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The entire mean weighted first-
passage time on a family of 
weighted treelike networks
Meifeng Dai1, Yanqiu Sun1, Yu Sun1, Lifeng Xi2 & Shuxiang Shao1

In this paper, we consider the entire mean weighted first-passage time (EMWFPT) with random walks 
on a family of weighted treelike networks. The EMWFPT on weighted networks is proposed for the first 
time in the literatures. The dominating terms of the EMWFPT obtained by the following two methods 
are coincident. On the one hand, using the construction algorithm, we calculate the receiving and 
sending times for the central node to obtain the asymptotic behavior of the EMWFPT. On the other 
hand, applying the relationship equation between the EMWFPT and the average weighted shortest 
path, we also obtain the asymptotic behavior of the EMWFPT. The obtained results show that the 
effective resistance is equal to the weighted shortest path between two nodes. And the dominating 
term of the EMWFPT scales linearly with network size in large network.

In recent years, the study of networks associated with complex systems has received the attention of researchers 
from many different areas. Especially, weighted networks1,2 represent the natural framework to describe nat-
ural, social, and technological systems3. The deterministic weighted networks have attracted increasing atten-
tions because many network characteristics are exactly solved through their quantities, such as mean weighted 
first-passage time, average weighted shortest path4 etc.

Several recent works have studied the mean first-passage time (MFPT) for some self-similar weighted network 
models. Dai et al.5 found that the weighted Koch networks are more efficient than classic Koch networks in receiv-
ing information when a walker chooses one of its nearest neighbors with probability proportional to the weight 
of edge linking them (weight-dependent walk). Then Dai et al.6 introduced non-homogenous weighted Koch 
networks, and defined the mean weighted first-passage time (MWFPT) inspired by the definition of the average 
weighted shortest path. Sun et al.4 discussed a family of weighted hierarchical networks which are recursively 
defined from an initial uncompleted graph. Zhu et al.7 reported a weighted hierarchical network generated on the 
basis of self-similarity, and calculated analytically the expression of the MFPTs with weight-dependent walk by 
using a recursion relation of the hierarchical network structure. Sun et al.8 obtained the exact scalings of the mean 
first-passage time (MFPT) with random walks on a family of small-world treelike networks.

For un-weighted networks, calculating the entire mean first-passage time (EMFPT) generally use three meth-
ods, i.e., the definition of the EMFPT8,9, the average shortest path10, and Laplacian spectra11,12. Sun et al.8 used 
the definition of the EMFPT for the considered networks to obtain the analytical expressions of the EMFPT and 
avoided the calculations of the Laplacian spectra.

In this paper, there are two methods to calculate the entire mean weighted first-passage time (EMWFPT),  
〈 F〉 n, for the weighted treelike networks as follows. Method 1 is to get the asymptotic behavior of the EMWFPT 
directly by the definition of the EMWFPT. Method 2 is to get the asymptotic behavior of the EMWFPT based on 
the relationship between 〈 F〉 n and λn, i.e, 〈 F〉 n =  (Nn −  1)λn, where Nn is the total number of nodes. The obtained 
consistent results show that Method 2 is entirely feasible. Thus the effective resistance mean exactly the weight 
between two adjacency nodes for the weighted treelike networks. Our key finding is profound, which can help us 
to compute the EMWFPT by the weighted Laplacian spectra.

The organization of this paper is as follows. In next section we introduce a family of weighted treelike net-
works. Then we give the definition of the EMWFPT and use two methods to calculate it. In the last section we 
draw conclusions.
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Weighted treelike networks
Recently, there are several literatures on the preferential-attachment (scale-free) method of generating a random 
by adding a very specific way of generating weights1,13,14. Based on Barabasi-Albert model, deterministic networks 
have attracted increasing attention because they have an advantage with precise formulations on some attributes. 
In this section a family of weighted treelike networks are introduced15–17, which are constructed in a deterministic 
iterative way. The recursive weighted treelike networks are constructed as follows.

Let r(0 <  r <  1) be a positive real numbers, and s(s >  1) be a positive integer.

(1)  Let G0 be base graph, with its attaching node a0 and the other nodes a a a a, , , , s
0
(1)

0
(2)

0
(3)

0
( ). Each node of 

a a a a, , , , s
0
(1)

0
(2)

0
(3)

0
( ) links the attaching node a0 with unitary weight. We also call the attaching node a0 as 

the central node.
(2)  For any n ≥  1, Gn is obtained from Gn−1: Gn has one attaching node labelled by an, that we call an as the central 

node of Gn. Let − − −G G G, , ,n n n
s

1
(1)

1
(2)

1
( )  be s copies of Gn−1, whose weighted edges have been scaled by a weight 

factor r. For = i s1, 2, , , let us denote by −an
i

1
( )  the node in −Gn

i
1

( )  image of ∈− −a Gn n1 1, then link all those 
−an
i

1
( )  to the attaching node .. through edges of unitary weight. Let Gn =  G(Vn, En) be its associated weighted 

treelike network, with vertex set Vn(|Vn| =  Nn) and edge set En(|En| =  Nn −  1). Similarly, =− − −G G V E( , )n
i

n
i

n
i

1
( )

1
( )

1
( ) , 

= i s1, 2, , . In Fig. 1, we schematically illustrate the process of the first three iterations.

The weighted treelike networks are set up.
According to the construction method of Gn (n ≥  1), Gn can be regarded as merging s +  1 groups, sequentially 

denoted by − − −a G G G, , , ,n n n n
s

1
(1)

1
(2)

1
( ) . (see Fig. 1).

From the construction of the weighted treelike networks, one can see that Gn, the weighted treelike networks 
of n-th generation, is characterized by three parameters n, s and r: n being the number of generations, s being the 
number of copies, and r representing the weight factor. The total number of nodes Nn in Gn satisfy the following 
relationship, i.e. = +−N sN 1n n 1 . Then

Figure 1. Take the ‘Sierpinski’ weighted treelike networks Gn, for example, Gn is regarded as merging −Gn
( )

1
1 , 

−Gn
( )

1
2 , −Gn

( )
1

3  and central Node an, n = 0, 1, 2.
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The entire mean weighted first-passing time
Assuming that the walker, at each step, starting from its current node, moves uniformly to any of its nearest 
neighbors. For two adjacency nodes i and j, the weighted time is defined as the corresponding edge weight wij. 
The mean weighted first-passing time (MWFPT) is the expected first arriving weighted time for the walks starting 
from a source node to a given target node. Let the source node be i and the given target node be j, denote Fij(n) by 
the MWFPT for a walker starting from node i to node j. We consider here the entire mean weighted first-passage 
time 〈 F〉 n as the average of Fij(n) over all pair of vertices,

∑=
−

.
∈ ≠

F
N N

F1
( 1)n

n n i j V i j
ij

, ,n

To calculate the asymptotic behavior of the 〈 F〉 n for this model, we focus on the two methods, the definition of 
the EMWFPT and the average shortest path, respectively.

Method 1
In this section, we compute the EMWFPT using the definition of the EMWFPT. Step 1, we study the first quantity 
Qtot(n), i.e, the sum of MWFPTs for all nodes in −Gn 1

(1)  to absorption at the central node an. Step 2, we study the 
second quantity Htot(n), i.e, the sum of MWFPTs for central node an to arrive all nodes in −Gn 1

(1)  of Gn. Step 3, we 
use the definition to obtain the asymptotic behavior of the MWFPT between all node pairs and the asymptotic 
behavior of the EMWFPT in the limited of large n.

Step 1. We study the first quantity Qtot(n), i.e, the sum of MWFPTs for all nodes in −Gn 1
(1)  to absorption at the 

central node an. Defining F n( )i a, n
 be the MWFPT of a walker from node i to the central node an for the first time. 

We denote by Ttot(n) the sum of MWFPTS for all nodes of Gn to absorption at the central node an.
We have already arrived the result about Ttot(n)15, i.e.

= − + − −
T n sT n sN F n( ) ( 1) ( ), (2)tot tot n a a1 ,n n1
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where 
−
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(1)  to the central node an. Thus, the problem of determining Ttot(n) 
is reduced to finding 

−
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Through the reduction of Eq. (3), we obtain
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 and Eq. (5) into Eq. (2), we obtain the exact solution of MWFPT from all other 

nodes to the central node on the networks Gn as follow
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From the definition of Ttot(n), Ttot(n) is given by
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where ∑ = ∑ = = ∑∈ ∈ ∈− − −
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( ) . Recalling that Eq. (1), the asymptotic behav-
ior of Qtot(n) in the limited of large n is as follows,
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Step 2. We study the second quantity Htot(n), i.e, the sum of MWFPTs for central node an to arrive all nodes 
in −Gn 1

(1)  of Gn. Firstly, let Ri(n) denote the expected weighted time for a walker in weighted networks Gn, originat-
ing from node i to return to the starting point i for the first time, named mean weighted return time. By definition 
of R n( )an

, we obtain
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Inserting Eq. (12) into Eq. (11), we obtain
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From the definition of Htot(n), Htot(n) is written by

∑= = + − .
∈

−
−

−
H n F n N F n rH n( ) ( ) ( ) ( 1)

(14)
tot

i V
a i n a a tot, 1 ,

n
n n n

1
(1) 1

(1)

Recalling Eq. (1) and Eq. (13), Eq. (14) is solved as
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The asymptotic behavior of Htot(n) in the limited of large n is as follows,
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Step 3. We use the definition to obtain the asymptotic behavior of the EMWFPT in the limited of large n. Starting 
from the definition of the EMWFPT and the recursive construction, we can decompose the Ftot(n) into four terms:
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The first term takes into account a walker starting from and arriving at nodes belonging to the same subgraph. 
The second term takes into account all the possible paths where the initial point and the final one belong to two 
different subgraphs, and we can set them to −Gn 1

(1)  and −Gn 1
(2)  and multiply the contribution by a combinatorial 

factor s(s −  1). Finally the last two terms takes into account all the possible paths between each of nodes of sub-
graph − −G G, ,n n

s
1

(1)
1

( )  and the central node an.
Using the scaling mechanism for the edges, the first term in Eq. (17) can be easily identified with
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By construction, each pass connecting two nodes belonging to two different subgraphs, must pass through the 
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Then, Eq. (17) can be simplified as
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Inserting Eq. (8) and Eq. (16) into Eq. (20), the asymptotic behavior of Ftot(n) in the limited of large n is as 
follows,

.~F n N( ) (21)tot n
3

and

=
−

.∼

F F n
N N
N

( )
( 1)

(22)

n
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n

Method 2
In this section, Method 2 is that the average weighted shortest path used to get the asymptotic behavior the 
EMWFPT. This method gives some significantly new insights more straightforward than Method 1.

The resistance distance rij between two nodes i and j is defined as the effective (electrical) resistance between them 
when each weighted edge has been replaced by a resistor. It is known that the weighted first-passage time between 
two nodes is related to their resistance distance by + =F F E r2i j j i n ij, ,

18,19 and, in which = −E N 1n n  is the total 
number of edges for weighted treelike network Gn and Fi,j =  Fj,i. The EMWFPT of weighted treelike network is
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Let λij as the weighted shortest path between two nodes i and j of the weighted networks Gn
2. For any weighted 

treelike networks, the weighted shortest path λij of Gn is equal to the effective resistance rij between node i and j, 
i.e, rij =  λij. By definition the average weighted shortest path λn of the graph Gn is given by4

λ
λ

=
∑

−
.∈ ≠

N N( 1) (24)n
i j V i j ij

n n

, :n

For a large system, i.e., Nn →  ∞ , we have already known that the λn of the Gn is (see ref. 17).

λ −
− −

.~
s
r s r

2( 1)
(1 )( ) (25)n

Now we substitute Eq. (24) and Eq. (25) into Eq. (23) obtaining,

∑ λ

λ

=

= −

.∼

∈ ≠
F

N

N
N N

N

1

1 ( 1)

n
n i j V i j

ij

n
n n n

n

, :n

This result coincides with the asymptotic behavior 〈 F〉 n in Eq. (22). Therefore, we can draw the conclusion that 
the effective resistance mean exactly the weight between two adjacency nodes for the weighted treelike networks.

Conclusions
In this paper, we have proposed a family of weighted treelike networks formed by three parameters as a generali-
zation of the un-weighted trees. We have calculated the entire mean weighted first-passage time (EMWFPT) with 
random walks on a family of weighted treelike networks. We have used two methods to obtain the asymptotic 
behavior of the EMWFPT with regard to network parameters. Firstly, using the construction algorithm, we have 
calculated the receiving and sending times from the central nodes to the other nodes of −Gn 1

(1)  to obtain the asymp-
totic behavior of the EMWFPT. Secondly, applying the relationship equation between EMWFPT and the average 
weighted shortest path, we also have obtained the asymptotic behavior of the EMWFPT. The dominating terms of 
the EMWFPT obtained by two methods are coincident, which shows that the effective resistance is equal to the 
weight between two adjacency nodes. Noticed that the dominating term of the EMWFPT scales linearly with 
network size Nn in large network. It is expected that the edge-weighted adjacency matrices can be used to com-
pute the weighted Laplacian spectra to obtain the asymptotic behavior of the EMWFPT of weighted treelike 
networks.
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