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Background stimulus delays 
detection of target stimulus 
in a familiar odor–odor combination
Naomi Gotow1, Ayaka Hoshi2 & Tatsu Kobayakawa1*

Familiarity of odor–odor combinations is enhanced through food intake in daily life. As familiarity 
increases, the perceptual boundary between two odors may become ambiguous; therefore, we 
hypothesized that exposure to one odor would delay detection of the other in a high-familiarity 
combination but not in a low-familiarity combination. To test this hypothesis, we measured the speed 
of odor detection using two types of background stimuli (black tea odor and odorless air) and two 
types of target stimuli (lemon odor and almond odor). For Japanese participants, the combination 
of black tea and lemon odor has high familiarity, whereas the combination of black tea and almond 
odors has low familiarity. Reaction time for detection of target stimulus was measured by inserting 
a pulsed target stimulus into the flow of the background stimulus (i.e., replacing the background 
stimulus with the target stimulus for a short time). Reaction time for detection of lemon odor was 
significantly longer under the black tea odor condition than under the odorless air condition. Reaction 
time for detection of almond odor was similar between the black tea odor and odorless air conditions. 
These results are in line with the hypothesis that familiarity of an odor–odor combination affects odor 
detection speed. Further investigations are required to reach more robust conclusions.

Feature detection (in this study, especially familiarity judgment) of odors is a basic task of olfactory information 
processing1. For humans, olfaction contributes greatly to perception of the environment2. Perceptual learning is 
required in order for olfactory function to respond appropriately to changes in olfactory environment3. Perceptual 
learning is defined as an experience-induced change in the way the perceiver extracts information4.

In everyday life, flavor perception is the perceptual experience that involves the greatest number of sensory 
modalities5. Considering food consumption in daily life in the context of perceptual learning, repeated consump-
tion of a certain food is likely to change the way we process various types of sensory information received from 
that food. For example, when Japanese people drink black tea, they generally choose either black tea without any 
condiments, black tea with milk, or black tea with lemon. Horie6 described the situation as follows: “For example, 
if the percentage of customers who ordered black tea is examined after randomly sampling 100 cafes, 90% of 
customers order black tea with lemon. In case of shop where customer cannot choose black tea with milk or black 
tea with lemon, black tea with lemon is automatically served to customers who ordered black tea.” Consequently, 
the combination of black tea and lemon odors is familiar to Japanese people. In other words, Japanese people 
might perceive the combination of black tea and lemon odors as the “odor of black tea with lemon”. Prescott and 
colleagues7 reported that when odor and taste are treated as a synthetic whole, the perceptual boundary between 
olfaction and gustation becomes more ambiguous, and the interaction between both sensations is enhanced. 
In the case of foods described by standard expressions, such as “lemon tea” in the case of Japanese people, the 
perceptual boundary between the individual odors (in this case, black tea and lemon) may become ambiguous.

Reaction time is one of the representative methods for quantitatively measuring changes in the olfactory 
environment8–12. Croy and colleagues13 reported that reaction time was significantly longer when similarity 
between cue and target were high (i.e., the same odors) than when it was low (i.e., different odors). According 
to Wise and Cain14, who measured the time required to discriminate between odors, reaction time was long-
est for high-similarity combinations consisting of same unmixed odors, intermediate for moderate-similarity 
combinations consisting of binary mixed odors and its components, and shortest for low-similarity combina-
tions consisting of different unmixed odors. These previous studies13,14 suggest that the smaller the changes in 
olfactory environment, the more difficult it is to detect the changes. Therefore, in Japanese people familiar with 
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black tea with lemon, detection of lemon odor may be delayed if constantly flowing black tea odor is replaced 
with lemon odor for a moment.

In this study, we investigated the effect of familiarity of an odor–odor combination on odor detection speed. 
We used black tea and lemon odors as a high-familiarity combination, and black tea and almond odors as low-
familiarity combination. We presented black tea odor as background stimulus (hereafter, black tea odor condi-
tion) and lemon and almond odors as target stimuli, and then measured the reaction time for detection of target 
stimuli. We also arranged a control condition with odorless air as background stimulus (hereafter, odorless air 
condition). Additionally, as supplemental information for interpreting the reaction time for detection of the target 
stimulus in each odor–odor combination, participants evaluated the familiarity and congruency of each combina-
tion. We hypothesized that if the perceptual boundary between black tea and lemon odors was ambiguous due to 
dietary habits, the reaction time for detection of lemon odor would be longer under the black tea odor condition 
than under the odorless air condition. On the other hand, we hypothesized that this phenomenon would not 
be observed when the target stimulus was almond odor. In addition, in Japan where the term “almond tea” (i.e., 
black tea with almond flavoring agent or paste) has not settled, the combination of black tea and almond odors 
is less familiar than the combination of black tea and lemon odors. However, Japanese people sometimes eat 
baked confectionery with almonds while drinking black tea. In consideration of such Japanese dietary habits, we 
speculated that the familiarity of the combination of black and lemon odors and the combination of black tea and 
almond odors might differ, whereas their congruency might be similar. In this study, referring to the definition 
of congruency in combination of taste and odor by Schifferstein and Verlegh15, we defined the combination of 
odor and odor as the “degree to which odor and odor are suitable as a combination in food”.

Methods
Participants.  This study was conducted in accordance with the revised version of the Declaration of Hel-
sinki. All procedures in this study were approved by the ethical committee for ergonomic experiments of the 
National Institute of Advanced Industrial Science and Technology, Japan16. We explained the experiments to 
each participant in advance of the study, and informed them of their right to cease participation even after 
their initial agreement to participate; informed written consent was acquired from all participants. Forty-nine 
volunteers (25 females and 24 males) without subjective olfactory disorders, aged 20–28 (mean age ± standard 
deviation [SD] = 22.20 ± 1.47 years old), participated in the experiment. They were informed of the experiment 
by a recruitment advertisement available on the website of the local community.

Odor.  To generate the background stimulus, a commercially available black tea beverage (GOGO-NO-
KOCHA OISHII MUTO [AFTERNOON TEA DELICIOUS SUGAR-FREE], Kirin Beverage, Tokyo) was used 
without dilution. We poured 50  ml of black tea beverage into a fluororesin gas wash bottle (model number 
PFA100, AS ONE Corporation, Osaka) in the black tea odor unit of the background stimulus line of an expanded 
olfactometer. Black tea odor was generated by supplying with the same flow rate as when measuring reaction 
time odorless air to the gas wash bottle. To check the perceived intensity of the black tea odor, two experiment-
ers smelled the odor at the outlet of the olfactometer. To avoid a change in perceived intensity upon respiration, 
the experimenters smelled black tea odor for 7 s with their breath stopped. Perceived intensity of black tea odor 
ranged from 1.5 to 2 on a 6-point scale (‘not detectable’ [0], ‘barely detectable’ [1], ‘weak’ [2], ‘moderate’ [3], 
‘strong’ [4], and ‘very strong’ [5]: see, Saito17).

To generate target stimuli, lemon flavoring agent (LEMON FLAVOR 109, T&M, Chiba) and almond flavor-
ing agent (ALMOND FLAVOR 120, T&M, Chiba) were used. Each flavoring agent was diluted with propylene 
glycol (special grade reagent, Wako Pure Chemical Industries, Osaka), 3- and 100-fold for lemon and almond, 
respectively. A gas wash bottle was placed in the lemon odor unit and almond odor unit of the target stimulus line 
of the expanded olfactometer. Two L-shaped Teflon tubes were inserted in the lid of the gas wash bottle. When 
the lid was attached to the body of bottle, two tubes (i.e., a long one and a short one) were vertically inserted 
into the body of bottle. The tip of a long Teflon tube inserted inside the main body was wrapped with absorbent 
cotton of 2.5 cm × 2.5 cm, and absorbent cotton was fixed to the tube with a thin wire. We dropped 1 ml of 
diluted lemon flavoring agent or almond flavoring agent to absorbent cotton using a microsyringe. Lemon and 
almond odors were generated by sending odorless nitrogen with the same flow rate as when measuring reaction 
time into absorbent cotton containing the flavoring agent. To check the perceived intensities of lemon odor and 
almond odor, two experimenters smelled the odors at the outlet of the olfactometer. To avoid changes in perceived 
intensities with respiration, experimenters smelled the lemon and almond odors for 300 ms with their breath 
stopped. Perceived intensities of lemon and almond odors were approximately 3 (‘moderate’) on a 6-point scale17.

Olfactometer.  Existing olfactometer.  A schematic of the olfactometer (OLFACTOMETER OM4; Burghart 
Instruments, Wedel, Germany) developed by Kobal and colleagues18,19 is shown in Fig. 1a. This olfactometer 
consists of a line through which odorless air flows, a line through which odor (odorized nitrogen) flows, and a 
line for exhausting unpresented gases. By switching between odorless air and odor lines using a three-way sole-
noid valve, the odor was exhausted via a suction pump during the presentation of odorless air; likewise, odorless 
air was exhausted during the presentation of the odor.

A gas wash bottle was placed at the inlet as a heating module for gaseous odor. This module was an original 
component of the existing olfactometer (OLFACTOMETER OM4) developed by Kobal and colleagues18,19. In 
many cases (e.g., Kettenman and colleagues20), the inlet of the heating module for gaseous odor is connected to 
a high-pressure gas cylinder containing an odorized gas. However, the types of gaseous odors supplied in high-
pressure cylinder format are limited. Therefore, we connected a gas wash bottle containing absorbent cotton 
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Figure 1.   Schematic of olfactometer. The existing olfactometer (a) consisted of an odorless air line, an odor 
line, and an exhaust line. In the expanded olfactometer (b), the odorless air and odor lines of the existing 
olfactometer were used as the background stimulus and target stimulus lines, respectively. Two units (the 
odorless air unit and black tea odor unit) were placed in the middle of the background stimulus line. Similarly, 
three units (odorless nitrogen unit, lemon odor unit, and almond odor unit) were placed in the middle of the 
target stimulus line. The gas flowing through each line was switched by solenoid valves. The flow rates of gases 
were regulated by mass flow controllers. The part surrounded by the dotted line was heated by circulating warm 
water around the lines.
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bearing the odorant (i.e., odor module) instead of a high-pressure gas cylinder. The pressurized odorless nitrogen 
passed through the gas wash bottle, thereby generating an odor.

The flow rates of odorless air and odorless nitrogen were controlled by mass flow controllers. To supply odor-
less air and odorless nitrogen to the olfactometer, atmosphere was taken into the olfactometer by a compressor, 
and then the odorants contained in the atmosphere were removed by passing the air through a deodorizing 
device consisting of a gas wash bottle made of stainless steel (diameter 73 mm × height 170 mm) with 250 g of 
granular activated carbon (model number 4GG FOR VAPOR PHASE, pellet 4 mm; As One Corporation, Osaka). 
To humidify the odorless air, it was passed through a gas wash bottle containing deionized water. To keep the 
odorless air and odor warm, water at ~ 40 °C was circulated around the Teflon tube, which was the path for both 
the odorless air and odor. Humidification and warming were performed to relieve trigeminal nerve stimulation 
of the participant’s nasal mucosa (for details, see Kobal and colleagues18,19 and Gotow and colleagues16).

At the outlet of the olfactometer, we attached a forked thin tube made of polypropylene and Teflon. The 
participant inserted this tube approximately 1 cm into both nasal cavities. To avoid pressure changes and tem-
perature changes in the nasal cavity, odorless air was always presented through the tube into the nasal cavity, 
and odorized nitrogen was inserted into the flow of odorless air as a pulse. More specifically, by controlling 
the three-way solenoid valve with output from a digital input/output board on a personal computer (PC), gas 
presented to the participant was switched from odorless air to odor, and then back to odorless air. To perform 
real-time monitoring of gas presented to the participant, a high-speed ultrasonic gas sensor21,22 was also placed 
at the outlet of the olfactometer. The high-speed ultrasonic gas sensor converts the molecular weight of the gas 
into a voltage value. This sensor can successfully detect gas exchange between air (mean molecular weight 28.8) 
and nitrogen (molecular weight 28) with a signal-to-noise ratio greater than 42 dB, and a temporal resolution of 
detection below 1 ms22. Changes in voltage values, based on the outputs from the PC that controlled the three-
way solenoid valve and the high-speed ultrasonic gas sensor, were processed by an analog-to-digital conversion 
circuit (POWERLAB; ADInstruments, Bella Vista, Australia), and the digitized value was recorded at a sampling 
rate of 1000 Hz.

In the existing olfactometer, various odors could be presented as target stimuli by exchanging gas wash bottles 
containing absorbent cotton with flavoring agent. However, because the gas wash bottle could not be replaced 
during the measurement, only one type of odor could be presented per session.

Expanded olfactometer.  In this study, we needed to present lemon odor and almond odor as target stimuli, and 
black tea odor and odorless air as background stimuli in each session. To fulfill this requirement, a new attach-
ment was added to the existing olfactometer, as shown in Fig. 1b.

Two units (odorless air unit and black tea odor unit) were arranged in parallel in the middle of the odorless 
air line of the existing olfactometer (hereafter, the background stimulus line). Similarly, three units (odorless 
nitrogen unit, lemon odor unit, and almond odor unit) were arranged in parallel in the middle of the odor line 
of the existing olfactometer (hereafter, the target stimulus line).

The two-way solenoid valves of each unit were controlled by output from the PC via a microprocessor (model 
number ARDUINO UNO REV3; Arduino Srl, Ivrea, Italy) and semiconductor relays (PHOTOMOS RELAY, 
model number AQW 212; Panasonic Corporation, Kadoma, Japan). The microprocessor was connected to the 
PC. The three-way solenoid valve of the existing olfactometer was also controlled by output from the same PC. 
A semiconductor relay was connected to each channel of the microprocessor. A voltage signal of 5 V, which was 
output from the microprocessor, controlled application of voltage of 24 V to the two-way solenoid valve via the 
semiconductor relay. At steady state, the two-way solenoid valves of the odorless air and black tea odor units 
were open and closed, respectively, and the two-way solenoid valves of the odorless nitrogen, lemon odor, and 
almond odor units were open, closed, and closed, respectively (for details, see Gotow and colleagues16).

Black tea and odorless air conditions.  Under the black tea odor and odorless air conditions, odorless air was 
presented constantly in the nasal cavity of the participant by switching the three-way solenoid valve. Odorless 
nitrogen was exhausted via a suction pump, without being presented in the nasal cavity of the participant, by 
switching the three-way solenoid valve. When the target stimulus (lemon or almond odor) was presented, odor-
less nitrogen and the target stimulus were switched using the two-way solenoid valves of each unit.

Under the black tea odor condition, odorless air and black tea odor were switched using the two-way sole-
noid valve of each unit. To insert a target stimulus into the flow of black tea odor as a pulse (i.e., to replace black 
tea odor with target stimulus for a short time), the black tea odor and target stimulus were switched using the 
three-way solenoid valve. On the other hand, under the odorless air condition, odorless air and black tea odor 
were not switched. To insert a target stimulus into the flow of odorless air as a pulse (i.e., replace odorless air with 
target stimulus for a short time), odorless air and target stimulus were switched using the three-way solenoid 
valve (for details, see Gotow and colleagues16).

Response device.  To obtain a response to detection of target stimulus, a wooden cylindrical device (diam-
eter 40 mm × height 84 mm) with a spring-type push button (diameter 85 mm) was used16. When the button 
was pushed about 0.3 mm, current flowed in the circuit due to conduction between contacts, and a voltage of 
5 V was generated at both ends of the resistor. The change in voltage based on the pushing of the button was also 
processed at a sampling rate of 1000 Hz, as were the changes in voltage value based on the output from the PC to 
the three-way solenoid valve and the output from the high-speed ultrasonic gas sensor. Additionally, a clicking 
sound was generated at the same time that conduction between contacts occurred due to the button-press. This 
sound functioned as auditory feedback of the response to detection of the target stimulus.
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Procedure.  Reaction time measurement.  The participant was located in a small room where external sound 
could be blocked. Although the door of the small room was closed during measurement, we could observe the 
inside of the room and interact with the participant through camera and interphone.

Before starting the experiment, we adjusted the flow rates of gases and exhaust by placing a U-tube manometer 
at the outlet of the olfactometer. More specifically, the flow rate of background stimulus (odorless air and black 
tea odor) displayed on the control unit was set to 7.2 L/min. Subsequently, the target stimulus line was closed by 
shutting off the power to the mass flow controller, but the exhaust line was opened. The pressure applied to the 
exhaust line was adjusted to 20 cmH2O (= 1.96 kPa) above the pressure applied to the background stimulus line 
by operating the control unit. Finally, the background stimulus line was closed by shutting off the power to the 
mass flow controller, whereas the target stimulus line was opened. The exhaust line remained open. The pres-
sure applied to the exhaust line was adjusted to 20 cmH2O (= 1.96 kPa) above the pressure applied to the target 
stimulus line by operating the control unit. Ultimately, the background stimulus line, the target stimulus line, 
and the exhaust line were opened. At this time, due to the structure of olfactometer, the flow rates displayed on 
the control unit were 7.2 L/min for background stimuli (odorless air and black tea odor), 5.0 L/min for target 
stimuli (lemon and almond odors), and 5.8 L/min for exhaust. However, when we adjusted the flow rates of gases 
and exhaust using the U-tube manometer, the actual flow rate of target stimuli was almost equivalent to the flow 
rate of background stimuli (i.e., 7.2 L/min). Additionally, by smelling the gases at the outlet of olfactometer every 
time the flow rates were adjusted, two experimenters confirmed that there was no perceptual difference in flow 
rate among the gases. The temperatures of odorless air and odor were maintained at the intranasal temperature 
(about 36 °C) at the outlet of the olfactometer.

A green light was used as a fixation point and warning light for target stimulus presentation. A light-emitting 
part, which was derived from a green LED through an optical fiber, was placed about 150 cm in front of the 
participant. The green light was turned on and off under the control of the PC, and a voltage of 5 V was output 
from the PC at the same time that the green light was turned on. The change in voltage value based on illumina-
tion and extinguishing of the green light was also processed at a sampling rate of 1000 Hz, as were the changes in 
voltage value based on the output from the PC to the three-way solenoid valve, the output from the high-speed 
ultrasonic gas sensor, and the pushing of the button.

The timeline per trial is shown in Fig. 2. The presentation time of the black tea odor was 10 s (actual time, 
9.7 s; 0.3 s out of 10 s was spent to present the target stimulus), the presentation time of the target stimulus was 
300 ms, and the presentation interval between target stimuli was approximately 20 s. In all trials, the green light 
was turned on for 7 s, and the target stimulus was presented between 3 and 4 s after the green light was turned 
on. Onsets of target stimuli were randomized among trials. Under the black tea odor condition, switching from 
odorless air to black tea odor was conducted 3 s before the green light was turned on, and then switching from 
black tea odor to odorless air was performed at the same time that the green light was turned off. Under the 
odorless air condition, switching from odorless air to black tea odor was not performed.

The participant was told that they would experience two conditions: one in which the black tea odor would be 
presented for several seconds before the green light was turned on, and another in which the black tea odor would 
not be presented. Because the perceived intensity of the target stimulus may change depending on whether the 
target stimulus was presented during the expiratory or inspiratory phases, they were instructed to stop breath-
ing when the green light was turned on. Because the gases were presented at reasonable flow rates (7.2 L/min), 
participants could perceive the odor even if they stopped breathing. Additionally, the participant was asked to 
have a response device in their dominant hand and to keep their thumb on the button during measurement. 
Because the target stimulus was presented when the green light was turned on, they were instructed to push 
the button as quickly as possible after perceiving a change in the olfactory environment. In order to prevent the 

Figure 2.   Timeline of stimulus presentation in each trial. Under the black tea odor condition (a), odorless 
air was switched to black tea odor 3 s before the green light was turned on. Switching from black tea odor to 
odorless air was performed 7 s after the green light was turned on (i.e., at the same time that the green light 
was turned off). Under the odorless air condition (b), switching from odorless air to black tea odor was not 
conducted. In all trials, target stimulus was presented between 3 and 4 s after the green light was turned on. The 
onsets of the target stimulus were randomized among trials.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11987  | https://doi.org/10.1038/s41598-021-91295-z

www.nature.com/scientificreports/

participant from predicting the onset of the target stimulus based on the switching sound of the solenoid valve, 
white noise was always presented during the measurement.

Before starting the main trials, the participant performed exercise trials. First, the combination of odorless 
air and lemon odor and the combination of odorless air and almond odor were used, and the participant was 
instructed to push the button as quickly as they perceived the odor. If the participant could not perceive either or 
both of the two odors, they could not participate in the main trials. On the other hand, participants who could 
perceive both lemon and almond odors performed exercise trials using the combination of black tea and lemon 
odors and the combination black tea and almond odors. After the participant practiced responding to the target 
stimulus while white noise was presented, the main trials were started.

The participant performed two sessions (80 trials per session). Because they needed to concentrate on accom-
plishing the task, a short break of about 20 s was arranged every 10 trials. The break between the first and second 
sessions was approximately 15 min. One session consisted of 20 trials for each of the combination of black tea and 
lemon odors, the combination of black tea and almond odors, the combination of odorless air and lemon odor, 
and the combination of odorless air and almond odor. The same combination was not presented consecutively; 
we prepared four sequences in which the presentation order was randomized. Participants experienced different 
sequences between the first and second sessions.

Perceived intensity evaluation of black tea odor, lemon odor, and almond odor.  After finishing the second ses-
sion, the participant evaluated the perceived intensities of black tea, lemon, and almond odors. The expanded 
olfactometer was used to present the odors. Black tea odor was presented first to all participants, and the pres-
entation of lemon and almond odors was counterbalanced among participants. Black tea odor was presented 
for 7 s. When lemon or almond odor was presented, the participant was instructed to hold their breath when 
the green light was turned on. While the green light was turned on for 7 s, each odor was presented for 300 ms. 
A 6-point scale (six vertical lines were drawn at equal intervals on one horizontal line, and the verbal labels 
described above were attached to each vertical line, see Saito17) was used for perceived intensity evaluation. The 
participant was told that they could mark anywhere on the scale, according to their perception.

Psychological evaluation of the combination of black tea and lemon odors and the combination of black tea and 
almond odors, and psychological evaluation of lemon and almond odors.  After evaluating the perceived inten-
sity of each odor, the participant evaluated the familiarity and congruency of the combination of black tea and 
lemon odors and the combination of black tea and almond odors. Due to experimental setup, of the volunteers 
who participated in reaction time measurement and perceived intensity evaluation, 28 volunteers aged 20–25 
(16 females, 12 males, mean age ± SD = 22.18 ± 1.28 years) performed familiarity and congruency evaluations.

The expanded olfactometer was used to present odors. This olfactometer could not present two types of odors 
simultaneously. Therefore, before performing the experiment, two experimenters sniffed the odors at the outlet 
of the olfactometer and determined a timeline of odor presentation that gave the feeling that two types of odor 
were being presented simultaneously. More specifically, we alternately repeated presentation of black tea odor 
for 600 ms and presentation of lemon odor or almond odor for 200 ms.

The evaluation order of odor–odor combinations was counterbalanced among participants. First, to ensure 
that the participant identified the qualities of lemon or almond odor, they smelled　only lemon odor or almond 
odor for 8 s, and then evaluated the pleasantness, preference, familiarity, and edibility of the odor. We used a 
seven-point scale (seven vertical lines were drawn at equal intervals on one horizontal line, and verbal labels 
were placed at the left end, center, and right end) for each evaluation. For pleasantness, we labeled the left end 
“very unpleasant” and the right end “very pleasant”. For preference, we labeled the left end “strongly dislike” and 
the right end “strongly like”. For familiarity, we labeled the left end “very unfamiliar” and the right end “very 
familiar”. For edibility, we labeled the left end “extremely inedible” and the right end “extremely edible”. In all 
evaluations, the center was labeled “neutral”. After four psychological evaluations of lemon or almond odor, the 
participant experienced repeated presentation of the combination of black tea and lemon odors or the combina-
tion of black tea and almond odors for 20 s, and evaluated the familiarity and congruency of each odor–odor 
combination. For familiarity evaluation, we used the same scale as for familiarity evaluation of lemon or almond 
odor. For congruency evaluation, we used a seven-point scale (seven vertical lines were drawn at equal intervals 
for one horizontal line, and verbal labels “highly incongruent”, “neutral”, and “highly congruent” were placed 
at the left end, center, and right end, respectively). The participant was asked, “The odor that you smelled some 
time ago was presented simultaneously with black tea odor. What is the degree of familiarity and congruency of 
this odor–odor combination?” The participant was told that they could mark anywhere on the scale, according 
to their perception. Additionally, they were instructed to breathe naturally so that olfactory perception in daily 
life was reflected in the evaluation to the greatest extent possible.

Analysis.  Reaction time for detection of target stimulus.  We excluded from the analysis two participants 
who could not perceive lemon and almond odors in the exercise trials and three participants who reported that 
the perceived intensity of black tea odor was 0 (i.e., ‘not detectable’). Responses obtained from 44 participants 
aged 20–28 (22 females, 22 men, mean age ± SD = 22.11 ± 1.50 years old) were used.

To calculate reaction times for detection of target stimulus using data obtained in test trials, we initially deter-
mined the time point when the target stimulus reached the participant’s nasal mucosa (tnm). More specifically, 
we added the time required for the target stimulus to reach the participant’s nasal mucosa from a high-speed gas 
sensor (tgs–nm) to the time point when the target stimulus passed the gas sensor (tgs). ‘tgs–nm’ was calculated based 
on four parameters (the distance between the center of the gas sensor and the tip of the Teflon tube attached 
to the gas sensor, the estimated distance between the tip of Teflon tube and the participant’s nasal mucosa, the 
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cross-sectional area of the tube, and the flow rate of background stimulus), resulting in a constant value of 22 ms. 
‘tgs’ was identified based on the record of real-time monitoring of gases. Finally, we obtained reaction times for 
detection of target stimulus by subtracting the time point when the target stimulus reached the participant’s nasal 
mucosa (tnm) from the time point of the button-press, obtained from the record of real-time monitoring. The 
distribution of reaction times and the number of trials for each combination of background and target stimuli are 
shown for each participant in Tables S1, S2, S3, and S4. Response rate, which was value obtained by dividing the 
number of response trials by the total number of trials (40 trials × 44 participants), was as follows: 96.9% for the 
combination of black tea and lemon odors, 98.9% for the combination of black tea and almond odors, 99.9% for 
the combination of odorless air and lemon odor, and 99.8% for the combination of odorless air and almond odor.

To improve the accuracy of analysis, reaction times very different from the mean were excluded from the 
analysis. Statistical analyses based on the mean and variance can be distorted in the presence of outliers23. Outli-
ers are defined as observations that deviate abnormally from the overall pattern of data24. One of the simplest 
ways to identify outliers is to set upper and lower thresholds and assume that data exceeding these thresholds 
are anomalous25. The so-called 3σ rule is a simple and widely used heuristic for identifying outliers26. Therefore, 
with reference to a psychological study27 that analyzed reaction time using visual stimuli by applying this rule, we 
identified outliers. More specifically, we initially calculated the mean and SD of reaction time for each combina-
tion of the background and target stimuli and for each participant. Subsequently, we used only trials in a specific 
range (i.e., mean − 3 × SD ≤ tr ≤ mean + 3 × SD, ‘tr’ represents reaction time [in seconds]) for analysis. Adoption 
rate, which was value obtained by dividing the number of adopted trials by the number of response trials, was 
as follows: 98.2% for the combination of black tea and lemon odors, 98.1% for the combination of black tea and 
almond odors, 98.2% for the combination of odorless air and lemon odor, and 97.6% for the combination of 
odorless air and almond odor.

As shown in Tables S1, S2, S3, and S4, the number of adopted trials varied depending on the combinations of 
background and target stimuli and the participants. Therefore, using the reaction times of the adopted trials, we 
calculated the mean reaction time for each combination of background and target stimuli for each participant. 
To investigate the effect of familiarity of an odor–odor combination on odor detection speed, we conducted 
two-way repeated-measures analysis of variance (ANOVA) of mean reaction times, with background and target 
stimuli as within-subject factors. When the interaction between background and target stimuli was significant, 
a simple effect test was conducted.

Perceived intensity of black tea, lemon, and almond odors.  For perceived intensity, we used evaluation values 
obtained from 44 participants for analysis, as in the analysis of reaction time for detection of target stimulus. 
To investigate whether perceived intensity differed significantly among black tea, lemon, and almond odors, we 
conducted one-way repeated-measures ANOVA, with odor as a within-subject factor. When the main effect of 
odor was significant, multiple comparisons were performed by the Ryan method.

Familiarity and congruency of the combination of black tea and lemon odors and the combination of black tea and 
almond odors.  Among the 28 participants who evaluated the familiarity and congruency of the combination 
of black and lemon odors and the combination of black tea and almond odors, three participants reported that 
the perceived intensity of black tea odor was 0 (i.e., ‘not detectable’). Therefore, these participants were excluded 
from analysis; consequently, evaluation values obtained from 25 volunteers aged 20–25 (14 females, 11 males, 
mean age ± SD = 22.00 ± 1.22 years old) were used for analysis. To determine whether familiarity and congru-
ency differed between the combination of black tea and lemon odors and the combination black tea and almond 
odors, paired t-test was performed for each evaluation item.

Pleasantness, preference, familiarity, and edibility of lemon and almond odors.  Supplementally, in order to 
investigate whether pleasantness, preference, familiarity, and edibility differed significantly between lemon and 
almond odors, the paired t-test was performed for each evaluation item. Additionally, Spearman’s rank correla-
tion coefficients were calculated for each odor and for each pair of evaluation items, and tests for non-correlation 
were performed.

All statistical analyses were performed using IBM SPSS STATISTICS 23 (IBM Japan, Tokyo), and significance 
level was set at 0.05.

Results
Reaction time for detection of target stimulus.  Inter-participant mean of reaction time in each com-
bination of background and target stimuli is shown in Fig. 3. Two-way repeated-measures ANOVA revealed a 
significant interaction between background and target stimuli (F (1, 43) = 4.57, p < 0.05). Simple effect test for 
this interaction revealed a significant simple main effect of background stimulus for lemon odor (F (1, 86) = 5.95, 
p < 0.05). These results indicated that reaction time for detection of lemon odor was significantly longer under 
the black tea odor condition than under the odorless air condition.

Perceived intensity of black tea, lemon, and almond odors.  Perceived intensity of each odor 
is shown in Table  1. One-way repeated-measures ANOVA revealed a significant main effect of odor (F (2, 
86) = 21.27, p < 0.001). Multiple comparisons revealed significant differences between black tea and lemon odors 
and between black tea and almond odors (p < 0.001). These results indicated that black tea odor was perceived 
significantly more weakly than lemon odor and almond odor, and that perceived intensity did not differ signifi-
cantly between lemon and almond odors.
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Familiarity and congruency of the combination of black tea and lemon odors and the combi-
nation of black tea and almond odors.  Familiarity and congruency of each odor–odor combination are 
shown in Fig. 4. Paired t-test for familiarity revealed a significant difference between the two odor–odor combi-
nations (t (24) = 2.32, p < 0.05). Familiarity was significantly higher for the combination of black tea and lemon 
odors than the combination of black tea and almond odors. On the other hand, paired t-test for congruency did 
not reveal a significant difference between the two odor–odor combinations.

Pleasantness, preference, familiarity, and edibility of lemon and almond odors.  Pleasant-
ness, preference, familiarity, and edibility of each odor are shown in Table 1. Significant differences between 
lemon and almond odors were revealed by paired t-test for pleasantness (t (24) = 3.10, p < 0.01) and preference 
(t (24) = 2.31, p < 0.05). Pleasantness and preference were significantly higher for lemon than for almond odor.

Spearman’s rank correlation coefficients for each pair of evaluation items for each odor are shown in Table 2. 
The correlation coefficients were significant in three of six pairs for lemon odor and five of six pairs for almond 
odor. However, only pleasantness and preference exhibited a very strong correlation (> 0.8; see Chan28) for both 
lemon and almond odors.

Discussion
Effect of familiarity of odor–odor combination on the speed of odor detection.  In olfactory 
information processing by Japanese people, the perceptual boundary between black tea and lemon odors may be 
ambiguous due to the intake of black tea with lemon in daily life. Therefore, we hypothesized that the reaction 
time for detection of lemon odor would be longer under the black tea odor condition than under the odorless 
air condition, but this phenomenon would not be observed when the target stimulus was almond odor because 
Japanese participants are not familiar with black tea with almond. In this study, we observed results that were in 
line with this hypothesis.

Brain activity in piriform cortex might affect olfactory information processing such as detection29 and famili-
arity judgment30. Olfactory stimuli accepted by the olfactory mucosa reach the olfactory bulb via the olfactory 

Figure 3.   Inter-participant mean of reaction time for detection of the target stimulus in each combination of 
background and target stimuli. Inter-participant mean of reaction time for detection of target stimulus in the 
combination of black tea and lemon odors, the combination of black tea and almond odors, the combination 
of odorless air and lemon odor, and the combination of odorless air and almond odor. Error bars are standard 
errors [n (number of participants) = 44]. Two-way repeated-measures analysis of variance (ANOVA) revealed 
a significant interaction between background and target stimuli (F (1, 43) = 4.57, p < 0.05). Simple effect test for 
interaction revealed a significant simple main effect of background stimulus for lemon odor (F (1, 86) = 5.95, 
p < 0.05). *p < 0.05.

Table 1.   Perceived intensity, pleasantness, preference, familiarity, and edibility of each odor (mean ± SD). SD, 
standard deviation.

Evaluation item Lemon odor Almond odor Black tea odor

Perceived intensity 2.69 ± 1.23 2.47 ± 1.27 1.50 ± 1.09

Pleasantness 4.15 ± 0.79 3.37 ± 1.16

Preference 4.08 ± 0.88 3.42 ± 1.35

Familiarity 4.54 ± 1.02 4.41 ± 0.84

Edibility 3.85 ± 1.63 4.53 ± 0.84
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nerve, and are then projected into the piriform cortex, which in turn signals to higher olfactory areas such 
as the thalamus, orbitofrontal cortex, insula cortex, superior temporal sulcus, anterior cingulate gyrus, and 
amygdala20,31–37. The piriform cortex is considered to be the primary olfactory area because it is the largest area 
receiving direct input from olfactory bulb, the structure that monosynaptically relays input from olfactory recep-
tor neurons38. Accordingly, based on the findings of previous studies29,30, we infer that activity of the piriform 
cortex, the primary olfactory area, might have affected detection and familiarity judgment in our study as well.

Brain activity patterns in the piriform cortex changed following olfactory perception learning (for rats39–42 
and humans43–45). Kadohisa and Wilson46 suggested that perceptual learning facilitates encoding in the posterior 
piriform cortex of rats on the basis of sharing and similarity of perceptual qualities between odors. Howard and 
colleagues47 found that in humans, odor quality was encoded in the posterior piriform cortex, and that odors 
belonging to the same perceptual category exhibited similar pattern topographies in the posterior piriform 
cortex. Based on previous studies46,47, we conceived the idea that high familiarity of an odor–odor combination, 
reflecting food intake in daily life, would affect odor encoding in the posterior piriform cortex in such a manner 
that the speed of odor detection would changes.

Effect of odor valence on detection speed.  Olofsson48 hypothesized that unpleasant odors are detected 
faster than pleasant odors because humans readily evaluate odors based on odor valences, and unpleasant odor 
may be harmful to the organism. Jacob and Wang10 reported that reaction time for detection of an unpleasant 
odor was significantly shorter than the time required to detect a pleasant odor. Boesveldt and colleagues8 found 
that reaction time for detection of an unpleasant food odor was significantly shorter than the time for detection 
of a pleasant food odor, a pleasant non-food odor, or an unpleasant non-food odor. However, an early study by 
Wells49 demonstrated that reaction time for detection did not differ between pleasant and unpleasant odors. 
Similarly, more recent studies11,48,50 reported that the pleasantness of an odor does not affect reaction time for 
the detection of that odor. Although this controversy has persisted for many years, no conclusion has yet been 
reached regarding the effect of odor valence on the speed of odor detection.

Figure 4.   Familiarity and congruency of each odor–odor combination. Familiarity (a) and congruency (b) of 
the combination of black tea and lemon odors, and the combination of black tea and almond odors. Error bars 
are standard errors [n (number of participants) = 25]. Paired t-test for familiarity revealed a significant difference 
between the two odor–odor combinations (t (24) = 2.32, p < 0.05), but paired t-test for congruency did not reveal 
a significant difference. *p < 0.05.

Table 2.   Spearman’s rank correlation coefficients of each pair of evaluation items in each odor. ***p < 0.001, 
**p < 0.01, *p < 0.05.

Evaluation item

Lemon odor Almond odor

Pleasantness Preference Familiarity Edibility Pleasantness Preference Familiarity Edibility

Pleasantness – 0.85*** 0.16 0.36 – 0.84*** 0.42* 0.56**

Preference – 0.28 0.43* – 0.28 0.59**

Familiarity – 0.62** – 0.75***

Edibility – –
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In this study, under both the black tea odor condition and odorless air condition, reaction time did not differ 
significantly between the lemon and almond odors. The pleasantness score of the almond odor (mean = 3.37) 
was significantly lower than that of the lemon odor (mean = 4.15), but both odors were higher than neutral (3 on 
the seven-point scale). The preference score of the almond odor (mean = 3.42) was significantly lower than that 
of the lemon odor (mean = 4.08), but again, both odors were higher than neutral (3 on the seven-point scale). 
Additionally, for both lemon and almond odors, we observed a very strong correlation between pleasantness and 
preference. Based on these results, we conceived that the difference in valence between lemon and almond odors 
was quite small; consequently, it was unsurprising that the reaction times for detection of the target stimulus 
would be similar for the two odors. In order to clarify the relationship between the valence of an odor and its 
detection speed, the odors used in the experiment need to be selected based on both the valence of each odor 
and the difference in valence between odors.

Limitations of this study and future issues.  Explanation of reaction time from different models other 
than familiarity.  The results obtained in this study are in line with the hypothesis that familiarity of odor–odor 
combination affects detection speed of a target stimulus, but could be explained by different models. The first 
possibility is that the combination of black tea and lemon odors was unexpectedly easier to treat as a synthetic 
whole7 than the combination of black tea and almond odors. Perception of mixed odor relies on two aspects: the 
ability to process the mixed odor as a single odor-object (configural or synthetic perception) and the ability to 
recognize components within the mixed odor (elemental or analytical perception)51. Regardless of the familiar-
ity of an odor–odor combination, the former ability may have been mainly used for processing the combination 
of black tea and lemon odors, whereas the latter ability may have been mainly used for processing the combina-
tion of black tea and almond odors. The second possibility is that odorants contained in the black tea flavoring 
agent had more olfactory receptors in common with odorants contained in the lemon flavoring agent than with 
odorants contained in the almond flavoring agent. Furudono and colleagues52, who performed response meas-
urement of isolated murine olfactory receptors and sensory evaluation, suggested that odorants that activate 
similar receptor codes present similar odor qualities. It may have been difficult to distinguish between odors 
because the similarity of odor qualities was higher between black tea odor and lemon odor than between black 
tea odor and almond odor. The third possibility is that for some reason (e.g., masking or adaptation of olfac-
tory receptors), perceived intensity of lemon odor was lower under the black tea odor condition than under the 
odorless air condition. In this study, perceived intensity evaluation of each odor was performed separately from 
reaction time measurement. If participants had evaluated the perceived intensity of target stimulus in each trial 
of reaction time measurement, this possibility could be justified.

Approaches to reinforce the hypothesis of this study.  To reinforce the hypothesis that the results of this study on 
reaction time are based on the familiarity of odor–odor combinations, further evidence needs to be accumulated 
using the following approaches. The first approach is to measure reaction time using odor–odor combinations 
other than those used in this study, and observe whether the results of this study are reproduced. Examples of 
odor–odor combinations with high vs. low familiarity for Japanese people are as follows: bonito broth and soy 
sauce vs. bonito broth and vanilla, red bean paste and cherry leaves vs. red bean paste and anise, and boiled rice 
and dried plums vs. boiled rice and strawberry. The second approach is to measure the reaction time for detec-
tion of lemon odor in participants from a food culture in which black tea and lemon odors are a low-familiarity 
combination. Reaction times can be compared between the high-familiarity group (Japanese participants) and 
low-familiarity group (participants from other countries and regions). The third approach is to determine how 
often each participant consumes black tea with lemon. The correlation coefficient between consumption fre-
quency and reaction time can be calculated, and reaction time can be compared between high-frequency and 
low-frequency consumption groups.

Improvement of experimental procedure.  In the reaction time measurement, participants were instructed to 
stop breathing when the green light was turned on. Such a situation is distinct from olfactory perception in daily 
life and is unnatural for participants. This problem could be addressed by turning on the green light in time with 
respiratory rate and synchronizing the target stimulus with the inspiratory phase.

In this study, psychological evaluations other than perceived intensity evaluation of each odor were performed 
by some participants. To increase the reliability of the data, all psychological evaluations should be performed 
by all participants. This point should be addressed when we collect data in future studies.

Conclusion
When Japanese people who consume black tea with lemon in daily life smell the odors of black tea and lemon, 
they perceive them as unified rather than separate. Therefore, the perceptual boundaries between black tea and 
lemon odors may be ambiguous in Japanese olfactory perception. In other words, we hypothesized that exposure 
to one odor delayed detection of the other in a high-familiarity combination, but not in a low-familiarity com-
bination. In this study, lemon odor was detected significantly more slowly in combination with black tea odor 
than in combination with odorless air. This phenomenon was not observed when almond odor was presented 
instead of lemon odor. These results are in line with our hypothesis, but further investigations are required to 
reach more robust conclusions.

Data availability
The data used to generate the results that support the findings of this study are available from the corresponding 
authors upon reasonable request.
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