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Abstract: Type 1 diabetes (T1D) results from the destruction of pancreatic beta cells through a process
that is primarily mediated by T cells. Emerging evidence suggests that dendritic cells (DCs) play
a crucial role in initiating and developing this debilitating disease. DCs are professional antigen-
presenting cells with the ability to integrate signals arising from tissue infection or injury that present
processed antigens from these sites to naïve T cells in secondary lymphoid organs, thereby triggering
naïve T cells to differentiate and modulate adaptive immune responses. Recent advancements in our
knowledge of the various subsets of DCs and their cellular structures and methods of orchestration
over time have resulted in a better understanding of how the T cell response is shaped. DCs employ
various arsenal to maintain their tolerance, including the induction of effector T cell deletion or
unresponsiveness and the generation and expansion of regulatory T cell populations. Therapies that
suppress the immunogenic effects of dendritic cells by blocking T cell costimulatory pathways and
proinflammatory cytokine production are currently being sought. Moreover, new strategies are being
developed that can regulate DC differentiation and development and harness the tolerogenic capacity
of these cells. Here, in this report, we focus on recent advances in the field of DC immunology and
evaluate the prospects of DC-based therapeutic strategies to treat T1D.
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1. Introduction

Type 1 diabetes (T1D) is an autoimmune disease that mainly affects children and
young adults but can develop at any age. This disease arises from the selective destruc-
tion of insulin-producing pancreatic beta cells through a process that is mediated by an
autoimmune response resulting from the breakdown of autoimmune tolerance. Approx-
imately 5–10% of all diabetic patients have T1D, including more than 500,000 children
worldwide, mostly in Europe and North America [1]. Moreover, epidemiological data have
demonstrated that the T1D incidence has amplified significantly in recent years [2]. In
2019, Diabetes Research and Clinical Practice declared 128,900 newly diagnosed T1D cases
globally in individuals under 20 years of age [3]. Both environmental elements and genetic
susceptibility play crucial roles in advancing T1D. Polymorphisms in the HLA region of
the major histocompatibility complex (MHC) broadly define the genetic risk of emerging
T1D. The most prevalent loci are HLA-DQ8 and HLA-DQ2, which are found in 90% of type
1 diabetic patients [4]. These HLA molecules are associated with an enhanced presentation
of various beta-cell-derived peptides by antigen-presenting cells (APCs). In addition to
the HLA region, the insulin (INS), cytotoxic T lymphocyte-associated protein 4 (CTLA-4),
IL-2 receptor (IL2RA), and protein tyrosine phosphatase N 22 (PTPN22) genes have the
most significant influences on the etiopathogenesis of T1D [5,6]. A variety of immune cells
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participate in the pathogenesis of T1D, involving innate and adaptive immune systems
and leading to the expansion of self-reactive, antigen-specific B and T lymphocytes. These
immune cells can trigger islet inflammation to induce insulitis, which evolves into diabetes.

Dendritic cells (DCs) are the body’s sentinels par excellence, which act as “conductors”
of the immune response by “coordinating” signals from different parts of the immune
system. Dendritic cells are motile cells with a stellate morphology that express high
levels of MHC molecules and the integrin CD11c and are characterized by their ability to
migrate from nonlymphoid to lymphoid organs and their superior ability to activate T
lymphocytes [7]. DCs can take up various antigens, including micro-organisms released
by dead cells, extracellular fluid, and apoptotic cells, which can be processed and present
on MHC class I and class II molecules to naïve T cells in the form of peptides. DCs can be
found throughout the human body. They can form a diverse network to sense homeostatic
discrepancies and process antigens for presentation to T cells, thereby establishing an
interface between innate and adaptive immune systems. In addition, DCs can secrete
growth factors and cytokines that modulate ongoing immune responses and are influenced
by their connections with other immune cells, such as natural killer (NK) cells and innate
lymphoid cells (ILCs) [8,9].

At present, DCs are believed to be a diverse cell population whose members vary in
ontogeny, anatomical locality, relocation, cytokine production pattern, and immunological
responses. They are situated in nonlymphoid tissues, where they screen the surrounding en-
vironment via their pattern recognition receptors (PRRs) and identify pathogen-associated
molecular patterns (PAMPs) [10]. Once DCs capture antigens, they travel to lymphoid
organs and then dispose of the antigens to T lymphocytes. Thus, DCs contribute to the
regulation of immune responses through effector T cell lineages and immune tolerance by
producing different patterns of cytokines [11,12].

2. Dendritic Cell Ontogeny

The classic model of DC development mainly comes from mouse research. DCs
originate from bone marrow (BM) CD34+ hematopoietic stem cells (HSCs), which transit
into the common myeloid progenitor (CMP) displaying a Lin− c-Kit high Sca1− IL-7R
alpha− subset and a common lymphoid progenitor (CLP) (Figure 1). The CMP differentiates
into a bipotent progenitor called a macrophage and DC progenitor (MDP), giving rise to
monocytes and DCs [13,14]. The MDP then begins to reduce the expression of c-Kit, an
indication of differentiation into common dendritic cell progenitors (CDPs) displaying the
Lin−c-Kitint, Flt3+ M-CSFR+ phenotype. Similar to CDPs, a common monocyte progenitor
cell (cMoP) was recently discovered downstream of the MDP that produces monocytes but
not DCs [15]. CDPs can differentiate into precursors of classical or conventional DCs (Pre-
cDCs) with the manifestation of the zinc finger and BTB domain containing 46 (ZBTB46)
and ID2, while the expression of transcription factor 4 (TCF4) results in the generation of
plasmacytoid DC precursors (Pre-pDCs) [16,17]. Pre-cDCs are recognized by the expression
of Siglec-H, CD11c, SIRP alphalow, and MHC-IIint, while Pre-pDCs can be identified by low
expression of M-CSFR [18]. Pre-cDCs then further branch into cDC1 and cDC2 subsets,
depending on the expression of key transcription factors related to each type (IRF8 and
BATF3 for cDC1 or KLF4 and IRF4 for cDC2) [19–21]. In short, CDPs can differentiate into
cDCs and pDCs (Figure 1). It is important to mention that Pre-cDC, Pre-pDC, CDP, MDP,
and CMP cells are situated in the BM, while cDC1s, cDC2s, and pDCs are positioned in the
periphery, such as in the lymphoid organs or blood [22].
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Figure 1. Ontogeny of functionally specialized dendritic cell subsets. Dendritic cells (DCs) originate 
from hematopoietic stem cells (HSCs) in the bone marrow (BM) that transit into lymphoid-primed 
multipotent progenitors (LMPPs). LMPPs differentiate into common myeloid progenitors (CMPs) 
and common lymphoid progenitors (CLPs). CMPs then branch into common DC progenitors 
(CDPs), which give rise to plasmacytoid DCs (pDCs), a major producer of type I interferons, and 
conventional DC (cDCs), whose primary function is to prime naïve T cells into common monocyte 
progenitors (CMoPs), which are committed to the monocyte, macrophage, and Langerhans cell (LC) 
lineages. CLPs give rise to pDCs and lymphocytes, such as T cells, B cells, and NK cells. A distinct 
macrophage lineage is derived from embryonic precursors and mainly generates tissue-resident 
macrophages and Langerhans cells, which can also be replaced over time by bone marrow mono-
cyte-derived macrophages in different tissues, especially under inflammatory conditions. Tissue-
resident macrophages maintain tissue homeostasis and are poor inducers of naïve T cells but are 
potent activators of B cells and are efficient at clearing apoptotic cells. Although LCs are categorized 
with macrophages on an ontogeny basis, they display many functional activities that overlap with 
cDCs. Monocyte-derived DCs (MoDCs), also known as inflammatory DCs (iDCs), are potent pro-
ducers of TNF/iNOS (TIP) and are prominent at the site of inflammation. They typically execute 
functions in the tissues, such as antigen presentation to T effector cells, eradication of pathogens, 
and cytokine production. Stages at which key growth factors have been determined to be essential 
are indicated. MDP, macrophage and DC progenitor; Pre-pDC, pre-plasmacytoid DC; Pre-cDC, pre-
conventional DC; cDC1, conventional type I DC; cDC2, conventional type II DC; GM-CSF, granulo-
cyte-macrophage colony-stimulating factor; M-CSF, macrophage colony-stimulating factor; FLT3-
L, Fms-like tyrosine kinase 3 ligand. 

During DC development and differentiation, growth factors, such as granulocyte-
macrophage colony-stimulating factor (GM-CSF), Fms-like tyrosine kinase 3 ligand (Flt3-
L), and macrophage colony-stimulating factor (M-CSF), are needed [23] (Figure 1). Flt3-L, 
which binds to the receptor Flt3, a protein tyrosine kinase receptor expressed especially 
in DC progenitors in the BM, is the most important growth factor involved in DC lineage 
diversification. Previously, it was shown that Flt3-L/Flt3 signaling is vital for developing 
and differentiating pDCs and cDCs in vitro [14,24,25]. Moreover, the in vivo role of Flt3 

Figure 1. Ontogeny of functionally specialized dendritic cell subsets. Dendritic cells (DCs) originate
from hematopoietic stem cells (HSCs) in the bone marrow (BM) that transit into lymphoid-primed
multipotent progenitors (LMPPs). LMPPs differentiate into common myeloid progenitors (CMPs)
and common lymphoid progenitors (CLPs). CMPs then branch into common DC progenitors (CDPs),
which give rise to plasmacytoid DCs (pDCs), a major producer of type I interferons, and con-
ventional DC (cDCs), whose primary function is to prime naïve T cells into common monocyte
progenitors (CMoPs), which are committed to the monocyte, macrophage, and Langerhans cell (LC)
lineages. CLPs give rise to pDCs and lymphocytes, such as T cells, B cells, and NK cells. A distinct
macrophage lineage is derived from embryonic precursors and mainly generates tissue-resident
macrophages and Langerhans cells, which can also be replaced over time by bone marrow monocyte-
derived macrophages in different tissues, especially under inflammatory conditions. Tissue-resident
macrophages maintain tissue homeostasis and are poor inducers of naïve T cells but are potent
activators of B cells and are efficient at clearing apoptotic cells. Although LCs are categorized with
macrophages on an ontogeny basis, they display many functional activities that overlap with cDCs.
Monocyte-derived DCs (MoDCs), also known as inflammatory DCs (iDCs), are potent producers of
TNF/iNOS (TIP) and are prominent at the site of inflammation. They typically execute functions in
the tissues, such as antigen presentation to T effector cells, eradication of pathogens, and cytokine
production. Stages at which key growth factors have been determined to be essential are indicated.
MDP, macrophage and DC progenitor; Pre-pDC, pre-plasmacytoid DC; Pre-cDC, pre-conventional
DC; cDC1, conventional type I DC; cDC2, conventional type II DC; GM-CSF, granulocyte-macrophage
colony-stimulating factor; M-CSF, macrophage colony-stimulating factor; FLT3-L, Fms-like tyrosine
kinase 3 ligand.

During DC development and differentiation, growth factors, such as granulocyte-
macrophage colony-stimulating factor (GM-CSF), Fms-like tyrosine kinase 3 ligand (Flt3-L),
and macrophage colony-stimulating factor (M-CSF), are needed [23] (Figure 1). Flt3-L,
which binds to the receptor Flt3, a protein tyrosine kinase receptor expressed especially
in DC progenitors in the BM, is the most important growth factor involved in DC lineage
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diversification. Previously, it was shown that Flt3-L/Flt3 signaling is vital for developing
and differentiating pDCs and cDCs in vitro [14,24,25]. Moreover, the in vivo role of Flt3 in
DC development was demonstrated in Flt3-L deficient mice that showed severe insuffi-
ciency in DCs, and, to a lesser extent but also apparent, in mice deficient in their receptor
CD135 (Flt3) or challenged with inhibitors of CD135 [26,27]. GM-CSF is another growth
factor that is also involved in DC differentiation (Figure 1). GM-CSF is not necessary for
steady-state DC differentiation, as demonstrated by a slight reduction in the number of DCs
in mice lacking GM-CSF or GM-CSF receptors [28]. However, GM-CSF plays a crucial role
in developing CD103+ CD11b+ DCs in the lamina propria, which is severely compromised
in GM-CSF and GM-CSFR deficient mice [29]. In vitro, GM-CSF is a key factor for DC
development from BM in mice and human monocytes while hindering the growth of pDCs
in a STAT5-dependent manner [30]. On the other hand, M-CSF, which has a significant
role in developing macrophages and monocytes, also participates in pDC differentiation
from MCSFR+ precursor cells in the BM [31] (Figure 1). Nevertheless, despite the reduced
levels of Langerhans cells (LCs) and monocytes in mice deficient in M-CSF and its receptor,
no variations in the DC levels of lymphoid organs were noticed [32]. Moreover, M-CSF is
necessary for the normal development of CD103–CD11b+ DCs in nonlymphoid tissues and
can sustain the differentiation of pDCs and cDCs in the absence of FLT3 in cell culture [33].

3. Dendritic Cell Subsets

DCs were initially categorized into lymphoid and myeloid subsets, but this taxon-
omy does not precisely replicate each DC subgroup’s developmental origins (discussed
previously [34]). Later, DC subgroups were classified based on their function, but DC
plasticity, once again, defies rigid functional categories. In recent years, a new and simpler
ontogeny classification scheme has emerged (reviewed previously in [35]), which is often
associated with function (Figure 1). This categorizes DCs and related myeloid lineages
into plasmacytoid DCs (pDCs), conventional (also identified as classical) DCs (cDCs),
monocyte-derived DCs (MoDCs), and Langerhans cells (LCs). See Table 1 for details of the
phenotypic markers that can be used to distinguish the different DC subtypes (Table 1). As
the center of this report is DC-dependent type 1 diabetes treatment, here, we do not discuss
the different DC subtypes, as the details are presented elsewhere [36–38].

Table 1. Phenotypic markers of dendritic cell subsets.

DC Subset DC Type Human Mouse Transcriptional TLR Antigen Major

Markers Markers Factors Presentation Cytokines

pDC Lymphoid- CD123+ CD11b− TCF4 1, 2, 4 Poor Type I IFN
resident DC CD303+ CD11c+ IRF8 6, 7, 8, 9

CD304+ CD45RA+ E2.2
ILT3+ SIGLEC-H+

ILT7+ CD8α+

DR6 CCR7+

cDC1 Lymphoid- CD141+ CD11b− BATF3 1, 2, 3, 4 Cross presentation L-12p70
resident DC Clec9a+ CD11c+ IRF8 6, 8, 9, 10 on MHC-class I IFN-λ

CADM1+ CD103+ ID2
CXR1+ CD45RA− NFIL3
BTLA+ CD8α+

CD11b− CXR1+

cDC2 Migratory DC CD11b+ CD11b+ IRF4 2, 4, 5 Presentation on ?
CD11c+ CD11c+ PU.1 6, 7, 8, 9 MHC-class II
CD1c+ CD45RA− Notch2
SIRPα+ SIRPα+

Clec4a+ CD4+

Clec10a+ CD8α−

CX3CR1+ CX3CR1+
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Table 1. Cont.

DC Subset DC Type Human Mouse Transcriptional TLR Antigen Major

Markers Markers Factors Presentation Cytokines

Monocyte- Induced by CD11c+ CD11b+ KLF4 1, 2, 3 Cross presentation TNF/iNOS
derived DC inflammation CD1a+ CD11c+ IRF8 4, 5,7, 8

CD1c+ LY6C+ PU.1
SIRPα+ CD8α−

CD206+ CCR2+

Langerhans Migratory DC CD1a+ CD11b+ ID2 1, 2, 3 Presentation of IL-10
cells CD207+ CD45RA− RUNX3 5, 6, 10 self-antigens for

CD123+ CD8α− β-catenin tolerance
induction

TROP2+ CXCL10+

DC, dendritic cell; TLR, toll-like receptor; pDC, plasmacytoid DC; ILT3, Immunoglobulin-like transcript 3; DR6,
Death receptor 6; SIGLEC-H, sialic acid-binding immunoglobulin-like lectin H; CCR7, C-C motif chemokine
receptor 7; TCF4, transcription factor 4, IRF8, interferon regulatory factor 8; IFN, interferon; cDC1, conventional
DC1; clec9a, C-type lectin-like receptor member (Clec) 9a; CADM1, Cell adhesion molecule 1 gene; CXR1, CX-
chemokine receptor 1; BTLA, B- and T-lymphocyte attenuator; BATF3, basic leucine zipper transcription factor
ATF-like 3; ID2, DNA binding protein inhibitor 2; NFIL3, nuclear factor interleukin 3 regulatory protein; MHC,
major histocompatibility complex; IL-12, interleukin 12, cDC2, conventional DC2; SIRPα, signal regulatory protein
alpha; CX3CR1, CX3C- chemokine receptor 1; Notch2, neurogenic locus notch homolog protein 2; KLF4, kruppel-
like factor 4; TNF/iNOS, tumor necrosis factor/induced nitric oxide synthase; TROP2, Trophoblast cell surface
antigen 2; CXCL10, C-X-C motif chemokine ligand 10; ID2, Inhibitor of DNA binding 2; RUNX3, RUNX family
transcription factor 3.

4. Dendritic Cell Plasticity

Besides discovering DCs in 1973, Ralph Steinman and colleagues also highlighted
their function in innate and adaptive immunity [39]. DCs are the most professional cell
types that acquire and process antigens from pathogens and present them to the im-
mune system [40,41]. The maturation status (immature, semimature, or fully mature) of
DCs (Figure 2) governs the type of immune response generated to the presented anti-
gen/peptide [42]. These three DC states have a series of independent special functions that
enable them to exert different outcomes on the immune system.

Most DCs reside within the body in a so-called immature state (Figure 2). These im-
mature DCs (iDCs) are usually regarded as tolerogenic DCs (tDCs). In this state, iDCs lack
many features and processes that lead to a strong T cell response, such as increased MHC
presentation, the expression of costimulatory molecules (CD80, and CD86), and the pro-
duction of inflammatory cytokines, like IL-12, IL-23, and TNF-α, whereas they are efficient
at detecting and sequestering antigens [43]. They can accumulate MHC class II molecules
in the late endosome-lysosomal compartment and have their own set of chemokine recep-
tors (for example, CCR7), anabling them to home to lympoide tissues [44,45]. Antigen
recognition is carried out through different PRRs, such as Toll-like receptors (TLRs) and
NOD-like receptors (NLRs), or indirectly through FcRs and complement receptors (CRs),
which recognize antigen–antibody complexes and complements, respectively [46–48]. The
main functional feature of iDCs is their endocytic and phagocytic ability, which occurs
continuously under steady-state conditions [49]. As iDCs have reduced surface expression
of costimulatory molecules, little chemokine receptor expression, and are deficient in re-
leasing immunostimulatory cytokines, they induce immune tolerance through T effector
cell anergy and the expansion of regulatory T cells. This immune tolerance is actively
initiated and sustained by a combination of immune checkpoint pathways and the absence
of costimulatory signals induced by DCs [50]. Immune checkpoint pathways are multiple
inhibitory cascades that are essential for maintaining self-tolerance and regulating the dura-
tion/magnitude of the immune reaction. For example, DC-based ligands, such as CTLA-4
and programmed cell death protein ligand 1 (PD-L1), result in T cell unresponsiveness or
immunosuppressive T cell differentiation [51].
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Figure 2. The classical scheme of different dendritic cell states in T cell tolerance and immunity.
Dendritic cells (DCs) in the steady-state, i.e., in the absence of microbial or inflammatory signals,
are immature and can internalize exogenous antigens and process them for MHC class-II-mediated
presentation. However, they are devoid of strong upregulation of costimulatory molecules (CD80,
CD86), MHC-class II, and proinflammatory cytokines; therefore, they cannot prime immune re-
sponses. Partial maturation results in elevated levels of costimulatory molecules and MHC-class
II, but a lack or reduced level of proinflammatory cytokines gives rise to a DC population called
semi-mature DCs. This population of DCs can be induced by lactobacilli from the gut flora, apoptotic
cells, IL-6, or TNF-α. Both immature and semimature DCs prompt T-cell immune tolerance. Full DC
maturation can be induced by extraneous factors, such as microbial or inflammatory signals, leading
to downregulation of antigen acquisition and the antigen-processing ability, increased expression of
CD80, CD86, and MHC-class II, and elevated levels of proinflammatory cytokines. All of these events
result in T-cell priming and an increase in immunogenicity. TNF-α, tumor necrosis factor-alpha;
IL-6, interleukin-6; MHC, major histocompatibility complex; PAMPS, pathogen-associated molecular
patterns; DAMPS, damage-associated molecular patterns; CCR7, C-C chemokine receptor type 7.

Under steady-state conditions, most DCs in peripheral tissues display an immature
phenotype in the absence of inflammatory or microbial signals. However, under certain
conditions, such as in the presence of lactobacilli from the gut flora [52], intranasally applied
ovalbumin (OVA) [53], apoptotic cells [54], or TNF-α [55], immature DCs can differentiate
into an intermediate subset of DC maturation, called the semimature state (Figure 2). This
subset of DCs has high expression of costimulatory molecules and MHC-class II; however,
they are deficient in producing elevated levels of proinflammatory cytokines, such as
TNF-α, IL-1β, IL-6, IL-12p40, and IL-12p70. In one study, it was shown that semimature
DCs can be generated in an IL-6 dependent manner by treating bone-marrow-derived DCs
(BMDCs) with the commensal bacterial strain Bacteroides vulgatus [56]. In line with this
finding, similar outcomes have been observed with DNA-matured DCs in experimental
collagen-induced arthritis [57], TNF-α-matured DCs in a murine model of thyroiditis [55],
MyD88-silenced DCs, and LPS-matured DCs following intestinal allograft transplantation
in a rat model [58].

In contrast to immature and semimature DCs, dangerous environmental signals (in-
cluding inflammatory cytokines and microbial ligands) transform immature and semima-
ture DCs into a fully mature state, where they are known as mature DCs (mDCs) (Figure 2).
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Maturation is related to a reduced antigen-capture ability, increased antigen processing and
presentation via elevated expression of MHC class II, greater capacity to migrate to T-cell-
rich areas, such as draining lymph nodes through the acquisition of the chemokine receptor
CCR7, and increased ability to prime naïve T cells via enhanced cytokine production and
costimulatory molecule expression [59]. The production of cytokines by mDCs is a vital
component of the immune response, because these signaling molecules are indispensable
to the differentiation of T cells. Moreover, ligation of the costimulatory receptor CD40
(also known as TNFRSF5) on DCs to CD40L on T cells is an important signal used to
differentiate iDCs into full mDCs that can initiate adaptive T-cell-mediated immunity [60].
The interaction of antigen-specific T cells with mDCs leads to naïve T cell priming and
subsequent differentiation into effector T cells with unique functions and cytokine profiles
capable of initiating antigen-specific responses [61]. The crosstalk between mDCs and
CD4+ T cells may result in the differentiation of CD4+ T cells into diverse T helper (Th)
subpopulations, such as Th1 [62], Th2 [63], Th17 [64], or other CD4+ T cell subsets [65].

5. Metabolic Changes in DC during Development, Rest, and Activation

Growing evidence has emerged over recent years to support the notion that cellular
metabolism is not only required to fulfill the energetic and biosynthetic demands that arise
when immune cells switch from a quiescent to an activated state, but it also impacts or
even dictates immune cell subset and function, activation, and differentiation, including
DCs [66]. ATP, the main carrier of energy in cells, is generated by glycolysis and oxidative
phosphorylation (OXPHOS), a process that involves metabolite intermediates. The latter
are not only substrates for downstream biochemical reactions but can also act as signals
that influence gene expression and, therefore, the outcome of the immune response. The
generation of DCs from progenitor cells is linked to lipid metabolism and mitochondrial
biogenesis, which are triggered by the peroxisome proliferator-activated receptor (PPAR)
and PPAR co-activator 1 (PGC1) and aided by PPAR, mTOR, and MYC signaling [67,68].
Although pre-cDC1s and pre-cDC2s differentiate into immature cDC1s and cDC2s with
unique transcriptional patterns, little was known about the metabolic distinction between
cDC1s and cDC2s until recently. Studies of conventional DCs showed that the mitochon-
drial mass and membrane potential of cDC1s are greater than those of cDC2s [69] and
that cDC1s display much greater oxidative phosphorylation (OXPHOS) than DC2s [70].
Overall, these data indicate that cDC1s and cDC2s have different metabolic profiles that
are reflective of their distinct immune functions. Interestingly, during Flt3L-induced dif-
ferentiation of bone-marrow-derived DCs (BMDCs), inhibition of AMP-activated kinase
(AMPK) or fatty acid oxidation (FAO) was shown to promote cDC2 differentiation. How-
ever, DC differentiation was tilted toward the generation of cDC1s when reactive oxygen
species (ROS) were inhibited [69]. Another research group found that depleting Tsc1 (a
negative regulator of mTOR signaling) lowers the levels of cDCs and pDCs in vivo and
leads to the differentiation of FLT3L-stimulated bone marrow cells into cDCs and pDCs,
which is associated with dysregulated mitochondrial respiration, fatty acid synthesis, and
glycolysis [71].

Differentiated DCs reside in peripheral tissues in a relatively quiescent or immature
state (iDCs). Fatty acid oxidation (FAO) is the core metabolic pathway involved in iDCs.
When triggered by immunosuppressive signals such as IL-10 [72] or IL-27 [73], tissue-
resident iDCs can differentiate into tol-DCs. There is increasing evidence that metabolic
programming underlies the tolerance of DCs. However, in tol-DCs, in contrast to the iDCs,
cellular metabolism switches toward active oxidative phosphorylation (OXPHOS) with a
reduction in glycolysis and maintenance of a high level of catabolic metabolism [74]. Previ-
ously, it was shown that tol-DCs’ regulatory activities are disrupted by FAO and OXPHOS
inhibition and partially restore their immunostimulatory function [75]. On the other hand,
activation of DCs (maturation) by Toll-like receptor (TLR) agonists, such as lipopolysac-
charide (LPS), CpG or Poly(I:C), or by type I interferon (IFN), induces a metabolic switch
from OXPHOS to glycolysis [76,77]. This results in an immediate increase in glycolytic flux



Int. J. Mol. Sci. 2022, 23, 4885 8 of 22

via the associated pentose phosphate pathway, which is accompanied by increases in the
spare respiratory capacity and fatty acid synthesis. Pharmacological blockade of glycolysis
with 2-deoxyglucose (2-DG) results in the inhibition of DC maturation, as demonstrated
by lower expression of costimulatory molecules (CD40 and CD86) and MHC-II as well
as reduced DC survival [78]. Therefore, tolerogenic properties of DCs seem to rely less
on glycolysis and more on OXPHOS. Moreover, this switch to glycolytic metabolism was
found to be initiated by the activation of TANK-binding kinase 1 (TBK1), IκB kinase-ε
(IKKε), and AKT, a pathway downstream of TLRs, which is crucial for DC migration and
activation [79]. After being activated, DCs remain glycolytic by increasing the glycolysis
components, including pyruvate kinase 2 (PKM2), lactate dehydrogenase (LDH), and
phosphofructokinase (PFK). Other reports have shown that, in IL-10-induced tolerogenic
DCs, the activation of AMPK by IL-10 impedes LPS-induced DC glycolysis and maturation,
raising the notion that extrinsic paracrine signaling pathways might promote the formation
of an immunotolerant milieu by altering DC metabolism [76]. Taken together, these studies
imply that different metabolic profiles in DCs are crucial drivers of differential DC functions.
Since therapy is a promising avenue to treat autoimmune diseases such as T1D, dissection
of the immunometabolic mechanisms underlying DC immunogenic versus tolerogenic
functions will open new tolerogenic DC-based therapeutic avenues for the treatment of
autoimmune diseases like T1D.

6. Type 1 Diabetes and Dendritic Cells

Although beta cell dysfunction and beta-cell-targeted autoimmune processes are
known to be involved in T1D, the precise etiology and pathological mechanisms are still
largely yet to be elucidated. There are substantial data indicating that, in both humans
and animal models of T1D, T cells are the major player involved in the development and
progression of this disease. The loss of insulin-producing beta cells is mainly facilitated
and orchestrated by CD8+ and CD4+ T cells specific to beta-cell antigens [80]. These T cells
employ an array of processes to induce beta-cell destruction. CD8+ T cells can eliminate
pancreatic beta cells via MHC class-I mediated cytotoxicity, while both CD8+ and CD4+

T cells secrete the inflammatory cytokine IFN-γ, thereby inducing the expression of the
death receptor FAS (also called CD95) and the beta-cell production of chemokines [81].
Activation of FAS signaling through its binding to the FAS ligand expressed by activated
diabetogenic CD4+ T cells can trigger beta-cell apoptosis [82]. Moreover, IFN-γ can induce
macrophages to augment their secretion of proinflammatory cytokines, such as TNF-α
and IL-1β. Compared with other endocrine cells in islets, beta cells express excessive
levels of IL-1 receptors and tend to be more vulnerable to IL-1β-induced apoptosis through
FAS induction. This crosstalk between macrophages and T cells undoubtedly aggravates
immune-mediated beta cell stress and adds to their destruction.

In the early stages of diabetes, however, inflammation is characterized by an influx
of DCs [83] into the islets in response to an anomaly that has yet to be identified, such as
impaired islet architecture remodeling via apoptosis, cross-presentation of endogenous
peptides in response to viral pathogens, or superantigen-driven immune responses [36,84].
Several studies have unveiled that DCs are responsible for inducing pathogenic beta-cell-
specific T cells by presenting beta-cell antigens [85,86]. DCs and macrophages are the
earliest detectable immune cells in the islets of the T1D animal model nonobese diabetic
(NOD) mice at the age of 3 to 4 weeks [81,87]. Diana et al. demonstrated that IFN-γ
producing plasmacytoid dendritic cells are recruited to the pancreas where they initiate
diabetogenic T cell responses and the development of T1D in NOD mice [88]. Another
study showed that NOD mice engineered to express TNF-α specifically in beta-cells using
the rat insulin promoter exhibit increased DC accumulation in the islets which, in turn,
present beta-cell antigens to CD4+ T cells, followed by massive destructive insulitis and
the promotion of diabetes onset [89]. Several other studies also reported the pathological
relevance of DCs in the induction and maintenance of T1D [90–92] (previously reviewed
in [93]).
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Numerous lines of evidence have revealed DC defects in the immunopathogenesis
of T1D. It was shown that DCs derived from NOD mice and bio-breeding (BB) rats are
dysfunctional in aspects ranging from the overactivation of DCs [85,94,95] to DC hypo-
functionality [96,97]. Despite some recent studies indicating that possible deficiencies may
also exist in humans [98,99], the response of diabetic patients to infection, recall to vaccine
antigens, or capacity to induce hypersensitivity does not display any significant impair-
ment [100,101], thereby creating more obscurity about potential defects in the development
and function of DCs.

7. Dendritic Cell-Targeted Therapies for Treating T1D

In recent decades, our understanding of the immune system has made great strides
and powerful therapeutic tools have been developed, notably targeted antigen delivery
to DCs, fusion proteins, and monoclonal antibodies against countless receptors expressed
on T cells and a series of cytokine milieus that have begun the era of targeted immune
therapy. The fact that DCs play a pivotal role in inducing and maintaining self-tolerance
makes them a desirable target for therapeutic intervention. Interestingly, a variety of
immunosuppressive agents have been explored to treat T1D (reviewed previously in [102]).
In this review report, we only highlight those interventions that have been examined for
their effects on DC maturation and ability to treat T1D, which will likely broaden our
knowledge in the field.

7.1. Costimulation Blockade

Costimulation is a crucial second signal that primes T cells after the first exposure to an
antigen and is the link between adaptive and innate immunity. APCs, such as DCs, process
and display antigen-derived peptides to the T-cell receptor (TCR) through the MHC peptide
complex. However, in the absence of costimulation, T cells become unresponsive or may
undergo apoptosis (Figure 3). DC surface receptor costimulatory molecules, for example,
CD80/CD86 (also identified as B7-1 and B7-2), produce the necessary signals to initiate
the induction and differentiation of naïve T cells and may inhibit immune tolerance, as
occurs in T1D. CD80/CD86 can bind to CD28 on T cells (for autoregulation and intercellular
association) as well as CTLA-4 produced by T cells (to attenuate immune suppression and
cellular disassociation). The first drug targeting the binding of the CD80/CD86 costimula-
tory pair to CD28 was the fusion protein CTLA4-Ig, later identified as abatacept [103], a
drug that has already been approved for treating rheumatoid arthritis patients [104,105].

Abatacept is a chimeric protein made up of the human CTLA-4 receptor conjugated
with the modified Fc part of human IgG1 that is used as a decoy receptor for CD80/86
and prevents CD28-induced coactivation. The TrialNet research team studied the efficacy
of abatacept in newly onset T1D patients (6–45 years old), in which the treatment group
received 27 infusions of abatacept within a 2-year period [106] (Table 2). At the end of the
treatment period, patients receiving abatacept showed significant C-peptide preservation
compared with the placebo group (59% higher, p = 0.0029) after 24 months. However,
after 6 months, preservation of the C-peptide declined, reaching the placebo level despite
continuous treatment for 2 years. Investigation of peripheral T cell subpopulations by flow
cytometry showed that naïve CD4+ T cells of abatacept-treated patients were moderately
but significantly amplified, while the concentration of central memory CD4+ T cells de-
creased, and this seemed to be related to the preservation of the C peptide [107] (Table 2).
Of some concern was a parallel and considerable reduction in the Treg cell percentage
from baseline at 6, 12, and 24 months [107], which may have contributed to the finding
that C-peptide responses started to decline soon after treatment began but at a slower
rate than in the placebo group [106]. This decrease in Tregs can be attributed to the fact
that Tregs, like other T cells, require costimulation to develop and exert their suppressive
function [108]. Recently, it was demonstrated that this reduction in C-peptide preservation
was associated with the transient elevation of activated B cells (that bind to abatacept) and
reduced inhibition of anti-insulin antibodies [109] (Table 2).
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cells support the tolerogenic potential of dendritic cells. DCs can be made tolerogenic by targeted
delivery of self-antigens by coupling them to antibodies raised against specific dendritic cell receptors,
such as the DEC-205, or by targeted delivery via microparticles. Other potential therapeutic strategies
aim to limit the immunogenicity of DCs by impeding their production of inflammatory cytokines
or by reducing their expression levels of costimulatory molecules and, therefore, the induction of
effector T cell responses. Most of these approaches implicate the usage of monoclonal antibodies,
which target molecules that are selectively expressed by DCs. DEC-205, decalectin-205; MHC, major
histocompatibility; TCR, T cell receptor; Tregs, regulatory T cells; Teff, T effector cells; IL, interleukin;
TNF-α, tumor necrosis factor-alpha.

Similarly, since CTLA-4 on the cell surface may be the main mechanism by which
Tregs regulate APC function [110], there are still unresolved issues regarding the outcome
of continuous therapy with soluble CTLA4-Ig on Treg functionality. Nonetheless, the
abatacept trial conducted in T1D patients provided essential preliminary insights into the
potential costimulatory blockade in T1D and is worthy of further investigation. A trial
assessing the ability of abatacept in combination with rituximab (anti-CD20 monoclonal an-
tibody) to prevent T1D in at-risk patients is currently ongoing (ClinicalTrials.gov identifier
NCT03929601).

7.2. Blocking Cytokine Production

Cytokines produced by DCs activate and educate T cell differentiation and migration.
When mature, DCs release a series of potent proinflammatory molecules, such as IL-12,
IL-1, TNF-α, and IL-6 (Figure 3), which have been shown to have potent roles in T1D
development [110]. Inhibiting the secretion of these molecules can induce noticeable
changes in the preservation of pancreatic beta cell function [111].

The proinflammatory cytokines IL-1α and IL-1β, produced by DCs and/or macrophages,
are potent immunomodulators that play key roles in pancreatic beta cell destruction [112,113].
IL-1 acts directly on beta cells, damaging the production and release of insulin and pro-
moting cytokine- and hyperglycemia-induced beta-cell death [114]. In rodent models, it
has been shown that IL-1 blockade results in slow progression and impairs the initiation
of T1D [115]. IL-1 has been therapeutically targeted in a clinical trial in children newly
diagnosed with T1D [116] (Table 2). In this clinical trial, fifteen children within 1 week of
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diagnosis of T1D received a daily IL-1 antagonist (Anakinra) for 28 days and were moni-
tored for 6 months. The results demonstrated some significant outcomes in the protection
against newly diagnosed T1D. Additional clinical trials in T1D patients also showed that
IL-1 inhibition can induce pancreatic beta-cell preservation [117] (Table 2).

TNF-α is another well-known cytokine produced by DCs that acts as an intermediate
molecule in autoimmune diseases. This cytokine is produced during the inflammation pro-
cess and can trigger signaling cascades related to cell survival, the inflammatory response,
apoptosis, and cell differentiation. The cytokine TNF-α binds to the receptor’s TNF-R1
and TNF-R2 to initiate its responses. The TNF-R1 receptor has a death domain, while
TNF-R2 does not, but it can exacerbate the cytotoxic effect of TNF-R1. As a result of infec-
tion and inflammation, TNF-α is mainly released by immune cells, such as lymphocytes
and DCs [118,119]. The binding of TNF-α with the TNF-R1 receptor can enhance NF-κB
activation or activate the caspase pathway, which plays an essential role in the execution
of programmed cell death or apoptosis [120]. NF-κB triggers the expression of genes that
code for cytokines (e.g., INF-γ, IL-1, TNF-α, IL-6, IL-12, and IL-2) as well as the expression
of molecules that regulate cell cycle progression, cell proliferation, and apoptosis, such as
TNF-receptor-associated factor 1 (TRAF-1), TRAF-2, cellular inhibitor of apoptosis protein 1
(c-IAP1), c-IAP2, B-cell lymphocyte/leukemia-2 (Bcl-2), Fas, c-myc, and cyclin D1 [121,122].
Therefore, the blockage of TNF-α has been investigated as a therapeutic target in a clinical
trial aimed at prolonging the endogenous release of insulin in pediatric patients newly
diagnosed with T1D [123] (Table 2). This clinical trial was a randomized, double-blind,
and placebo-controlled 24-week study in which eighteen patients (11 males and 7 females,
aged 7.8–18.2 years) were randomly assigned to receive either etanercept (recombinant
TNF-α receptor–IgG fusion protein) or a placebo. This pilot study demonstrated improved
beta cell mass preservation (measured by the C-peptide levels) and reduced glycated
hemoglobin levels.

One of the other important cytokines involved in autoimmune inflammation is IL-
6. IL-6 can be released by a variety of cell types, including dendritic cells [124]. The
pathological function of IL-6 in T1D is related to the IL-6R–gp130–STAT3 signaling axis.
Signal transduction through this pathway is crucial for the differentiation of Th17 cells and
inhibition of Treg cell development by inhibiting FOXP3 expression [125]. In a subset of
T1D patients, IL-6 was found to be overexpressed [126], and as a result, anti-IL-6 therapy
was initiated. The clinical trial EXTEND (clinical trial NCT02293837) investigated whether
blocking IL-6 signaling (tocilizumab, anti-IL-6 receptor antibody) can provide improved
beta-cell function in T1D patients. They found that, in newly diagnosed T1D patients,
tocilizumab lowered T cell IL-6R signaling but unfortunately did not prevent the loss of
residual beta cell function [127] (Table 2).

Another proinflammatory cytokine produced by antigen-presenting cells in response
to PAMPs and DAMPs is IL-12. It is mainly released by DCs and phagocytes (mono-
cytes/macrophages and neutrophils) in response to pathogens (viruses, bacteria, intracel-
lular parasites, and yeast-like fungi) [128,129]. It induces immune response polarization
toward the Th1 profile by inducing IFN-γ expression [130,131]. This cytokine is also con-
sidered a possible target for T1D therapy. In a clinical trial, T1D patients were tested for
the application of Ustekinumab (IL12/23 blocking molecule) (ClinicalTrials.gov identifier
NCT02117765) [132] (Table 2).

7.3. In Vivo Targeting of DCs

Generally, these types of therapy involve the use of agents that are deliberately targeted
to a specific subset of DCs, but these methods can also include approaches that work by
altering the local DC environment, although not directly targeting DCs (Figure 3). Treatment
of NOD mice with nanoparticles (NPs) containing short antisense primary transcripts of the
costimulatory molecules CD40, CD80, and CD86 has been shown to downregulate targeted
receptors, induce a tolerogenic phenotype in DC populations, and prevent and/or reverse
T1D [133]. The use of antigen-linked antibodies against the endocytic receptor DEC-205
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(Figure 3) to deliver islet-specific antigens to DCs has been proven to be a promising strategy
for treating T1D in NOD mice. Previously, DEC-205 was used to supply an IGRP206–
214 mimotope to DCs to investigate its impact on highly diabetogenic T cells in NOD
mice [134]. This study showed that IGRP206–214-loaded DCs significantly reduced the
percentage and absolute number of diabetogenic IGRP-specific CD8+ T cells in pancreatic
islets independently of the PD-1/PD-L1 pathway, resulting in the protection against T1D.

In a recent study, ~1 µm phagocytosable polylactic acid-glycolic acid ethanol (PLGA)
microparticles (MPs) (Figure 3) were used to deliver tolerance-promoting factors such as
vitamin D3, TGF-β1, GM-CSF, and T1D-specific autoantigen insulin to DCs to reprogram
autoimmune responses and prevent autoimmunity [135]. This MP system successfully
prevented 60% of prediabetic NOD mice from developing T1D by increasing the number of
tDCs and the Treg cell population. Similarly, in another recent study, a targeted nanoparticle
delivery system was used to deliver the antigen heat shock protein 65-6 × P277 (H6P)
directly to the intestinal DCs of NOD mice through oral vaccination. This delivery system
facilitated increased H6P uptake by DCs in gut Peyer’s patches and promoted the induction
of the Th2 immune response and Treg upregulation, resulting in full protection from
diabetes [136].

7.4. Ex Vivo Generation of Tolerogenic DC

Various methods aimed at controlling DC phenotypes have been explored to ensure
that they retain a tolerogenic function and drive tolerance rather than immunity (reviewed
previously [137]). These methods include challenging DCs with cytokines such as IL-
10 [138], IL-10/TGF-β [139], TSLP [140], GM-CSF [141], pharmacological agents such as
dexamethasone and vitamin D3 [142], carbon monoxide (CO) [143], anti-CTLA-4 anti-
body [144], and secretory IgA [145], among others. Generally, treating DCs with these
agents results in an immature or semimature phenotype characterized by lowered expres-
sion of costimulatory molecules, and reduced production of inflammatory cytokines. These
tolerogenic DCs secrete anti-inflammatory cytokines, like IL-10 and TGF-β, and a metabo-
lite called IDO that inhibits effector T cell activation and DC maturation. They are also
involved in the induction of the Treg differentiation (Figure 4). We previously reported that,
in comparison with immunogenic BMDCs generated with GM-CSF and IL-4 (IL-4/DCs),
BMDCs generated with GM-CSF (GM/DCs) acquire the signature of tolerogenic IL-10-
producing DCs [146]. These GM/DC populations display an immature phenotype with
a slight upregulation in CD80 but not CD86, CD40, or MHC-II expression and produce
high levels of IL-10 and lower amounts of IL-12p70. GM/DCs also show a diminished
ability to trigger diabetogenic CD8+ T cells to proliferate and effectively induce Treg con-
version and expansion. Further research from our laboratory showed that, compared with
immunogenic IL-4/DCs, the tolerogenic GM/DC subset alters the cytokine environment
from Th1 toward Th2 cytokines and effectively prevents diabetes when injected into NOD
mice [146–148]. In line with these results, we further confirmed, through in vitro studies,
that NOD DCs genetically modified to express the active form of the Stat5b TF that mediates
GM-CSF/GM-CSFR signaling acquire the signature of tolerogenic DCs [149,150]. These
tolerogenic DCs were shown to be efficient at providing protection against T1D through an
increase in the Treg pool and suppressive activity as well as through the promotion of Th2
and Tc2 immune responses.

Tolerogenic DCs have also been used in vitro to expand Treg cells, which can be
adoptively transferred into patients to suppress or prevent inflammatory responses and
autoimmunity. Tregs constitutively expresses the surface marker CTLA-4, which can
interact with the DC costimulatory molecules CD80 and CD86 to block the CD28-dependent
activation of effector T cells and activate the DC expression of IDO, TGF-β, and IL-10
(Figure 4), thereby further strengthening the tolerogenic phenotype of DCs [151].
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Figure 4. Schematic representation of dendritic cells and regulatory T cell interactions. Imma-
ture/semimature DCs secrete IDO impeding DC maturation as well as anti-inflammatory cytokines,
such as IL-10 and TGF-β, inhibiting effector T cell activation. Immature/semimature DCs also give
rise to Tregs, which contribute to immune tolerance by blocking the priming of effector T cells directly
via IL-10 and TGF- β or indirectly through interactions with DCs and by blocking their maturation
with the help of CTLA-4. CTLA-4 expressed on Treg has a higher affinity for CD80/86 molecules
expressed on DCs than CD28 molecules expressed on effector T cells, meaning that Tregs competes
with the effector T cells to bind CD80/CD86. DC CD80/CD86 and Treg-CTLA-4 interaction also
results in the secretion of IL-10 and IDO, which contributes to the restraint of DC maturation. Treg
can also preferentially sequester the T-cell proliferation factor IL-2 due to the high expression of
constitutive IL-2R (CD25). The dotted line is used to emphasize that some differentiated Tregs use
the above mechanisms to suppress effector T cells activation and balance immunity and tolerance.
Tregs, regulatory T cells; IL-10, interleukin-10; TGF-β, tumor growth factor-beta; IDO, Indoleamine
2,3-dioxygenase.

Another approach using tolerogenic DCs for the prevention/treatment of T1D is to
use antisense oligonucleotides to downregulate costimulatory molecule expression (CD40,
CD80, and CD86) in DCs [152]. This approach has been found to substantially delay the
onset of diabetes in NOD mice by increasing the concentration of Tregs [152]. Based on
these encouraging data, a phase 1 clinical trial was initiated, which demonstrated the safety
and tolerability of these tailored tolerogenic DCs in established T1D patients [153] (Table 2).
A phase II follow-up clinical trial (ClinicalTrials.gov identifier NCT02354911) is currently
underway that uses tolerogenic DCs isolated from patients with newly diagnosed T1D. A
similar ongoing clinical study (ClinicalTrials.gov identifier NCT01947569) using tDCs with
impaired costimulation has also been registered.
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Table 2. Summary of the clinical trials mentioned in the text.

NCT Number Recruitment Status Study Date Completion Date Groups Outcomes Reference

NCT00505375 Completed February 2008 May 2012 Interventional

At the end of the treatment, patients receiving abatacept showed
significant C-peptide preservation compared with the placebo group
(59% higher, p = 0.0029) at 24 months. However, after 6 months,
C-peptide preservation declined to the placebo level, despite
continuous treatment for 2 years.

[106–109]

NCT03929601 Suspended February 2020 Ongoing Interventional Result not published.

NCT00645840 Completed March 2008 September 2009 Interventional

Anakinra-treated patients had similar glycated hemoglobin and
MMTT responses but lower insulin requirements 1 and 4 months
after diagnosis compared with controls and lower
insulin-dose-adjusted glycated hemoglobin 1 month after diagnosis.

[116,117]

NCT00730392 Completed October 2002 January 2008 Interventional

Treatment of pediatric patients newly diagnosed with type 1 diabetes
with etanercept resulted in lower glycated hemoglobin and increased
endogenous insulin production, suggesting the preservation of
beta-cell function.

[123]

NCT02293837 Completed March 2015 August 2020 Interventional
Tocilizumab reduced T cell IL-6R signaling but did not modulate
CD4+ T cell phenotypes or slow the loss of residual β cell function in
newly diagnosed individuals with type 1 diabetes.

[127]

NCT02117765 Unknown March 2015 June 2017 Interventional

Ustekinumab was deemed safe to progress to efficacy studies at doses
used to treat psoriasis in adults with T1D. A 90 mg maintenance
dosing schedule reduced proinsulin-specific IFN-γ and
IL-17A-producing T cells. Further studies are warranted to determine
whether Ustekinumab can prevent C-peptide AUC decline and
induce a clinical response.

[132]

NCT00445913 Completed March 2007 February 2016 Interventional

Treatment with autologous dendritic cells in a native state or directed
ex vivo toward a tolerogenic immunosuppressive state is safe and
well-tolerated. Dendritic cells upregulated the frequency of a
potentially beneficial B220+ CD11c2 B-cell population, at least in type
1 diabetes autoimmunity.

[153]

NCT02354911 Unknown October 2015 January 2019 Interventional Result not published

NCT01947569 Unknown October 2013 November 2013 Interventional Result not published

NCT04590872 Recruiting April 2022 Ongoing Interventional Result not published



Int. J. Mol. Sci. 2022, 23, 4885 15 of 22

Previously, it was shown that naturally derived proinsulin peptide C19-A3 is safe
and capable of eliciting the immunoregulatory responses, such as the stimulation of IL-10
production and the increase of Tregs Foxp3 expression in type 1 diabetic patients [154].
Further studies showed that tolDCs presenting this peptide can induce proinsulin-specific
regulatory T cells [155]. Based on these exciting outcomes, a phase 1 clinical trial was
conducted in the Netherlands to assess the clinical safety and feasibility of proinsulin
peptide-loaded tolDCs in nine patients with longstanding type 1 diabetes [156]. After
tolDC therapy, all patients maintained tight glycemic control with constant HbA 1c levels
and unaltered insulin needs. Most importantly, there was no induction of allergic reaction to
insulin, no signs of systemic immune suppression, and no interference with insulin therapy,
suggesting that this immune intervention therapy is feasible and safe. A complementary
phase 1 follow-up clinical trial will also be conducted in the United States to investigate its
therapeutic potential and side effects in T1D patients who use insulin and have no other
diabetes-related health complications (Clinicaltrials.gov identifier: NCT04590872).

8. Future Views and Concluding Remarks

Given the exclusive nature of DCs found at the interface between innate and adaptive
immune responses, they provide target cells for clinical intervention in T1D patients.
Diverse DC subtypes use different transcription factors [157] so that these DC subtypes
can be embattled differently for immunomodulation. One can think of the possibility
of combining tDCs and Tregs as coimmunization or the serial administration of cellular
immunotherapy in autoimmunity, especially in newly onset T1D. The use of autologous
tDCs in conjunction with patient Tregs can stabilize Foxp3 expression and its genomic locus.
Because tDCs are often seen to release IL-10, TGF-β, and retinoic acid [158,159], stable Tregs
will, in turn, affect the tDC tolerance status through intercellular interactions and paracrine
immunomodulatory cytokines, which may result in much more effective and long-term
protection from diabetes.

Moreover, in cancer research, the area of DC-based vaccines is much more advanced,
and several clinical studies have already been carried out. Many characteristics of cancer
DC vaccines have been investigated, and it is obvious that features, such as the conditioning
regime of DCs, the antigen form used to pulse DCs, and the means of administration all
play vital roles in defining the end result of DC-based therapy. These features need to be
considered as more DC-based therapies for T1D treatment are proposed. Several clinical
trials have been conducted to induce antigen-specific tolerance in T1D patients [160]. These
trials employ islet-specific antigens, for example, GAD65, insulin, or hsp70, and have tested
multiple administration routes, such as oral, intranasal, and intradermal administration.
To date, despite the evidence of immune tolerance observed in some cases, these trials have
not had a significant impact on the disease [160]. It is predicted that the success of these
trials will depend on APCs, most likely DCs, targeted by these antigen formulations. At
present, in these trials, less attention has been given to the nature of antigen-presenting
DCs; therefore, a deeper understanding of how DCs affect the development of T1D will aid
in the advancement of novel therapeutic approaches.
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