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Abstract: Donkey milk is consumed by humans for its nutritional and therapeutic properties. Mi-
croRNAs (miRNAs) and messenger RNAs (mRNAs) have been implicated in the regulation of milk
component synthesis and mammary gland development. However, the regulatory profile of the
miRNAs and mRNAs involved in lactation in donkeys is unclear. We performed mRNA-seq and
miRNA-seq and constructed coexpression regulatory networks for the mammary glands during the
lactating and nonlactating period of jennies. We identified 3144 differentially expressed (DE) mRNAs
(987 upregulated mRNAs and 2157 downregulated mRNAs) and 293 DE miRNAs (231 upregulated
miRNAs and 62 downregulated miRNAs) in the lactating group compared to the nonlactating
group. The DE miRNA target mRNA were significantly associated with pathways related to RNA
polymerase, glycosphingolipid biosynthesis, mRNA surveillance, ribosome biogenesis in eukary-
otes, glycerophospholipid metabolism, Ras signaling, and the fly hippo signaling pathway. The
mRNA–miRNA coregulation analysis showed that novel-m0032-3p, miR-195, miR-26-5p, miR-23-3p,
miR-674-3p, and miR-874-3p are key miRNAs that target mRNAs involved in immunity and milk
lipid, protein, and vitamin metabolism in the jenny mammary gland. Our results improve the current
knowledge of the molecular mechanisms regulating bioactive milk component metabolism in the
mammary glands and could be used to improve milk production in donkeys.

Keywords: donkey; mammary gland; lactation; integrative interaction; transcriptome

1. Introduction

Donkeys are an important domesticated species across the world, and the use of dairy
products from donkeys has been widely documented [1]. The protein and lactose contents
of donkey milk are close to those of human milk, and the total solids and fat contents
are lower than those of human and cow milk [2]. Donkey milk shows antimicrobial and
anticancer properties, and its consumption and demand are increasing, especially in Italy
and China [3,4].

The mammary gland of jennies is characterized by small volumes, and milk is mainly
alveolar [5]. The mammary gland is a complex organ, which synthesizes, secretes, stores,
and releases milk; these physiological functions constitute “lactation performance”, which
is regulated by an unusually high level of postnatal development during puberty and the
reproductive cycle [6]. Mammary gland development includes cyclical periods of growth,
differentiation, lactation, and regression, which are modulated by the proliferation and
apoptosis of mammary epithelial cells [7]. The production of milk is mainly dependent
on the metabolic activity and performance of mammary epithelial cells [8]. During the
lactation period, the number and secretory activity of mammary epithelial cells increase,
decrease gradually, stop, and remodel. In jennies, the milk yield remains constant for

Genes 2022, 13, 1637. https://doi.org/10.3390/genes13091637 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13091637
https://doi.org/10.3390/genes13091637
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0003-1612-6911
https://doi.org/10.3390/genes13091637
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13091637?type=check_update&version=2


Genes 2022, 13, 1637 2 of 16

9–10 months of lactation [9,10]. Peak lactation occurs at about 40–60 d from parturition [10],
and the highest test-day milk yield ranges from 1.85 kg/d to 3.80 kg/d [11,12]. After
lactation, the mammary gland enters the dry (nonlactating) period with the cessation
of milk synthesis and secretion, coupled with energy storage and mammary gland cells
remodeling to prepare for the next lactation cycle [13].

Mammary gland development and lactation processes are closely associated with
various hormones, regulatory factors, and genes [14,15]. With the development of high-
throughput sequencing technology, RNA sequencing (mRNA-seq and small RNA-seq) has
emerged as a powerful tool to identify and characterize the genes and microRNAs (miRNA)
expressed in mammary glands. Mammary gland development, lactation, and involution
and the synthesis of milk ingredients are regulated by several genes [16,17]. However, the
genes that control lactation in donkeys and the mechanisms regulating their expression are
relatively unknown.

miRNAs are a class of small noncoding RNAs (approximately 18–25 nucleotides) that
act post-transcriptionally and negatively regulate gene expression by facilitating the degra-
dation or translational repression of target messenger RNAs (mRNAs) by binding to their
3′ untranslated regions [18,19]. Numerous miRNAs modulate the regulation of mammary
gland development, lactation, and involution and the synthesis of milk ingredients by regu-
lating gene expression in murine and domestic animals [20–23]. However, few studies have
used a comprehensive approach based on the integrative analysis of miRNA and mRNA
expression profiles in the mammary gland during lactating and nonlactating periods in
animals including donkeys. Considering the increasing demand for dairy products from
donkeys, it is important to understand the molecular regulatory networks involved in the
lactation physiology of donkeys.

In this study, we performed an integrative analysis of the miRNA–mRNA expression
profiles in the mammary gland tissues of donkeys in the lactating and nonlactating periods
to identify the molecular mechanisms involved in lactation. Further, our results could
improve our understanding of the post-transcriptional regulation mechanisms of miRNAs
and target gene expression in the mammary glands and facilitate strategies to improve
lactation production in donkeys.

2. Materials and Methods
2.1. Ethical Statement

Animals were handled humanely for biological sample collection. The experimen-
tal procedures in this study were approved by the Animal Care and Use Committee of
Shenyang Agricultural University (approval no. 202001007).

2.2. Tissue Sample Collection

Six Chinese Liaoxi jennies (Lvxianyuan Breeding Farm, Fuxin, Liaoning) aged 6.3± 1.2 years
with a mean live weight of 280.3 ± 20.1 kg and 2.1 ± 0.4 parities were used in this study.
The animals were clinically evaluated following the recommended standards of the donkey
sanctuary and were diagnosed as healthy [24] and without a history of mastitis. They were
housed in a stable with collective paddocks, had free access to food and water, and were
bred and managed under the same conditions. Approximately 100 mg of mammary gland
tissue was collected by surgical biopsy (general anesthesia by intramuscular injection of
xylazine hydrochloride) from the mid-region of the right mammary gland of each jenny
during lactation (60 days postpartum; n = 3; L group) and the dry period (nonlactating,
nonpregnant; n = 3; D group). All mammary gland tissue samples were obtained under
sterile conditions. After removing the connective and adipose tissue, all samples were
washed three times with ice-cold PBS. Part of the tissue was immediately stored in 4%
paraformaldehyde for histological examination, and the remaining tissue was snap-frozen
in liquid nitrogen and stored at −80 ◦C for subsequent RNA extraction.
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2.3. Histological Examination

Blocks of mammary gland tissue were fixed in 4% paraformaldehyde for 48 h and
processed and embedded into paraffin blocks using routine procedures [25]. The tissues
were embedded in paraffin blocks, and sections of 3–6 µm were cut from each specimen.
Oven-dried sections were deparaffinized with xylene, dehydrated through a graded series
of ethanol (100%, 95%, and 80% ethanol) and distilled water, and stained with hematoxylin
and eosin. Hematoxylin–eosin-stained sections were analyzed using a light microscope
(Leica DM4 B, Wetzlar, Germany) equipped with a Leica DFC7000 T digital camera utilizing
the Leica Application Suite X imaging software (Leica Biosystems, Wetzlar, Germany).

2.4. RNA Extraction, Library Preparation, and Sequencing

Total RNA was extracted from the mammary gland tissue using ice-cold TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instruction.

For RNA-seq library construction, 10 µg of the total RNA extracted was used. mRNA
was enriched with magnetic beads containing Oligo(dT). Double-stranded cDNA was
synthesized, and short fragments were cleaved. After adaptor ligation, the cDNAs were
amplified. During the quality control (QC) steps, the Agilent 2100 Bioanalyzer (Agilent,
Santa Clara, CA, USA) and ABI StepOnePlus Real-Time PCR System (Perkin-Elmer Applied
Biosystems, Foster City, CA, USA) were used for the quantification and qualification of
the sample library. Samples with RNA integrity numbers (RIN) ≥ 7 were subjected to the
subsequent analysis. The obtained cDNA libraries were then sequenced using an Illumina
HiSeq 2500 sequencer (Illumina, San Diego, CA, USA).

For small RNA library construction, 3 µg of total RNA was used. In brief, RNAs
were ligated to a 5′ adaptor and 3′ adaptor and reverse-transcribed by PCR amplification.
Subsequently, fragments between 140 bp and 160 bp in length were enriched to generate a
cDNA library. The QC steps were performed as described above. The constructed high-
quality cDNA libraries were sequenced using the Illumina HiSeq Xten platform (Illumina,
San Diego, CA, USA).

2.5. mRNA and miRNA Raw Data Analysis

The quality of the raw data was evaluated using the fastp (version 0.18.0) program.
Joint-containing, null, and low-quality sequences were removed, and the original read-
ings were filtered to obtain clean reads. Clean reads were aligned to the reference don-
key genome, ASM303372v1, and the equine genome database in the National Center for
Biotechnology Information GenBank by Bowtie2 (version 2.2.8, Johns Hopkins University,
Baltimore, MD, USA), and HISAT2 (version 2.2.4, Johns Hopkins University, Baltimore,
MD, USA) software was used to compare the net sequencing to the genome sequence of the
donkeys. Transcript abundance estimation was performed using StringTie (version 1.3.1,
Johns Hopkins University, Baltimore, USA).

After removing low-quality reads, the remaining sequences (clean reads) were mapped
to the donkey genome using the short oligonucleotide alignment program (SOAP) (http:
//soap.genomics.org.cn) (accessed on 21 December 2021) with a tolerance of one mismatch.
The matched sequences were blasted against Rfam database 11.0 (http://www.sanger.ac.
uk/software/Rfam) (accessed on 21 December 2021) and NCBI GenBank database 209.0
(http://blast.ncbi.nlm.nih.gov/) (accessed on 21 December 2021) to identify and remove
rRNA, scRNA, snoRNA, snRNA, and tRNA sequences. The remaining reads mapped to
genomic repeats and known transcripts (exonic and intronic). Clean reads were processed
for computational analysis and compared using miRBase 22.0 to obtain known miRNAs.
Sequences that were not mapped to any of the conserved miRNAs were further explored to
find novel miRNAs using miRDeep2 (version 2.0.0.7, Berlin Institute for Medical Systems
Biology, Berlin-Buch 13125, Germany).

http://soap.genomics.org.cn
http://soap.genomics.org.cn
http://www.sanger.ac.uk/software/Rfam
http://www.sanger.ac.uk/software/Rfam
http://blast.ncbi.nlm.nih.gov/
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2.6. Differential Expression Analysis of mRNA and miRNA

The expression levels of all transcripts were estimated as the fragments per kilobase
million (FPKM) index. The normalization index simplified the comparison of expressed
mRNAs within a sample. Therefore, the FPKM index was used to determine the differ-
entially expressed (DE) mRNAs. The mRNAs that significantly differed between the two
groups were identified with two counts based on the methods in R packages including
edgeR and DESeq2. A false discovery rate < 0.05 and a fold change (FC) ≥ 2.0 was set
as the threshold for DE mRNAs. The correlation and clustering analysis was performed
with the R package pheatmap (version 1.0.8, AT&T Bell Laboratories, New York, USA).
The screening criteria for differentially expressed miRNAs (DE miRNAs) were as follows:
FC ≥ 2.0 and p-value < 0.05.

2.7. miRNA Target Gene Prediction

Because miRNAs function by interacting with target genes, target gene prediction is
essential when studying miRNA function. TargetScan (version 7.0, Whitehead Institute,
Cambridge, MA, USA) and MiRanda (version 3.3a, Memorial Sloan-Kettering Cancer
Center, New York, NY, USA) software were used to predict potential target genes of the
DE miRNAs. The data predicted by both algorithms were combined, and the intersecting
elements were included as candidate target genes.

2.8. Gene Ontology (GO) and Pathway Analyses

According to the differential gene test results, a functional enrichment analysis was
performed on gene ontology (GO) terms in the molecular function (MF), cellular com-
ponent (CC), and biological process (BP) categories (http://www.geneontology.org/)
(accessed on 15 January 2022). Through a comparison with the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database (http://www.genome.jp/kegg/) (accessed on
15 January 2022), pathways that were significantly enriched in DE mRNAs were identified.
GO and KEGG analyses were performed with DAVID 6.8 (https://david.ncifcrf.gov/)
(accessed on 20 January 2022) and KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/genelist/)
(accessed on 20 January 2022) using R based on the hypergeometric distribution. The GO
and KEGG pathway enrichment statistics were performed using Fisher’s exact test with a
cut-off q value < 0.05 considered as significant for both GO terms and pathways.

2.9. Integrative Analysis of miRNA–mRNA Pairs

Since mRNAs and miRNAs have potential negative regulatory relationships, we
assessed the expression correlation between an miRNA and its predicted target gene using
the Pearson correlation coefficient (PCC). Subsequently, the negatively coexpressed miRNA–
mRNA pairs with PCC <−0.7 and p value < 0.05 were screened to construct miRNA–mRNA
networks. The key potential regulatory networks of associated miRNAs and mRNAs were
visualized using the Cytoscape software (version 3.8.0, Cytoscape Consortium, San Diego,
CA, USA).

2.10. Quantitative Real-Time PCR Validation of Differentially Expressed mRNAs and miRNAs

The expression of differentially expressed mRNAs and miRNAs was determined using
qRT-PCR. Total RNA was extracted from the mammary gland tissues of six jennies at the
same period (three of them in a lactating period and the others in a nonlactating period)
and used for cDNA synthesis. cDNA was generated from 1 µg of total RNA using the
PrimeScript RT reagent Kit (TaKaRa, Tokyo, Japan), and qRT-PCR was performed using
SYBR Premix Ex Taq (TaKaRa, Tokyo, Japan). For miRNA detection, reverse transcription
followed by qRT-PCR was performed according to the manufacturer’s protocols using
the miRNA First Strand cDNA Synthesis (Tailing Reaction; Shenggong, Shanghai, China).
The quantification of miRNA was performed with an MiRNA qPCR Kit (SYBR Green
Method) (Shenggong, Shanghai, China). Fluorescent quantitative primers were designed
with primer5 (Table S1). GAPDH and U6 snRNA were selected as the internal controls.

http://www.geneontology.org/
http://www.genome.jp/kegg/
https://david.ncifcrf.gov/
http://kobas.cbi.pku.edu.cn/genelist/


Genes 2022, 13, 1637 5 of 16

The LightCycler 96 System (Roche, Basel, Switzerland) was applied to qRT-PCR. For each
mRNA and miRNA in the two groups, every reaction was performed in triplicate. FCs were
determined by the threshold cycle (CT). The FCs of miRNA expression were calculated
using the 2−∆∆Ct method [26]. Finally, the relative expression results were compared with
the RNA-seq data.

2.11. Statistical Analyses

Comparisons of the relative expression values between the two groups in qRT-PCR
were analyzed using the independent-samples t-test and SPSS 22.0 (SPSS, Inc., Chicago,
IL, USA). The results are expressed as means ± standard deviations (SD). Significant
differences between the two groups were considered in terms of the associated p-value
relative to p < 0.05 and p < 0.01.

3. Results
3.1. Morphological Structure

H&E staining showed a variety of cell shapes, large and dilated alveoli containing
milk secretion, and a small amount of connective tissue between the alveoli in the lactating
mammary glands (Figure 1A). In contrast, small alveoli with narrow lumens lined by
small cuboidal cells were observed in the nonlactating mammary glands. In addition, an
apparent increase in stromal, connective, and fatty tissue and a thicker alveolar septum
were observed in the nonlactating mammary glands (Figure 1B).
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Figure 1. Morphological characteristics of the mammary gland in jennies observed after H & E
staining (40×). (A) Paraffin section of jenny mammary gland during lactation. (B) Paraffin section of
jenny mammary gland during the nonlactating period. Nuclei are dyed blue by hematoxylin, and the
cytoplasm is stained pink by eosin.

3.2. Identification of Differentially Expressed mRNAs

Six cDNA libraries from three jennies in lactation and three jennies in the nonlactating
period were sequenced from mammary gland tissues. For each library, clean reads were
obtained and ranged from 98.49% to 98.89% after quality filtering. Approximately 90% of
the clean reads could be mapped to the donkey reference genome, with a unique match
ratio of 86.80–89.58% (Table 1). A principal component analysis (PCA) was performed,
which showed that the samples from the L and N groups separated into two distinct
clusters (Figure 2A), indicating that the sequencing data qualified for further analysis. A
total of 3144 DE mRNAs were identified, of which 987 were upregulated and 2157 were
downregulated (|FC| ≥ 2.0, FDR < 0.05) in the lactating group compared to the nonlac-
tating group (Table S2A). A volcano plot was drawn to illustrate significant differences
(Figure 2B) according to the FC and FDR values between the two groups. Furthermore,
536 novel mRNAs were identified in the sequencing data.
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Table 1. Overview of the reads and quality control of the mRNA sequencing libraries from jenny
mammary glands.

Sample Raw Reads Clean Reads Clean Reads Ratio GC (%) Q20 (%) Mapped Reads
(%)

Unique Reads
(%)

L1 52,449,628 51,868,320 98.89 49.86 97.76 89.67 86.80
L2 39,737,124 39,285,118 98.86 49.72 97.95 90.37 87.46
L3 42,857,296 42,258,604 98.60 50.12 98.05 90.04 87.10
N1 40,434,896 39,953,502 98.81 49.00 98.05 91.73 89.58
N2 49,086,804 48,434,360 98.67 49.06 98.05 91.41 89.22
N3 43,879,152 43,217,918 98.49 49.67 98.02 91.39 89.07
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Figure 2. Differential gene expression analysis between L and N groups determined by RNA-seq.
(A) Principal component analysis (PCA) of differentially expressed (DE) mRNAs. (B) Volcano plot of
DE mRNAs in jenny mammary glands between L and N groups. The upregulated and downregulated
DE mRNAs are indicated by red and green dots, respectively, while the DE mRNAs with no significant
difference in the two groups are indicated by black dots. L, lactating mammary glands of jennies;
N, nonlactating mammary glands of jennies.

3.3. Identification of Differentially Expressed miRNAs

In the miRNA sequencing data, after removing low-quality reads and sequences
shorter than 20 nucleotides and longer than 30 nucleotides in length, 11,161,279–14,222,917
(99.40–99.69% of raw reads) clean reads were obtained (Table 2). Of the clean reads,
62.71%−73.57% of the reads from the two groups were mapped to the reference sequence.
The sample correlation heat map from the miRNA expression profiles indicated that three
replicate samples from each group had good repeatability (Figure 3A). A total of 293
miRNAs, including 231 upregulated and 62 downregulated miRNAs (|FC| ≥ 2.0 and
p-value < 0.05), were differentially expressed in the lactating group and nonlactating groups
(Table S2B), in which 227 known miRNAs and 66 novel miRNAs were identified (Figure 3B).
Among the 293 DE miRNAs, 35 and 4 DE miRNAs were uniquely expressed in the lactating
and nonlactating groups, respectively (Figure 3C).
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Table 2. Overview of the reads and quality control of the miRNA sequencing libraries from jenny
mammary glands.

Sample Raw Reads Clean Reads Clean Reads
Ratio

Mapped
Reads

Mapped
Reads Ratio

Known
miRNA

Novel
miRNA

L1 14,446,333 14,222,917 99.45 8,919,639 62.71 710 153
L2 12,710,963 12,510,345 99.40 7,907,070 63.20 720 158
L3 12,474,765 12,322,109 99.48 7,935,039 64.40 718 155
N1 13,844,475 13,694,490 99.69 9,895,214 72.26 702 126
N2 11,290,133 11,161,279 99.68 8,136,513 72.90 682 101
N3 13,671,230 13,486,896 99.68 9,922,828 73.57 697 126
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expressed (DE) miRNAs identified in jenny mammary glands in the L and N groups. (C) Venn
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3.4. Functional Enrichment Analysis of Differentially Expressed mRNAs

To improve our understanding of the DE mRNAs in the lactating and nonlactating
periods, we performed classification and enrichment analyses using the GO and KEGG
pathways of the DE mRNAs. The GO and KEGG enrichment analyses showed that most
of the DE mRNAs were mainly involved in biological processes and pathways related
to development, morphogenesis, cellular processes, signal transduction, diseases, and
metabolism. The 3144 DE mRNAs were classified into three categories through GO en-
richment analysis. In the BP category, multicellular organismal processes, developmental
processes, system development, anatomical structure morphogenesis, and cell surface re-
ceptor signaling pathways were dominantly enriched. The most enriched CCs were in the
extracellular category, including the extracellular region, extracellular space, extracellular
matrix, and plasma membrane. In the MF category, DE mRNAs were mainly involved
in protein binding, signaling receptor binding, glycosaminoglycan binding, and sulfur
compound binding (Figure 4A and Table S3A).

The 3144 DE mRNAs were related to 340 KEGG pathways (Table S3B); the top
20 significantly enriched pathways are shown in Figure 4B. The most prevalent pathways
associated with DE mRNAs were associated with ECM-receptor interaction, the PI3K-Akt
signaling pathway, breast cancer, complement and coagulation cascades, protein digestion
and absorption, and arachidonic acid metabolism.
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Figure 4. Functional annotation and enrichment analysis for differentially expressed (DE) mRNAs
in the mammary glands of the lactating and nonlactating groups. (A) GO annotation results of DE
mRNAs. The outermost circle shows the items most significantly enriched among the DE mRNAs.
The second circle indicates the number of background DE mRNAs and the levels of Q-values. The
third circle, consisting of bar graphs, shows the ratio of upregulated DE mRNAs to downregulated
ones associated with each GO term, in which yellow represents the upregulated portion and green
indicates the downregulated portion. The innermost (fourth) circle indicates the rich factor value for
each GO term (the number of DE mRNAs versus the number of non-DE mRNAs associated with
the GO term). Each gridline represents 0.1. (B) Top 20 significant pathways of KEGG enrichment
analysis of DE mRNAs. The ordinate is the pathway, and the abscissa is the enrichment factor.

3.5. Target Gene Prediction and Functional Enrichment Analysis of DE miRNA

A total of 2979 target DE mRNAs corresponding to the 293 DE miRNAs were analyzed
(Table S4). Multiple GO terms and pathways were related to mRNAs targeted by the DE
miRNAs in the mammary glands obtained from the two groups. Several targeted DE
mRNAs were mainly enriched in the regulation of metabolic processes, cellular metabolic
processes, and the regulation of macromolecule metabolic processes of BP (Figure 5A,
Table S5A). The KEGG pathway analysis revealed that the targeted DE mRNAs were most
significantly associated with RNA polymerase, glycosphingolipid biosynthesis, mRNA
surveillance, ribosome biogenesis in eukaryotes, glycerophospholipid metabolism, the Ras
signaling pathway, and the fly hippo signaling pathway (Figure 5B and Table S5B).
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Figure 5. Functional annotation and enrichment analysis for DE miRNA target mRNAs in jenny
mammary gland between the lactating and nonlactating groups. (A) GO annotation results of
differentially expressed (DE) miRNA target mRNAs. The abscissa is the second-level GO term, and
the ordinate is the number of DE miRNA target mRNAs in the term. (B) Top 20 significant pathways
of KEGG enrichment analysis of DE miRNA target mRNAs. The ordinate is the pathway, and the
abscissa is the enrichment factor.

3.6. Integrated Analysis of mRNAs and miRNAs

To identify potential miRNA target mRNAs involved in immunity and milk lipid,
protein, and vitamin metabolism in the jenny mammary gland, the expression profiles
of the DE miRNAs and mRNAs were combined for further correlation analysis. We
obtained 850 DE mRNAs as putative targets for 293 DE miRNAs through an integrated
analysis, presenting a negatively correlated expression pattern (Table S6). The key potential
regulatory networks of the miRNA target mRNAs involved in the regulation of immune
defense and milk lipid, protein, and vitamin metabolism in the jenny mammary gland
were constructed (Table S7). A total of 35 mRNAs were potentially targeted by 20 miRNAs,
of which novel m0032-3p, miR-195, miR-26-5p, miR-23-3p, miR-674-3p, and miR-874-3p
were key miRNAs, connected by nine, eleven, three, four, five, and three target mRNAs,
respectively (Figure 6).

3.7. Validation of Differentially Expressed mRNAs and miRNAs by qRT-PCR

We randomly selected nine mRNAs and nine miRNAs for qRT-PCR verification. The
results showed that the relative expression levels of all the selected mRNAs and miRNAs
were significantly different between the two groups (p < 0.05; Figure 7A,B). Overall, the
expression trends of the selected mRNAs and miRNA obtained from the qRT-PCR data
were consistent with that from the sequencing data (Figure 7C,D), indicating high reliability
of the sequencing results.
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4. Discussion

Donkey mammary gland miRNAs and their corresponding target genes have not been
identified, and their functionality has therefore not been studied. In this study, we used high-
throughput RNA sequencing to determine the interaction patterns of mRNAs and miRNAs
in the lactating and nonlactating jenny mammary gland. The miRNA target mRNAs are
involved in the regulation of immunity and milk lipid and protein metabolism. To our
knowledge, this is the first report of an miRNA–mRNA interaction analysis in lactating and
nonlactating jenny mammary gland tissues. Our findings contribute significantly to a better
understanding of the molecular regulatory mechanisms governing lactation physiology
in donkeys.

Donkey milk has potential antibacterial and immunoprotective effects that could
prove useful for protecting vulnerable newborns or promoting adaptive immunity in in-
fants [27,28]. In this study, we identified several immunoprotection-related genes that were
upregulated in the lactating jenny mammary gland but not during the nonlactating period.
Among these genes, β-lactoglobulin II variant B (LGB2; 152.15-FC), immunoglobulin heavy
constant mu (IGHM; 8.24-FC), polymeric immunoglobulin receptor (PIGR; 7.32-FC), MHC
class I polypeptide-related sequence B-like (MSTRG.19336; 213.1-FC), zona pellucida sperm-
binding protein 3 receptor-like isoform X2 (C4BPA; 79.11-FC), and lipopolysaccharide-
induced tumor necrosis factor-α (TNF-α) factor (LITAF; 2.24-FC) were highly expressed
and cotargeted by novel-m0032-3p. LGB2 encodes a whey protein called β-lactoglobulin
II, which is involved in the maintenance of the fetomaternal immune system and shows
allergy-preventive as well as allergy-reducing effects [29,30]. IGHM is considered an indi-
cator of immunoglobulin mu (IgM). IgM antibodies play a vital role in primary defense
mechanisms by recognizing antigens [31]. PIGR plays a vital role in immunoglobulin
transportation and can transport polymeric immunoglobulins (such as polymeric IgA and
pentameric IgM) from the basolateral surface onto the apical surface of epithelial cells by
transcytosis [32,33].
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Figure 7. Verification of DE mRNAs and DE miRNAs by qRT-PCR. (A) qRT-PCR analysis of nine
randomly selected mRNAs. Data represent the means ± SD. (B) qRT-PCR analysis of nine randomly
selected miRNAs. Data represent the means ± SD. (C) Comparison of mRNA expression in terms
of Log2 (fold change) as assessed by mRNA sequencing and qRT-PCR. (D) Comparison of miRNA
expression in terms of the Log2 (fold change) as assessed by miRNA sequencing and qRT-PCR.
L, lactating mammary glands of jennies; N, nonlactating mammary glands of jennies. * p < 0.05;
** p < 0.01; *** p < 0.001.

A novel gene, MSTRG.19336, was described as major histocompatibility complexes
(MHC) class I polypeptide-related sequence B-like. MHC class I is involved in antigen
processing and presentation and is upregulated in donkey colostrum whey [34]. It is cru-
cial in protecting newborns from bacterial and other microbial infections [35,36]. In our
study, MSTRG.19336 was upregulated 213.1-fold in lactating mammary glands compared
with those during the nonlactating period. C4BPA is a coregulator of immunity and fat
metabolism in bovine mammary epithelial cells and is primarily associated with critical
inflammatory and coagulation processes [37]. Further, LITAF is involved in the immune
response against bacterial and viral infections and can regulate TNF-α transcription, inflam-
mation, proliferation, and apoptosis [38]. Our findings revealed that novel m0032-3p and its
targeted genes participated in the innate immune regulation of the jenny mammary gland
in lactation and could possibly explain the low prevalence of intramammary infections
(i.e., mastitis) in donkeys [39].

Our results showed the significant upregulation of milk protein genes such as α S1
casein isoform X1 (CSN1S1; 18.13-FC), α S1 casein isoform X3 (CSN1S2; 16.85-FC), cathepsin
B (CTSB; 4.28-FC), and cathepsin D (CTSD; 3.98-FC) in jenny mammary glands during
peak-lactation compared to the nonlactating period. Previous studies have identified
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two types of caseins, αs1-Cn and αs2-Cn, whose encoding genes (CSN1S1 and CSN1S2,
respectively) are associated with effects on milk yield, protein, and fat percentages [40].
They have also been related to milk coagulation properties such as rennet coagulation time
and curd firmness [41]. CTSB and CTSD are cathepsin genes involved in the proteolysis of
dairy products [42]. Cathepsins are among the principal endogenous proteases and have a
significant effect on the physicochemical characteristics and quality of dairy products [43].
In bovine milk, CTSB and CTSD gene expression increase during lactation [44]. These milk
protein genes were predicted to be cotargeted by miR-195, which has anticancer effects
and suppresses genes related to cell proliferation, migration, and the invasion of breast
cancer cells [45]. Donkey milk can form a weak coagulum under acidic conditions; the
high expression of intramammary milk protein genes in lactation suggest that donkey milk
could have unique properties suited to the production of yogurt-type products [46].

The synthesis of milk lipid involves multiple complex biological processes and cellular
events that are regulated in part by gene expression and affected by miRNAs in the
mammary epithelial cells [47]. In this study, twinfilin1 (TWF1) was upregulated (2.05-FC)
in the lactating jenny mammary glands. TWF1 is an actin monomer-binding gene that
is ubiquitous in eukaryotes from yeast to mammals. It enhances milk triglyceride and
casein synthesis and the proliferation of bovine mammary epithelial cells via the mTOR
signaling pathway [48]. TWF1 is predicted to be targeted by putative DE miRNAs, such as
miR-26-5p and miR-23-3p. The expression of miR-26 directly regulated genes related to
milk triacylglycerol accumulation and unsaturated fatty acid synthesis [49], and the miR-26
family targets members of the PI3K-Akt, MAPK, and fatty acid biosynthesis pathways in
goat mammary epithelial cells [50]. miR-23a is involved in the regulation of the mRNA
expression of genes associated with milk lipid synthesis in goat mammary gland epithelial
cells [51].

TWF1 was also identified as a predicted target of miR-674-3p, which was significantly
upregulated in radiation-induced rat mammary cancer compared to normal mammary
tissues [52]. Although the role of miR-674-3p during normal lactation is unclear, the current
study showed that it could potentially target four key lipid-metabolism-related genes:
TWF1, sterol regulatory element binding transcription factor 1 (SREBF1; 2.36-FC), cell
death-inducing DFFA-like effector A (CIDEA; 26.16-FC), and xanthine dehydrogenase
(XDH; 2.02-FC). SREBF1 is a key lipogenic transcriptional factor that regulates genes that
are involved in milk lipid synthesis [53]. It participates in the AMPK and mTOR signaling
pathways that regulate lipid synthesis in bovine mammary epithelial cells [54]. CIDEA, a
lipid droplet coat gene, plays a positive role in the de novo synthesis and secretion of milk
fat. High levels of CIDEA are expressed in milk-secreting epithelial cells of lactating murine
and bovine mammary tissues [55,56]. In this study, we found a similar trend of high CIDEA
expression in lactating jenny mammary glands. Another crucial mediator of milk lipid
droplet formation, XDH, is enriched in the milk fat globule membrane [57]. Compared to
that in the nonlactating period, the expression of XDH in the mammary glands of dairy
cows was significantly upregulated at the onset of lactation [58]. Furthermore, CIDEA
positively regulated the expression of SREBF1 and XDH in milk lipid accumulation in
ruminants [59,60].

miR-874-3p is an important factor in regulating lactogenesis and cell proliferation [61].
Our results revealed that the upregulated genes targeted by miR-874-3p in the lactating
jenny mammary gland were transcobalamin 2 (TCN2; 2.30-FC), CD320 molecule (3.51-FC),
and cytochrome b561 family member A3 (CYB561A3; 2.66-FC). These genes are all related
to vitamin metabolism and transport. In donkey milk, the B-complex vitamin content is
higher than that of human milk, and the vitamin C content is higher than that in dairy cow
milk, showing a great similarity with human milk [62]. TCN2 is essential in the transport
of vitamin B12 from the blood to various tissues and organs [63]. CD320 is expressed in
mammary epithelial cells and shows a high affinity for the transcobalamin—vitamin B12
complex [64]. CD320 regulates transcobalamin degradation in the cell and free vitamin
B12 transportation to milk [65]. CYB561A3, a member of the CYB561 family, acts as a
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monodehydroascorbate reductase and is involved in stress defense, iron metabolism, and
various neurological processes [66]. These findings indicate that the higher content of
B-complex and vitamin C in donkey milk is likely associated with the increased expression
of vitamin-related genes in lactating jenny mammary glands.

5. Conclusions

To the best of our knowledge, this is the first systematic report on the expression
patterns of miRNAs and target mRNAs related to lactation in the mammary glands of
jennies. A total of 3144 DE mRNAs and 293 DE miRNAs were identified in the lactating
group compared with the nonlactating group. The mRNA–miRNA coregulation analysis
showed that the miRNA target mRNAs were mainly involved in immune defense and
milk lipid, protein, and vitamin metabolism in the jenny mammary gland. These find-
ings provide a better understanding of the molecular mechanisms regulating bioactive
milk component metabolism in the mammary glands and could be used to improve milk
production in donkeys.
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