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Force-regulation at cellular membranes
relies on dynamic molecular plat-

forms that integrate intra- and extracellu-
lar signals to control cell shape and
function. To correctly respond to a con-
tinuously changing environment, activity
of these platforms needs to be tightly con-
trolled in space and time. Over the last
few years, curvature-dependent mechano-
chemical signal translation—a receptor-
independent signaling mechanism where
physical forces at the plasma membrane
trigger nanoscale membrane deformations
that are then translated into chemical sig-
nal transduction cascades—has emerged
as a new signaling principle that cells use
to regulate forces at the membrane. How-
ever, until recently, technical limitations
have precluded studies of this force-
induced curvature-dependent signaling at
the physiological scale. Here, we com-
ment on recent advancements that allow
studying curvature-dependent signaling at
membranes, and discuss processes where
it may be involved in. Considering its
general impact on cell function, a particu-
lar focus will be put on the curvature-
dependence of feedback loops that control
actin-based forces at cellular membranes.

Introduction

Detection and precise control of
mechanical forces is essential for proper
cell function. While much is known about
the role of individual proteins in this pro-
cess (e.g. mechanotransduction via ion
channels, integrins, extracellular matrix
proteins, and cell adhesion molecules;
reviewed in1,2), the contribution of cellular
membranes has largely remained elusive.
The plasma membrane is continuously
deformed in- and outward in response to a

wide range of intracellular 3,4 and intercel-
lular 5-7 forces. In response to such nano-
scale membrane deformations, cytosolic
proteins and membrane lipids are enriched
in a curvature-dependent manner.8-11

Since some of the recruited molecules con-
tain signaling properties,12-14 this recruit-
ment leads to the formation of local,
transient signaling hubs (Fig. 1). This pro-
cess, where physical forces applied to cellu-
lar membranes create deformations that
are translated into classical chemical sig-
nal-transduction pathways, is called curva-
ture-dependent mechano-chemical signal
translation. The functional properties of
such transient, curvature-dependent signal-
ing hubs critically depend on the protein
composition at these sites. As each protein
has its own curvature selectivity,15 the pro-
tein composition of signaling hubs is
defined by the membrane curvature and
by what subset of curvature-sensitive pro-
teins is expressed in the specific cell.

While proteins that are recruited in a
curvature-dependent manner are capable
of affecting a variety of signaling pro-
cesses, we will focus here on proteins that
create local feedback mechanisms to con-
trol direction, amplitude and duration of
force generation at bent membranes. Spe-
cifically, we aim to discuss the cause and
consequences of such transient force-regu-
lating feedback-loops, with a particular
emphasis on proteins that control actin
dynamics.

Bending the plasma membrane
Over the last decades the number of

proteins capable of deforming the plasma
membrane inward and outward has con-
tinued increasing.3,11,16 As we start to
understand the mechanisms how forces
required to bend the membrane are gener-
ated, an overarching theme is emerging:
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these proteins work in ensembles. Forces
generated by single molecules range
between 5 and 10 piconewton,3,4 which,
if applied to the PM, is not sufficient to
cause deformations of the membrane that
can be detected by curvature-sensing pro-
teins.15 The requirement of multiple pro-
teins to generate the force required to
deform the membrane not only prevents
puncturing of the plasma membrane or
accidental initiation of curvature-depen-
dent mechano-chemical signal translation,
but also provides the possibility of form-
ing complex signaling and regulatory
mechanisms, on which we will focus in
this commentary.

What molecules are recruited to curved
membranes, has been the topic of many
excellent reviews (reviewed in 17-22), and
will only be briefly discussed. Dozens of
proteins with various function sense mem-
brane curvature either as monomers and
oligomers, or as protein polymers, and
enrich at bent membranes.15,23,24 Further-
more, several lipid species have been
shown to reorganize within the plasma
membrane in a curvature-dependent man-
ner,8,9 likely increasing binding affinity of
lipid-binding proteins25,26 to curved
membranes.

Force-Regulating Feedback
Loops

Probably the best studied process
involving plasma membrane deformation

is the highly choreographed sequential
recruitment of individual proteins during
Clathrin-mediated endocytosis. Here, ini-
tial assembly steps are coordinated at least
in part by membrane curvature.27 More
recently, a second group of curvature-sen-
sitive proteins linked to actin polymeriza-
tion dynamics has emerged. This group
includes among others the BAR domain
proteins Oligophrenin that has been
linked to fragile X syndrome,28,29 srGAP2
that has been shown to be pivotal for
migration and maturation of neuronal
progenitors during cortex development
30,31 and srGAP3 that has been linked to
mental retardation.32

Curiously, and despite the fact that
endocytosis and actin dynamics are differ-
ent mechanisms, many of the proteins
involved in these 2 processes not only
sense but are also capable of inducing
membrane deformation. This observation
that proteins not only respond to but also
elicit mechanical deformations of the PM,
argues for the existence of force-regulating
feedback loops. In theory, such a feedback
can either rely on a dual function of pro-
teins capable of sensing curvature and
deforming membranes, or proteins may
regulate the activity of membrane-deform-
ing protein-polymers that per se do not
show curvature-dependence. One example
for such an indirect type of force control
is ArhGAP44.33 This positive curvature-
sensor (i.e. inward PM deformation) con-
tains a GAP domain that is directed
against the small GTPase Rac1 and

Cdc42. In neurons, recruitment of this
protein to plasma membrane deformations
creates a negative feedback loop that limits
actin dynamics at nascent filopodia and
aborts initiation of exploratory dendritic
filopodia.33 The second example, Baiap2,
is in many ways the complementary exam-
ple to ArhGAP44. This protein acts as a
negative curvature-sensor (i.e., outward
PM deformation), which creates a positive
feedback loop via the recruitment of adap-
tor proteins that augments actin-dynamics
and filopodia formation.34

How widespread is this force-regulat-
ing principle? The variability in curvature-
preference and selectivity for targeted
actin-regulatory enzymes, and the large
number of proteins capable of forming
such curvature-dependent feedback loops,
suggests that cells may use this mechanism
to control a broad spectrum of actin-
dependent processes. It is thus plausible to
assume that the spatio-temporal actin
dynamics, and in consequence the forces
that shape cell architecture, are controlled
at least partially by curvature-dependent
mechano-chemical signal translation.

Technical challenges and
advancements

Approaches to study curvature-depen-
dent properties of proteins include crystal
structure analysis,11 binding of curvature-
sensing proteins to vesicles of different
diameters,15 or tubulation of lipid
vesicles.11 In these assays, proteins are
probed for their ability to sense or induce

Figure 1. Mechano-chemical signal translation at cellular membranes. Forces (red arrows) applied to the cell cause inward and outward plasma mem-
brane deformations. These deformations trigger enrichment of curvature-sensing cytosolic proteins and lipids (yellow), which form transient signaling
hubs critically involved in cell signaling and force-control.
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membrane curvature in
vitro. However, consider-
ing that the PM lipid com-
position of the inner leaflet
is still not well known,
these approaches do not
show whether recruitment
of curvature-sensing pro-
teins is selective to particu-
lar curved membranes
within the cell. Further-
more, dynamic measure-
ments of curvature-sensing
proteins in cells suggest
that many of the relevant
membrane binding events
are short lived and selective
to particular lipids within
the PM.27 In vitro
approaches do not provide
dynamic insights into how
curvature-sensing proteins
assemble and disassemble
in their physiological set-
ting (many curvature-sens-
ing proteins form
oligomers when they bind
to curved membranes).
Consequentially, these
methods are not well
suited to determine if and
how individual curvature-
sensing proteins dynami-
cally interact or compete
when binding to curved
plasma membranes.

Why is this important?
The fact that proteins that
induce membrane defor-
mations are regulated by
bent membranes creates a
causality dilemma. To
answer what the cause and
what the consequence of
membrane deformations
is, new techniques are
needed. Recently, such a
complementary approach
has been introduced that
relies on nanomaterials to
mimic protein-dependent
membrane deformations
in living cells.35,36 Here,
cone-shaped nanostruc-
tures with a height of 200–
600 nm and a tip diameter

Figure 2. Internal pull and artificial external push forces create plasma membrane deformations. (A) Inward
plasma membrane deformation by acto-myosin dependent contraction of membrane-associated actin cables. Sche-
matics depicting individual actin filaments (red), as well as lipids and cytosolic proteins, that are recruited in a curva-
ture-dependent manner to curved membranes (yellow). (B) Inward plasma membrane deformation created by cone-
shaped nanostructures. (C) Atomic force microscope image of the surface of cone-shapes nanostructures. The height
profile of one nanocone (red line) is shown to the right. (D) Selective recruitment of the curvature-sensitive N-BAR
domain containing protein ArhGAP17 to nanocone-induced membrane deformations in live cells. Note that nano-
cones are deposited in a striped pattern (yellow triangles).
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of »50 nm were used to indent the
plasma membrane of cells cultured on
such a substrate (Fig. 2). This approach
allowed for the first time to investigate
curvature-dependent protein recruitment
to the plasma membrane under physiolog-
ical conditions (i.e. lipid asymmetry of the
membrane bilayer, presence of integral
membrane-proteins, correct pH, osmolar-
ity, etc.). More importantly, however, as
membrane deformation was in this case
not triggered by protein polymers but arti-
ficially induced via nanostructures, it
allowed delineating curvature-dependent
protein recruitment from events that oth-
erwise would occur at the same time.

Alas, since membrane deformation in
this setup relies on passive indentation of
the plasma membrane of cells migrating
over these nanostructures, onset and
amplitude of the membrane deformation
is not controllable in this system. Thus, to
investigate kinetic (e.g., on and off rates)
and spatial aspects (curvature-preference)
of protein recruitment in living cells, other
tools need to be developed.

Open questions
If other cytoskeletal protein polymers,

such as microtubules or intermediate fila-
ments, are subject to such curvature-
dependent force control remains elusive.
However, it is in this context worth men-
tioning, that recent work showed that
polarized microtubules can be associated
with the plasma membrane, thus provid-
ing a functional linkage to the mem-
brane.37 It is thus plausible to envision
that force-regulating feedback loops that
regulate spatio-temporal dynamics of
cytoskeletal proteins at curved membranes
may reflect a general signaling principle
cells use to regulate cellular forces in a
receptor independent manner.

While these recent advancements argue
for curvature-dependent force-regulating
feedback loops as a new form of mechano-
chemical signal translation, the function
of individual lipids in this process has
largely remained unclear. Lipid composi-
tion determines rigidity and fluidity of
membranes. Consequentially, changes in
the concentration of individual lipids not
only alter membrane composition, but
also the force required to deform the
membrane and the time that is required to

enrich specific lipids at such curved sites
(i.e., membrane viscosity). Examples
where this may be relevant include among
others aging and lipid-based disease,
where changes in the lipid composition of
the plasma membrane have been
reported.38-40 It is feasible to envision that
changes in force-dependent lipid signaling
are altered in aging and disease conditions.
However, only future work using new bio-
sensors to monitor lipid reorganiza-
tion41,42 and force-generation,43-45 will
allow us to monitor lipid-dependence of
mechano-chemical signal translation, and
provide insights into how the topographi-
cal distribution of individual lipid species
is affected by age- and disease-dependent
changes in membrane composition.
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