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ABSTRACT
Background. Amorpha fruticosa L. is a deciduous shrub that is native to North America
and has been introduced toChina as an ornamental plant. In order to clarify the drought
resistance characteristics ofAmorpha fruticosaL. and excavate the related genes involved
in drought resistance regulation pathway, themechanism of drought resistance stress of
Amorpha fruticosa L. was revealed by the changes of transcriptome ofAmorpha fruticosa
L. under drought stress.Through the changes of the transcriptome ofAmorpha fruticosa
L. under drought stress, the mechanism of anti-stress of Amorpha fruticosa L. could be
revealed.
Methods. Different concentrations of polyethylene glycol-6000 (PEG-6000) was used
to simulate drought stress, and transcriptomic analysis was used to reveal the changes
of gene expression patterns in Amorpha fruticosa L. seedlings.
Results. Results showed that Amorpha fruticosa L. seedlings were seriously affected
by PEG-6000. As for the differently expressed genes (DEGs), most of them were
up-regulated. The additional Go and KEGG analysis results showed that DEGs were
functionally enriched in cell wall, signal transduction and hormonal regulation related
pathways. DEGs like AfSOD, AfHSP, AfTGA, AfbZIP and AfGRX play roles in response
to drought stress.
Conclusion. In conclusion, Amorpha fruticosa L. seedlings were sensitive to drought,
which was different from Amorpha fruticosa L. tree, and the genes functions in drought
stress responses via ABA-independent pathways. The up-regulation of Salicylic acid
signal related DEGs (AfTGA and AfPR-1) indicated that Salicylic acid play a key role
in response to drought stress in Amorpha fruticosa L.

Subjects Genomics, Plant Science
Keywords Amorpha fruticosa L., Drought stress, Transcriptomic analysis, Tolerance mechanisms

BACKGROUND
Amorpha fruticosa L. is a deciduous shrub that is native to North America and has
been introduced to China as an ornamental plant (Hou, 1982; Wang et al., 2002). As
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a kind of urban greening and slope protection plant, Amorpha fruticosa L. has high
ornamental value and is widely used in the construction of urban landscape and road
slope protection. In addition, Amorpha fruticosa L. also has medicinal value, such as
cytotoxic rotenoid glycosides, antibacterial and cytotoxic phenolic metabolite in seeds (Wu
et al., 2014; Muharini et al., 2017). Furthermore, Amorpha fruticosa L. leaf was a kind of
traditional Chinese medicine used for the treatment of fever, burns, pyogenic carbuncle
and eczema (Wu et al., 2014; Hovanet et al., 2015). Amorpha fruticosa L. can tolerate dry
soils, but it is most abundant along river banks and roads and the edges of flooded forests,
even is tolerant of occasional flooding (Kozuharova et al., 2017). The high tolerance of
various habitat conditions and potent propagation ability promotes the aggressive invasive
behavior of Amorpha fruticosa L. outside of its native range (Kozuharova et al., 2017).
Understanding the drought tolerance mechanism of Amorpha fruticosa L. is of great
significance to the study of plant tolerance. Drought stress is one of the most prevalent
environmental factors limiting plant growth (Bray, 2007). Different plants adapt to drought
stress in the environment through different mechanisms, but most plants could response
to drought stress via hormonal regulation, such as abscisic acid (ABA), cytokinin (CK),
gibberellic acid (GA), auxin, and ethylene, etc, which regulate diverse processes and enable
plant adaptation to drought stress (Wilkinson et al., 2012; Basu et al., 2016). Many genes
related to hormonal regulation have been proved to improve plant resistance, including
GH3, NAP, ABIs, AP37, PP2C, PP2C06, PYR/PYL, SIDP366, MYBs, RK1, hox22, SNAC2,
OAT, bZIPs, SNAC1, EREBP1, DSM2, AREB2, SRO1c and ABA8OX3 (Basu et al., 2016).
When plants suffer from stress, a series of biological processes will be induced to respond
to stress signals, which will lead to the increase of reactive oxygen species (ROS) content in
plant cells (Lawlor & Cornic, 2002). In the long evolutionary process, plants have evolved
a series of anti-oxidative system to respond to drought, such as glutathione metabolism
pathway, catalase system, peroxidase system, superoxide dismutase system system, etc.
Despite several researchers reporting on the drought resistance in Amorpha fruticose L.,
few articles have focused on the gene expression patterns and molecular mechanisms of
gene action in response to drought stress.

In this study, PEG-6000 was used to simulate drought stress, and transcriptomic analysis
was used to reveal the changes of gene expression patterns inAmorpha fruticosa L. seedlings.
The present study will provide theoretical basis and data support for Amorpha fruticosa L.
drought resistant breeding.

METHODS
Plant material and PEG treatment
Amorpha fruticosa L. seeds were collected from our research test plot in November 2018
and identified by Seed Key Laboratory of Saline-alkali Vegetation Ecology Restoration,
Ministry of Education (Northeast Forestry University). Seeds need to be disinfected before
germination test. Amorpha fruticosa L. seeds were surface-sterilized with 70% alcohol and
5% sodium hypochlorite for 5 min followed by rinsing three times with distilled water.
Seeds were then seeded into culture bowls full of fine sand (sterilized by high temperature)
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and cultured in a plant growth chamber (temperature 25 ◦C ± 2; relative humidity 60%
± 5; light intensity 150 µmol m−2s−1; light and darkness cycle: 16:8) with sufficient
water supply for four weeks. Subsequently, the seedlings were randomly divided into
four groups with three repetitions in each group. Osmotic stress was gradually applied
with varying concentrations of polyethylene glycol-6000 (PEG-6000; w/v- 0%, group CK;
10%, group 10%; 20%, group 20%; 30%, group 30%) for 72 h. Although PEG-6000 has
many limitations, it is still a good choice because of its wide application in drought stress
research. Whole seedlings of all groups were sampled, snap frozen in liquid nitrogen and
then stored at −80 ◦C until testing. After PEG treatment, 20% PEG-6000 was considered
the most suitable for transcriptome analysis. Hence, the samples in CK and 20% PEG-6000
treatment (72 h) group were used to reveal the gene expression pattern using transcriptome
sequencing (three biological repeats in each group). Similarly, samples in CK and 20%
PEG-6000 treatment (72 h) group were used to determine the superoxide dismutase
(SOD), malondialdehyde (MDA), proline (Pro) and relative electrical conductivity (REC)
according to previous reports (Guo et al., 2016; Zhao, Aspinall & Paleg, 1992). Samples
in CK, 10%, 20% and 30% PEG-6000 treatment group (72 h) were used for quantitative
real-time PCR (qRT-PCR) detection (three biological repeats in each group).

RNA extraction, library preparation, and transcriptome sequencing
Total RNA was isolated using a RNAprep pure Plant Kit (Tiangen, China) according to
the manufacturer’s instruction. RNA quality was tested using gel electrophoresis, Agilent
2100 (Agilent Technologies Inc., USA) and Nano Drop 2000 (Thermo Fisher Scientifc
Inc., USA). Then, total RNA was reverse transcribed to cDNA by a QuantScript RT Kit
(Tiangen, China). After that, we started constructing sequencing libraries. An efficient
mRNA-seq Library Prep Kit for Illumina (Vazyme, China) was used for the sequence
libraries construction. Subsequently, the quality control (QC) was performed by an Agilent
2100 Bioanalyzer and an ABI StepOnePlus Real-Time PCR System to quantify the sample
libraries. Finally, all the six mRNA-seq libraries were sequenced on an Illumina HiSeq
4000 sequencing platform with pair-end 2 × 150 bp mode to obtain sequencing data.
The sequencing data are available at Bigsub database (https://bigd.big.ac.cn/gsub/) with
accession number CRA002113.

De novo assembly, sequence annotation and differentially expressed
genes (DEGs) screening
Raw reads were filtered to remove adapter and low-quality reads using FasqQC (version
0.11.5) with default parameter settings. De novo transcriptome assembly were performed
by Trinity (version 2.2018) using the filtered clean data of the six libraries (Chrysant et al.,
2012). The assembled transcripts were hierarchically clustered using Corset (version 1.0.5)
(Davidson & Oshlack, 2014). After hierarchical clustering, the longest sequence (unigene)
of each cluster were used for further analyses, including length distribution statistics, gene
annotation and identification of DEGs. For gene annotation, the unigenes were annotated
using BLAST program against Nr, Nt, Pfam, KOG/COG, Swiss-prot, KEGG, GO databases
with an E-value ≤ 1e−5. In addition, ESTScan (version 3.0.2) (Iseli, Jongeneel & Bucher,
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1999) was used for ORF predication of gene sequences that could not be aligned to any
of the abovementioned databases. To evaluate the correlation of biological repetition,
principal component analysis (PCA) and pearson’s correlation analysis were performed
based on the FPKM of reads. Following this, read counts were normalized and DEGs in
different comparisons were screened using DEseq2 (R package) methods (Love, Huber &
Anders, 2014) with the criteria of padj value <0.05 by Negative binomial distribution test
and |log2(Fold Change, FC)| ≥ 1.5. Genes with identified as log2FC >1 and log2FC <−1
were identified as up- and down-regulated DEGs, respectively. Hierarchical clustering
based on the expression profiles of DEGs was presented by pheatmap (version 1.0.10).

DEGs functional analysis
The DEGs enriched into modules correlated with the phenotypes were separately subjected
to the enrichment analysis for Gene Ontoloy (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (Kanehisa et al., 2007). Significant GO biological processes
(BP) and KEGG pathways were identified with the criterion of p< 0.05. The candidate
gene interaction analysis was performed using Cytoscape (version 3.7.2).

qRT-PCR verification of RNA-seq data
Differentially expressed genes play a crucial role in drought stress resistance in Amorpha
fruticosa L. The genes that are more affected by drought stress are those related to the
scavenging homeostatic system of reactive oxygen species in plants; genes related to the
signal transduction transcriptional regulation and metabolic regulation pathways are
differentially expressed in response to drought stress. Therefore, in this study, 20 genes
from the above three categories were selected for qRT-PCR validation. qRT-PCR analysis
was performed on an Agilent Mx3000P QPCR system (Agilent, USA) using 2× Brilliant III
SYBR Green qPCR Master Mix (Agilent, USA). PCR amplification was performed under
the following conditions: 95 ◦C for 5 min, followed by 40 cycles of 95 ◦C for 30 s, 58 ◦C
for 30s, and 72 ◦C for 30 s and a final extension at 72 ◦C for 5 min. Quantification
of gene expression was performed by the comparative 2−11CT method (Guan et
al., 2014). The validation analysis was performed with three independent biological
replicates. The gene-specific primers for qRT-PCR were designed using Primer Premier 5.0
(http://www.PremierBiosoft.com) and were synthesized by Invitrogen (Carlsbad, USA).
The gene β-actin was used as the housekeeping gene. Data was analyzed by one-way
ANOVA with Tukeys post hoc test.

Statistical analysis
Statistical analysis was performed using the GraphPad Prism 8. All experimental data
were expressed as mean ± standard deviation (SD), and differences between groups or
treatments were analyzed using one-way ANOVA with Tukeys post hoc test . P < 0.05 was
set as significant threshold for statistical differences.
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Figure 1 Growth of Amorpha fruticosa L. seedlings under different drought stress conditions. 0%
means control group without PEG-6000 treatment; w/v= 10%, 20% and 30% means PEG-6000 treatment
group, w/v= 10%, w/v= 20% and w/v= 30%, respectively. 0 day, 7 day and 15 day represent the groups
0 day, 7 day and 15 day after PEG-6000 treatment. Scale bars length is 7 cm long.

Full-size DOI: 10.7717/peerj.11044/fig-1

RESULTS
Effects of different concentrations of PEG-6000 on plant growth
After PEG-6000 treatment, the Amorpha fruticosa L. plants were under drought stress. The
leaves of the drought-stressed plants showed severe wilting and curling, which aggravated
the increase of PEG-6000 concentration (Fig. 1), indicating that Amorpha fruticosa L.
seedlings were sensitive to drought stress, and 30% concentration PEG-6000 treatment
was fatal for plant seedlings. The contents of SOD, MDA, Pro and REC showed that plants
suffered from drought stress had significantly higher values than that of CK (Fig. 2).

Sequence data summary and de novo assembly
Approximately 42.6 G raw data, including 142 million reads from the six libraries, were
generated. QC results revealed the good quality of the sequence data with an average Q20
of 96.71%, average Q30 of 92.46%, the average sequencing error rate of 0.01% and average
GC content of 57.08% (Table S1). PCA and sample to sample correlation analysis results
showed that each group’s biological replicates were clustered together (Figs. 3A and 3B),
indicating that the variability between samples in the same group was small. After de novo
assembly of clean reads with Trinity, the transcripts were clustering and de-redundant,
and 96,594 unigenes were obtained with an average length of 864 bp and N50 of 1,430 bp
(Table S2). The annotation results showed that 52,010 unigenes were successfully matched
with at least one database, including 15,883 (30.54%), 28,297 (54.41%), 18,348 (35.28%),
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Figure 2 Contents of SOD,MDA, Pro and REC under drought stress. Abscissa shows the index and
unit. Ordinate numbers represent values. SOD, superoxide dismutase; MDA, malondialdehyde; Pro, pro-
line; REC, relative electrical conductivity. **p < 0.01, *p < 0.05, data was analyzed by one-way ANOVA
with Tukeys post hoc test (n = 3). CK means control group without PEG-6000 treatment; 20% means
PEG-6000 treatment group, w/v= 20%.

Full-size DOI: 10.7717/peerj.11044/fig-2

Figure 3 Clustering results of all the samples. (A) Principal component analysis (PCA) clustering re-
sults. (B) The sample-to-sample clustering analysis based on the mRNA expression level. The color depth
notes the similarity between samples (0∼1). The deeper the color, the higher the similarity.

Full-size DOI: 10.7717/peerj.11044/fig-3

29,472 (56.67%), 33,287 (64.00%), 28,188 (54.2%), 46,878 (90.13) and 48,186 (92.65%)
that significantly matched with the COG, GO, KEGG, KOG, Pfam, Swiss-Prot, EggNOG
and nr databases, respectively.
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Figure 4 DEGs expression pattern and candidate pathways.DEGs expression patterns in different sam-
ples. Blue and red color in the heatmap indicates the expression of DEGs is low and high, respectively. (B)
DGEs expression pattern in ABA signaling pathway. (C) DEGs expression pattern in Salicylic acid signal-
ing pathway. CK means control group without PEG-6000 treatment; PEG means PEG-6000 treatment
group, w/v= 20%.

Full-size DOI: 10.7717/peerj.11044/fig-4

DEGs between CK and 20% PEG-6000 treatment group
There were 1084 and 603 up- and down-regulated DEGs found between CK and 20% PEG-
6000 group. In order to better understand the function of DEGs, we performed GO and
KEGG analysis. The GO results showed that ‘‘regulation of catalytic activity’’, ‘‘regulation
of peptidase activity’’, ‘‘oxidation–reduction process’’, ‘‘plant-type cell wall loosening’’
and ‘‘cell redox homeostasis’’ were the main BP terms respond to drought stress. In
which, AfSOD, AfHSP70, AfCYPs, AfCSY4 and 60S ribosomal proteins had high frequency.
Most of these DEGs were up-regulated (Fig. 4A). As for KEGG analysis, DEGs were
significantly enriched in starch and sucrose metabolism, carbon fixation in photosynthetic
organisms and 2-Oxocarboxylic acid metabolism pathway. In addition, 34 DEGs,
including c144508.graph_c0, c164358.graph_c0, c167827.graph_c0, c171717.graph_c1
and c187107.graph_c0, were enriched in plant hormone signal transduction pathway,
although the p value >0.05. DEGs in plant hormone signal transduction showed that
DEGs of salicylic acid downstream were active and transcripts of PP2C were upregulated.
Expression of DEGs in ABA and salicylic acid pathway were shown in Figs. 4B and 4C.What
more, DEGs in Starch and sucrose metabolism including AfTPS, AfTREH, AfAMY, etc.
Most DEGs in Carbon fixation in photosynthetic organisms pathway were up regulated.

Interaction network of DEGs and proteins
The interaction network was drawn according to STRING database. There were 262
up-regulated DEGs with Confidence Score >0.9 and the interaction network showed
that c160801.graph_c0, c192497.graph_c0, c190485.graph_c1, c175551.graph_c1 were the
core regulators in these DEGs (Fig. 5A). The expression heatmap showed the distinct
gene expression pattern between CK and PEG-6000 treatment group (Fig. 5B). The
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Figure 5 Interaction network of DEGs and proteins. (A) Interaction network of up-regulated DEGs un-
der drought stress. (B) Heatmap of core regulators in the interaction network of a. (C) Interaction net-
work of genes related to ROS. (D) Heatmap of core regulators in the interaction network of b. (E) Inter-
action network of genes related to translation. (F) Heatmap of core regulators in the interaction network
of e.

Full-size DOI: 10.7717/peerj.11044/fig-5

down-regulated DEGs formed an interactive network of six nodes. Besides, we classified
the genes according to their functions and then construct the interaction network. Genes
related to ROS showed a six nodes network (Fig. 5C), of which three genes were differently
expressed (Fig. 5D). DEGs related to translation showed that 17 genes had an interaction
relationship (Fig. 5E) and the expression was shown in Fig. 5F.
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qRT-PCR verification
To validate the accuracy of gene expression data obtained by RNA-seq, 20 DEGs were
selected to be verified by qRT-PCR using the same samples for RNA-seq. These DEGs
were AfADH_Zinc_N, AfNAC1, AfZAT10, AfWRKY25, AfPhospholipase A1, AfDREB4,
AfRAP2-1, AfABRE3, AfbHLH-MYC, AfABP19a, AfPAP17-X2, AfTrx_2, AfWRKY20,
AfMYB1, AfPAL 1, AfMYB2, AfAPX2, AfCAT, AfFe/Mn-SOD and AfGST. The primers
used were listed in Table S3. The qRT-PCR results showed that most stress response genes
were up-regulated, especially in 20% and 30% PEG treatment. Also, some transcription
factors were down-regulated with the aggravation of stress. All the expression of all these
genes was shown in Fig. 6.

DISCUSSION
As an important tree species for highway and slope protection, Amorpha fruticosa L. is
widely used in Northeast China. Amorpha fruticosa L. is vulnerable to drought stress, so
revealing the biological process response to stress is important to Amorpha fruticosa L.
breeding. When environmental conditions become adverse, plants can successfully deploy
complex physiological and molecular strategies to cope with abiotic stress (Guo et al.,
2016). In this study, the curling and wilting of plant leaves prove that plants are under
drought stress. The physiological indexes of Amorpha fruticosa L. against drought stress
were consistent with that in citrus (Guan et al., 2014), Tibet Plateau (Guo et al., 2016) and
some shrubs (Hussain et al., 2018). The tolerance of plants to drought resulted in increasing
antioxidants activities which face the increased levels of free radicals (Toscano et al., 2016;
Shao, Liang & Shao, 2005). The increased contents of SOD, MDA and Pro indicated the
cellular defenses against ROS.

The statistical results of DEGs show that most of the DEGs were up-regulated, which
demonstrated the response of gene expression pattern to drought stress. The DEGs
functional analysis results showed that ‘‘regulation of catalytic activity’’, ‘‘regulation of
peptidase activity’’ and ‘‘oxidation–reduction process’’ were the main enriched GO terms
and AfSOD, AfHSP70, AfCYPs and 60S ribosomal proteins were the key regulators involved
in these terms. SODs are key enzymes in many oxidation processes, and provide basic
protection against ROS in plants (Ahmadizadeh et al., 2011). The significantly increasing of
AfSOD, AfHSP and AfCYPs after PEG-6000 treatment played an important role response
to drought stress. Especially, various reports to date reveal that SODs overexpressing plants
protect them from oxidative damage (Grene, Erturk & Heath, 2002; Badawi et al., 2004;
Rubio et al., 2002; Zlatev et al., 2006). Similarly, HSP overexpressing plants also showed
excellent stress tolerance (Wang et al., 2008; Wang et al., 2015b; Xiang et al., 2018), which
act as core genes in our interaction network analysis results. In addition, CYP family
members also act as key response genes to drought stress (Wang et al., 2015a; Sekhar et al.,
2010). The mechanism of improving plant resistance to abiotic stress by SOD, HSP and
CYP had been reviewed (Duan et al., 2017; Kim et al., 2017; Verma et al., 2019; Park & Seo,
2015), and we will not discuss it in detail. As for KEGG enrichment analysis, we found 34
DEGs enriched in plant hormone signal transduction pathway, including ABA signal related
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Figure 6 QRT-PCR verification results. (A–T) Twenty significantly altered genes from the RNA-seq
study were selected and tested by real-time RT-PCR. β-Actin was used to normalized the gene expression
levels. Values are means± SE, n= 3. A, B, C and D are differential analyses at 0.05 levels.

Full-size DOI: 10.7717/peerj.11044/fig-6

DEGs (AfPP2C, AfPYR/PYL and AfSnRK2) and Salicylic acid signal related DEGs (AfTGA
and AfPR-1). ABA is an important signal molecule, which act as a comprehensive factor in
response to environmental changes. It play roles the regulation of seed germination and
root growth, as well as the adaptive response to various abiotic stresses (Whitley, Goldberg
& Jordan, 1999). In our results, AfPP2C were up-regulated by PEG-6000 treatment.
In this study, qRT-PCR detected a significant increase in the expression of AfAPX2,
AfFe/Mn-SOD, and AfGST genes, and AfCAT gene was first decreased and then increased,
showing an overall trend of induced increase under different concentration gradients of
PEG6000 treatment, contributing to the increased drought resistance of the phytoplankton
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(Fig. 6). A significant amount of research on PP2C action is related to ABA signaling.
The ABA INSENSITIVE1 (ABI1) and ABI2 genes encode homologous type-2C protein
phosphatases with redundant yet distinct functions in ABA responses (Fujii et al., 2009).
Genetic analysis of abi1 and abi2 mutants, their revertants, transient expression studies,
and analysis of transgenic antisense plants showed that PP2Cs act as negative regulators
of ABA signaling (Chak et al., 2000; Rodriguez, 1999; Sheen, 1998; Merlot et al., 2001).
The increased expression level of AfPP2C revealed that Amorpha fruticosa L. seedlings
were sensitive to drought and the genes functions in drought stress responses via ABA-
independent pathways (Gosti et al., 1999). In addition, AfTGA and AfPR-1 were increased
by high concentration of PEG-6000. TGA factors constitute a conserved plant subfamily
of basic domain/Leu zipper (bZIP) transcriptional regulators whose genomic targets are
thought to include glutathione S-transferase and pathogenesis-related (PR) genes that
are associated with detoxification and defense (Yoshida, Mogami & Yamaguchi-Shinozaki,
2014; Klinedinst et al., 2000). In this study (Fig. 6), signal-responsive AfABRE3, AfDREB4,
AfNAC1, and AfRAP2-1 factors were detected to increase in expression in response to
changes in PEG stress concentration, and again with respect to the zinc finger protein-like
transcription factors AfADH Zinc N, AfZAT10, and AfWRKY25, expression changes were
also up-regulated significantly. Drought stress response genes were not only up-regulated
expression, but also down-regulated related genes. Firstly, the expression of AfMYB
and AfbHLH-MYC transcriptional regulators decreased significantly with increasing
concentration of PEG stress treatment; AfWRKY20 showed a fluctuating change of
decreasing and then increasing, and the expression of AfNADH genes involved in electron
transfer increased and then decreased in response to drought stress.TGA factors contribute
to protective gene responses that are mobilized by plants against stress. As for PR-1,
of which the expression was promoted by TGA factors (Johnson, Boden & Arias, 2003).
Johnson reported that the in vivo recruitment of TGAs to the PR-1 promoter precedes the
SA (Salicylic Acid)-induced expression of a transcriptionally divergent XET gene, which
encodes a putative xyloglucan endotransglycosylase (Klinedinst et al., 2000). These enzymes
remodel the cell wall during development and in response to environmental cues, which
is consistent with the enriched cell wall related GO terms in our results. Both AfTGA and
AfPR-1 were up-regulated by drought stress, which indicated that Amorpha fruticosa L. can
resist drought stress through SA. The possible mechanism is that when plant suffered from
drought stress, NPR1 can transfer the SA-induced activation of PR-1 to the nucleus, where
it interacts with the C-terminal domain of TGAs (Gatz, 2012). The interaction network
analysis results showed thatAfHSPs, AfCXXS1, AfGRXS11, AfGRXC6 andAfFAD play roles
in gene interaction. Of which, GRX is a kind of small molecule redox protein, which plays
an important role in antioxidation in the form of thiol reductase (Kinkema, Fan & Dong,
2001). Pervious study reported that environmental stresses such as cold, heat, drought
and salt induce changes in fatty acid composition, mainly in the content of linolenic
acid (Noctor, Reichheld & Foyer, 2017). Zhang found that FAD3 and FAD8 overexpressing
tobacco plants showed increased tolerance to drought and to osmotic stress (Noctor,
Reichheld & Foyer, 2017). The FADs induced drought tolerance can be related directly
to the changes in membrane structure such as decreased membrane fluidity found in

Sun et al. (2021), PeerJ, DOI 10.7717/peerj.11044 11/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.11044


hyperosmotically stressed phospholipid vesicles and yeast cells, and the accumulation
of unsaturated fatty acids can attenuate rigidification of membranes leading to reduced
damage by osmotic stress (Zhang et al., 2005). This view was also confirmed in our results,
because many genes related to cell wall showed differential expression. The increased
AfFAD in Amorpha fruticosa L. might played similar roles to against to the damage of
drought stress.

CONCLUSIONS
Amorpha fruticosa L. can effectively respond to drought stress by increasing the intracellular
content of SOD,MDA and Pro. Correspondingly, the expression of drought stress response
genes and transcription factors increased. Some of the transcription factors played key
roles in polygenic interaction against to stress. Amorpha fruticosa L. seedlings were sensitive
to drought and the genes functions in drought stress responses via ABA-independent
pathways. The up-regulation of Salicylic acid signal related DEGs (AfTGA and AfPR-1)
indicated that Salicylic acid may play a key role in response to drought stress in Amorpha
fruticosa L.

Abbreviations
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