed
device, where four facial key blocks are extracted to represent
one sample. For each facial key block, color features are
extracted using a facial color gamut with six-color centroids.
To obtain optimal HD detection, three facial key blocks
are permuted and applied for classification. The proposed
method used the ProCRC which was developed from CRC
and analyzed CRC based on the probabilistic theory [15].
Compared with 10 other classifiers, the best accuracy of
HD detection was 88.01% with a sensitivity of 84.95% and
a specificity of 91.07% (using the ProCRC with & = 0.1
and § = 0.001 with FHB + LCB + NBB). This proves the
effectiveness of the ProCRC based on facial key block color
feature analysis to detect HD and potentially provides a new
innovative noninvasive way to detect this disease.

As part of the future work, more features from the facial
key blocks will be explored and extracted. In addition, other
representation learning algorithms will be developed and
applied to HD detection.
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