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Resistance is the major cause of treatment failure and disease progression in non-small
cell lung cancer (NSCLC). There is evidence that hypoxia is a key microenvironmental
stress associated with resistance to cisplatin, epidermal growth factor receptor (EGFR)
tyrosine kinase inhibitors (TKIs), and immunotherapy in solid NSCLCs. Numerous studies
have contributed to delineating the mechanisms underlying drug resistance in NSCLC;
nevertheless, the mechanisms involved in the resistance associated with hypoxia-induced
molecular metabolic adaptations in the microenvironment of NSCLC remain unclear.
Studies have highlighted the importance of posttranslational regulation of molecular
mediators in the control of mitochondrial function in response to hypoxia-induced
metabolic adaptations. Hypoxia can upregulate the expression of sirtuin 1 (SIRT1) in a
hypoxia-inducible factor (HIF)-dependent manner. SIRT1 is a stress-dependent metabolic
sensor that can deacetylate some key transcriptional factors in both metabolism
dependent and independent metabolic pathways such as HIF-1a, peroxisome
proliferator-activated receptor gamma (PPAR-g), and PPAR-gamma coactivator 1-alpha
(PGC-1a) to affect mitochondrial function and biogenesis, which has a role in hypoxia-
induced chemoresistance in NSCLC. Moreover, SIRT1 and HIF-1a can regulate both
innate and adaptive immune responses through metabolism-dependent and
-independent ways. The objective of this review is to delineate a possible SIRT1/
PGC-1a/PPAR-g signaling-related molecular metabolic mechanism underlying hypoxia-
induced chemotherapy resistance in the NSCLC microenvironment. Targeting hypoxia-
related metabolic adaptation may be an attractive therapeutic strategy for overcoming
chemoresistance in NSCLC.
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INTRODUCTION

Lung cancer is the most commonly diagnosed malignancy and
the leading cause of cancer-related morbidity and mortality
worldwide. Non-small cell lung cancer (NSCLC) accounts for
approximately 80–85% of all histological subtypes of lung
cancer (1, 2). The main treatment options include surgery,
radiotherapy, and chemotherapy. Cisplatin, a potent DNA-
damaging anticancer agent, remains a cornerstone for
treating NSCLC, and its major pharmacological effect is to
induce cancer cell apoptosis (3, 4). Targeted molecular therapy
is increasingly recognized as a potent strategy in the treatment
of NSCLC. Epidermal growth factor receptor (EGFR) is a
tyrosine kinase receptor that meditates the proliferation,
migration, survival, and apoptosis of epithelial cells. Primary
mutations in the EGFR gene are the most common driver of
lung cancer initiation and progression. EGFR mutations are
detected in approximately 15% of all NSCLC patients and are
associated with the development of this disease (5, 6). Targeted
therapy with EGFR tyrosine kinase inhibitors (TKIs) has
achieved superior efficacy in terms of progression-free
survival and overall survival compared with conventional
chemotherapy in NSCLC patients with EGFR mutation.
Similarly, immunotherapy significantly prolongs survival in
some advanced or locally advanced NSCLC and extensive
SCLC in the past decade. Resistance to chemotherapies
remain a major cause of treatment failure and disease
progression in NSCLC patients (7).
DIFFERENT MECHANISMS OF
CHEMOTHERAPY RESISTANCE IN NSCLC

Several possibilities have been proposed to explain the
mechanisms underlying drug resistance to chemotherapy in
lung cancer (8–10), including alteration of drug transport; an
improved detoxification ability of the tumor itself; increased
DNA repair; regulation of resistance-related genes, the cell cycle,
and cell death; effector T-cell infiltration in the TME; epigenetic
modulation; and metabolic adaptations, et al. Drug efflux
transporter from the ATP-binding cassette (ABC) family and
the P-glycoprotein (P-gp) is associated with the expression of
multidrug resistance, which contribute to chemotherapy failure
by extruding drugs from tumor cells to the extracellular
Abbreviations: NSCLC, Non-small cell lung cancer; SCLC, Small cell lung cancer;
EGFR, Epidermal growth factor receptor; EGFR-TKIs, EGFR tyrosine kinase-
inhibitors; VEGF, Vascular endothelial growth factor; HDAC, Histone
deacetylase; SIRT1, Sirtuin 1; PGC-1a, Peroxisome proliferator—activated
receptor-g coactivator-1a;PPAR-g, Peroxisome proliferator activated receptor-g;
NAD+, Nicotinamide adenine dinucleotide; PPRE, PPAR-responsive element;
AMPK, Adenosine monophosphate activated protein kinase; HIF-1a, Hypoxia
inducible factor-1alpha; OXPHOS, Oxidative phosphorylation; ROS, Reactive
oxygen species; TME, Tumour microenvironment; EMT, Epithelial–
mesenchymal transition.
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compartments (11). The patterns of resistance in 1st and 2nd
generation EGFR-TKIs are largely overlapping and primarily
involved activation of the MAPK-PI3K pathway, cell cycle gene
alterations, rearrangements of RET or ALK kinases, and many
other genomic alterations, which lead to primary and acquired
resistance against EGFR-TKIs in lung cancer (Figure 1) (12).
Crucially, secondary acquired mutations in EGFR account for
approximately 50% of all cases of EGFR-TKI-related resistance
in NSCLC patients (13, 14). The complexity of the mechanisms
associated with acquired EGFR-TKI resistance in NSCLC has
been widely demonstrated (15), and can be grouped into kinase
domain mutations and overexpression of target oncogenes
within tumor cells (9). The EGFR T790M mutation is the
primary cause of drug resistance in 50–60% of instances, while
activating genomic alterations in other kinases, such as ALK,
ROS1, MET, RET, NTRK, and BRAF, have been validated as
targets in NSCLC therapy (Figure 1) (16). It is evident that
secondary (T790M) or tertiary (C797S) mutations are the main
factors responsible for the development of acquired
resistance (17).

Furthermore, resistance to immunotherapy in lung cancer
manifests as a lack of initial response or clinical benefit to
therapy (primary resistance) or tumor progression after
the initial period of response (acquired resistance). The
primary resistance prevents the infiltration or function of
immune cells in the TME, while Loss of T cell function may
be a potential mechanism for acquired resistance to
immunodetection point inhibitors (18, 19). In addition,
metabolic properties of non-small-cell lung cancers can
reprogram stromal cells to induce resistance to EGFR
inhibitors (11, 20). Cellular metabolism leads to a tumor
microenvironment (TME) that is commonly acidic, hypoxic
and/or depleted of critical nutrients required by immune
cells, which can alter the antitumor immune response and
even promote resistance to immunotherapy.

Hypoxia-related stress is a prominent microenvironmental
feature in solid tumors and is associated with angiogenesis and
acquired resistance to cancer chemotherapy. The hypoxic
environment in solid tumors results from, among other factors,
the rapid proliferation of tumor cells, leading to the depletion of
available oxygen (21, 22). Reduced oxygen levels in tumor tissues
result in the stabilization and accumulation of HIF-1a, which
plays a key role in the adaptive response of cancer cells to
hypoxia by modulating various cellular functions (23).
Hypoxia is widely associated with promoting chemoresistance
in tumor cells and maybe a potential target for NSCLC therapy.
EGFR overexpression and tumor hypoxia have been shown to
correlate with worse outcome in several types of cancer (24).
However, little is known about the mechanisms of resistance
associated with hypoxia-induced epigenetic changes and
molecular metabolic flexibility in the microenvironment of
drug-resistant NSCLC (25). A greater understanding of the
underlying molecular mechanisms of chemoresistance is still
needed to allow the elaboration of strategies to overcome drug
resistance (26). Herein, we summarize the literature relating to
the development of hypoxia-induced chemotherapy resistance in
July 2021 | Volume 11 | Article 682762
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NSCLC, focusing on the putative epigenetic and metabolic
microenvironmental mechanisms.
HYPOXIA-INDUCED CHEMOTHERAPY
RESISTANCE IN NSCLC

Hypoxia is an important factor in treatment resistance and poor
survival. Numerous studies have shown that hypoxia in the tumor
microenvironment is an important mediator of resistance to
chemotherapy through activating signaling pathways and
inducing metabolic changes (Figure 2). Hypoxia can affect drug
delivery, DNA repair, the regulation of resistance-related genes,
the cell cycle, and cell death-associated pathways, thereby
promoting chemoresistance and tumor malignancy (27–30).
The most likely explanation for hypoxia-induced cisplatin
Frontiers in Oncology | www.frontiersin.org 3
resistance is a reduced cellular susceptibility to apoptosis (31,
32). Recent studies have revealed that hypoxia can modulate
autophagy, thereby increasing cell survival and chemoresistance
(33, 34), including in lung cancer (35). Studies have suggested that
hypoxia can augment cisplatin-induced autophagy, and hypoxia-
induced autophagy contributes toward chemoresistance in
NSCLC cells (31, 35). EGFR-TKIs are reported to increase
hypoxia-induced autophagy and promote cell death (36, 37).
Crucially, hypoxia induces Hypoxia-inducible factors (HIFs)
stabilization and downstream signaling that play key roles in
cellular responses to hypoxia. The effect of hypoxia on cisplatin
resistance is mediated, at least in part, through HIF-1a and P53.
Exposure to hypoxia was shown to induce HIF-1a and P53
expression and promote reactive oxygen species (ROS)
generation and glycolysis in NSCLC A549 cells (38–40). High
glycolytic tumor metabolism can suppress immune function and
FIGURE 1 | The patterns in the development of drug-resistance NSCLC. NSCLC, Non-small cell lung cancer; EGFR, Epidermal growth factor receptor; EMT,
Epithelial–mesenchymal transition; ALK, Anaplastic lymphoma kinase; ROS1, receptor tyrosine kinase; Her-2, Human epidermal growth factor; PI3K,
phosphatidylinositol‐3‐kinase; RAS, Rat sarcoma; MET, Proto-oncogene receptor tyrosine kinase; RET, Rearranged during transfection; BRAF, B-Raf proto-oncogene.
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mediate tumor immune escape, which is associated with
resistance to chemotherapy (41). Recent experiments using
tumor cell lines also support that hypoxia-induced HIF-1a can
increase PD-L1 expression on tumor cells, via direct interaction
with a hypoxia-response element in the PD-L1 proximal
promoter to activate transcription (42). Hypoxia may also be an
important mediator of resistance to EGFR-TKIs via the
upregulation of FGFR1 and the MAPK pathway in the NSCLC
cell line H1975 (43).

A major consequence of EGFR signaling in hypoxic tumors
appears to be an enhanced induction of vascular endothelial
growth factor (VEGF); and the molecular mechanisms
underlying the link between EGFR signaling and VEGF
expression include both HIF-1a–dependent and independent
mechanisms. VEGF, a HIF-1a target gene, is modulated by
activation of several receptor tyrosine kinases, and EGFR
inhibition has been found to decrease VEGF expression in
many tumor types (44). HIF-1a transcriptionally regulates
VEGF expression and binds directly to the hypoxia-response
elements in the promoters of the VEGF-regulated genes. EGFR
has been implicated as a hypoxia-independent driver of HIFs
expression as inhibition of EGFR activation has been reported to
reduce HIF-1a protein translation in some cells. Recently, a
research has indicated that EGFR-mutant NSCLC cells display
a HIF-1a and VEGF-dependent phenotype and that in EGFR-
mutant NSCLC cells, EGFR, but not hypoxia, regulates HIF-1a
transcription and protein stability, whereas in EGFRWTNSCLC,
hypoxia is the primary regulator of HIF-1a. Moreover, cells with
Frontiers in Oncology | www.frontiersin.org 4
acquired EGFR inhibitor resistance retained elevated expression
of HIF-1a and VEGF, and the pathways were uncoupled from
EGFR-regulated (45). Meanwhile, VEGF expression within the
TME is heterogenous and mainly hypoxia-driven, which also
exerts immunosuppressive effects (46).

In addition, one study has reported that microRNAs,
metabolic pathways, and pseudohypoxia initiate drug tolerance
to EGFR inhibitors in lung adenocarcinoma (47). Lu et al.
demonstrated that prolonged, long-term, moderate hypoxia
can promote resistance to the third-generation EGFR-TKI
osimertinib (AZD9291) in the NSCLC cell line H1975 that had
developed resistance to first- and second-generation EGFR-TKIs
via the T790M EGFR mutation (43, 48). Hypoxia exposure
induces gefitinib resistance in both EGFR-wild type and EGFR-
mutated NSCLC through epigenetic changes and regulation of
epithelial–mesenchymal transition (EMT) (49–51). Similarly,
it was shown that hypoxia can significantly reduce
chemosensitivity and induce multidrug resistance in NSCLC
cells via the enhancement of epidermal growth factor-like
domain 7 (EGFL7) expression (52). Hypoxia induces
chemoresistance through adaptive metabolic changes involving
pleiotropic mechanisms that are associated with significant intra-
tumor metabolic heterogeneity (53). Several studies have
proposed that tumor histology and local microenvironment
influence metabolic adaptation, while certain epigenetic
modification and tumor plasticity confer differential sensitivity
to metabolic interventions. Therefore, precision targeted therapy
efficacy could be improved by stratify certain types of cancer into
FIGURE 2 | The underlying mechanisms of hypoxia-induced drug-resistant NSCLC. Tumors exposed to hypoxia is an important mediator of resistance to cisplatin
and EGFR-TKIs in NSCLC that induce apoptosis-resistant pathways by mediating autophagy and reducing susceptibility to apoptosis, and then metabolic
adaptations in tumor cells to hypoxia leads to chemoresistance, which switches on genetic pathways and metabolic changes.
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molecular and metabolic subtypes (54). There is some evidence
to support preclinical and pilot clinical investigation of
combining EGFR-TKI with hypoxia-targeted therapies in
EGFR-mutated NSCLC. Interestingly, determinants of tumor
hypoxia status, such as in vivo oximetry, gene expression
signatures, PET imaging of hypoxia, and circulating
biomarkers, can predict therapeutic resistance to a wide array
of oncological treatments (55). Furthermore, in vitro 3D models
mimicking NSCLC hypoxia have shown promise in helping to
elucidate the pathogenesis of lung cancer and identifying
potential therapeutic targets (56).

In brief, hypoxia-targeted therapies have the potential to help
overcome chemoresistance in NSCLC (Figure 2). Next, we aim to
delineate a possible molecular mechanism underlying hypoxia-
induced chemotherapy resistance involving hypoxia-associated
mitochondrial and nuclear energy metabolism-related genes that
could be clinically relevant and therapeutically exploitable.
SIRTUIN 1 (SIRT1) CORRELATES WITH
THE OCCURRENCE AND DEVELOPMENT
OF NSCLC

The loss of homeostasis in the acetylation of histone and
nonhistone proteins is closely related to tumor occurrence and
development, and represents a potential target for cancer therapy
(57, 58). SIRT1, a nicotinamide adenine dinucleotide-dependent
(NAD) deacetylase, is a recently identified epigenetic regulator
that can deacetylate histone and nonhistone proteins, including
transcription factors. Accumulating evidence has supported that
SIRT1 is involved in tumorigenesis and cancer development (59).
However, the role of SIRT1 in cancer progression and
therapeutic responses remains controversial because SIRT1 has
both tumor-promoting (60) and tumor-suppressing functions
(61), depending on whether oncogenes or tumor-suppressor
genes are targeted (62). The overexpression of SIRT1 promotes
the progression of various solid tumors such as lung cancer,
breast cancer, ovarian cancer, gastric cancer, colon cancer, and
esophageal squamous cell carcinoma, and is an indicator of poor
prognosis (63–65). Relevant findings have suggested that SIRT1
expression is higher in NSCLC tissue than in surrounding
normal tissues. SIRT1 overexpression plays a promotive role in
tumorigenesis and is closely associated with tumor invasion and
lymph node metastasis in NSCLC (66, 67). Meanwhile, the
prognosis, overall survival, and disease-free survival of NSCLC
patients with high SIRT1 expression were significantly worse
than those of NSCLC patients with low SIRT1 expression (68). A
study of the correlation between SIRT1 and the clinical
characteristics of NSCLC patients revealed that SIRT1 tends to
be highly expressed in poorly differenced cancers, indicating that
it plays a tumorigenic role in NSCLC (69, 70).

The targets of SIRT1 and the related signaling pathways in
tumors have also been investigated in-depth. SIRT1 has been
reported to regulate apoptotic, inflammatory, and oxidative
stress-related processes in ischemia/hypoxia through the
Frontiers in Oncology | www.frontiersin.org 5
deacetylation of its downstream targets, including P53, nuclear
factor-kappa B (NF-kB), PGC-1a, forkhead box Os (FOXOs),
and PPARs (71, 72). The overexpression of SIRT1 can inhibit
P53-regulated cell cycle arrest under conditions of DNA damage
and oxidative stress (73). Similarly, the activation of the SIRT1/
AMPK signaling pathway can inhibit the proliferation and
migration of the human NSCLC cells A549 and H1299 (74).
When compared with the control group, the abnormal
expression of SIRT1 and AMPK were shown to differ
significantly between the NSCLC group and controls, and this
differing expression was related to NSCLC occurrence and
development (75). FOXOs are involved in the regulation of
apoptosis, the cell cycle, and DNA damage repair and their
deacetylation by SIRT1 inhibits their transcriptional and
biological activity (76, 77).

Certainly, Studies have supported that SIRT1 plays a
promotive role in the acquisition of chemoresistance in tumors
(78, 79). Analysis of the relevant literature indicates that SIRT1
overexpression can enhance tumor resistance to therapy,
possibly by reducing the penetration of drugs into cells,
promoting the acquisition of drug resistance through genetic
mutations, or changing the tumor microenvironment (80–84).
SIRT1 is a key anti-apoptotic factor in tumor cells, and SIRT1
activity was found to be activated by chemotherapeutic agents in
certain tumor cell lines. SIRT1 has been reported to regulate
neovascularization by reducing the transcriptional activity of P53
by deacetylation of its lysine residues (85, 86). A study
investigating the effects of SIRT1 activators and inhibitors on
CD44+/CD133+-enriched NSCLC cells reported that SIRT1 can
deacetylate the tumor suppressor protein P53, thereby decreasing
its activity (87). Meanwhile, the modulation of SIRT1 expression
by resveratrol promoted the collateral sensitivity of drug-
resistant ABCB5- and mutation-activated EGFR overexpressing
cells (88). Both genetic and chemical inhibition of SIRT1 can
reverse chemoresistance in lung cancer cells by enhancing DNA
damage and activating apoptosis, concomitant with XRCC1
degradation (82). Gong et al. recently also confirmed that
NSCLC patients with high SIRT1 expression have a
significantly higher rate of resistance to chemotherapy than
those with low SIRT1 expression (89). Additionally, high
SIRT1 expression can induce resistance to cisplatin in A549
cells via modulating Noxa expression (90).

Studies on the antitumor effects of EGFR-TKIs or EGFR-TKIs
combined with HDAC inhibitors on NSCLC have also
demonstrated that HDAC inhibitors decrease the survival rates
of A549, hcc827, and hcc827ir cells, and enhance the sensitivity
of EGFR-TKI-resistant cell lines to EGFR-TKIs through
synergistic effects (91, 92). Interestingly, SIRT1 can promote
the acquisition of stem cell characteristics in tumor cells, and
these cells can become resistant to chemotherapy, radiation, and
target drugs, and plays a key role in malignant progression of
tumors, tumor metastasis, and cancer recurrence (93). When
compared with their parental cells, cancer stem cells have an
increased ability to develop resistance to EGFR-TKIs in NSCLC;
EGFR-TKI-resistant sublines with stem cell-like properties are
also resistant to conventional chemotherapeutic drugs, but
July 2021 | Volume 11 | Article 682762
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equally sensitive to histone deacetylase and proteasome
inhibitors (94, 95). In EGFR-TKI-resistant xenograft models,
the combined administration of a SIRT1 inhibitor, tenovin-6
(Tv6), with gefitinib promoted tumor regression. Additionally,
Tv6/gefitinib coadministration leads to a decrease in the dose of
gefitinib necessary to induce tumor responses in preclinical
models (96). This indicates that SIRT1 plays a vital role in the
regulation of the NSCLC microenvironment (97), and targeting
SIRT1 might represent a potential therapeutic strategy for the
treatment of drug-resistant NSCLC.
THE ASSOCIATION OF SIRT1 WITH
HYPOXIA-INDUCED CHEMORESISTANCE
IN NSCLC

The hypoxic conditions prevailing in solid tumors can contribute
to treatment failure and bad prognosis. Hypoxia is an important
factor in treatment resistance and poor survival in NSCLC.
Studies using different tumor cell lines, including NSCLC lines,
have shown that hypoxia induces the expression of EGFR and its
ligands. In turn, EGFR acts as a key survival factor under hypoxic
conditions by enhancing cellular responses to hypoxia through
increased expression of HIF-1a (98). There are several
explanations for hypoxia-induced resistance in NSCLC. On the
one hand, hypoxia can induce apoptosis resistance-related
pathways by mediating autophagy and reducing susceptibility
to apoptosis. On the other hand, metabolic adaptations to
hypoxia in tumor cells, such as altered genetic pathways and
metabolic stress, can result in chemoresistance (53). HIF-1a is
central to the regulation of oxygen homeostasis and redox-
sensitive metabolism, facilitating effective adaptation to
hypoxia. SIRT1, a direct downstream target of HIF-1a, is a
critical regulator of endothelial cell behavior and has been linked
to tumor angiogenesis under hypoxic conditions (99). HIF-1a
can be regulated by several upstream factors, including SIRT1,
and metabolites, to regulate immune responses. The expression
of SIRT1 is closely associated with the proliferation, survival, and
resistance of many types of malignant tumors. Studies have
shown that SIRT1 plays important roles in DNA damage
responses, autophagy, and the maintenance of genome
stability (100).

However, SIRT1 not only affects intracellular homeostasis, but
also participates in the remodeling of the extracellular
microenvironment (101). SIRT1 and HIF-1a, as metabolic
sensors of redox and oxygen, can modulate both innate and
adaptive immune responses through metabolism-dependent and
-independent ways (102). Extensive evidence supports that, under
hypoxic conditions, SIRT1 overexpression stabilizes HIF-1a via
direct binding and deacetylation, which may be a prerequisite for
a consequent enhancement of cell invasion (103, 104). It was
demonstrated that in some cases, the effects of SIRT1 associated
metabolism on innate immune cells is mediated by HIF-1a.
SIRT1 and HIF-1a dependent metabolism is closely linked to
adaptive immune responses induced under hypoxic conditions
(105). When the NAD+/NADH balance is perturbed by ROS
Frontiers in Oncology | www.frontiersin.org 6
and oxidative stress under hypoxia, SIRT1 can regulate immune
responses directly through deacetylation of some key
transcriptional factors, such as P53, NF-kB, PGC-1a and
PPAR-g or indirectly regulate immune cell metabolism and
response in both metabolism dependent and independent
metabolic pathways (105).

SIRT1 has been reported to be involved in the regulation of
various important biological processes, which can activate
several transcription factors, such as PGC-1a and HIF-1a,
resulting in ameliorated mitochondria biogenesis (106). Similar
results on NSCLC cell lines grown under hypoxic conditions
have revealed a novel mechanism of RBM38-mediated regulation
of the HIF1a/miR-34a/SIRT1/P53 axis (107). Additionally,
SIRT1 may be involved in the regulation of multiple aspects of
tumor resistance by modulating the adaptive response of tumor
cells (47–49). Hypoxia-mediated inactivation of the SIRT1/
AMPK pathway led to cisplatin and doxorubicin resistance,
indicating that this may be a strategy to overcome hypoxia-
induced chemoresistance in NSCLC (78). One study showed that
SIRT1 promotes the pro-apoptotic activity of the acetylated
transcription factor P53 in A549 cells, while apoptosis is
suppressed in cisplatin-resistant cells. The authors proposed
that cytoplasm-localized SIRT1 downregulation may represent
a novel therapeutic target to inhibit cisplatin resistance in
cisplatin-resistant NSCLC cells (108). A review of the topic of
histone deacetylase inhibition in NSCLC indicated that a SIRT1-
mediated survival advantage may represent another mechanism
through which NSCLC cells develop resistance to EGFR-TKIs
(109), possibly through mediated by regulating the oxidative
phosphorylation of mitochondria in lung adenocarcinoma cells,
and then selectively eliminating TKI-resistant cancer stem cells.

Here, we discuss multiple mechanisms underlying hypoxia-
induced chemotherapy resistance involving SIRT1-mediated
deacetylation modifications of downstream transcription
factors and the modulation of metabolic adaptation in the
NSCLC microenvironment. We also consider how targeting
SIRT1 has become a new therapeutic strategy linked with the
hypoxic microenvironment of drug-resistant NSCLC.
PGC-1a/PPAR-g SIGNALING IN HYPOXIA-
INDUCED CHEMORESISTANCE IN NSCLC

Responses to hypoxic stress involve cellular adaptations in
protein synthesis, energy metabolism, mitochondrial
respiration, and nutrient acquisition (110, 111). Mitochondria
are the main oxygen consumers at the crossroads of apoptotic
pathways induced by anticancer agents, and excess
mitochondrial activity leads to local hypoxia in the tumor
microenvironment (Figure 3) (112, 113). Hypoxia may
promote mitophagy, thereby mediating resistance to cisplatin
(114), while mitophagy during hypoxia may limit ROS
production (115, 116). Hypoxic cells in NSCLC are also more
resistant to chemotherapeutics and radiation. Aggressive cancers
become resistant to most chemotherapeutic drugs owing to the
presence of clusters of drug-resistant cancer stem cells that
July 2021 | Volume 11 | Article 682762
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exhibit an altered metabolic profile (117). A number of studies
highlighted the importance of mitochondria-dependent
metabolic reprogramming in the appearance of tumor evasion
mechanisms and develop drug resistance (118). A novel
mechanism of intercellular communication based on a
horizontal transfer of mitochondria between non-tumor and
malignant cells was described, which showed the phenomenon
of direct mitochondria sharing could also contribute to resistance
to existing drug combinations and possibly further promote
tumor growth (118–120).

PGC-1a is a nuclear transcriptional coactivator of nuclear
receptors and other transcription factors, and is also a master
regulator of mitochondrial biogenesis necessary for efficient
mitochondrial transfer. PGC-1a can promote mitochondrial
biosynthesis, which includes the regulation of mitochondrial
protein synthesis and the replication of mitochondrial genes
(121, 122). PGC-1a levels have been reported to correlate with
survival in patients with stage III NSCLC (123). Recent studies
have suggested that the regulatory relationship between P53 and
PGC-1a represents an important drug resistance mechanism in
NSCLC. An analysis of gene expression in 28 human lung
adenocarcinoma cell lines with different P53 mutational
statuses reported that the suppression of PGC-1a inhibits the
Frontiers in Oncology | www.frontiersin.org 7
growth of lung adenocarcinoma cells with wild-type P53 (124).
Meanwhile, low P53 expression and high PGC-1a expression
correlated with poor sensitivity to cisplatin and apoptosis in
NSCLC patients. Furthermore, P53 affects mitochondrial
biosynthesis by regulating the stability of PGC-1a, thereby
reducing NSCLC chemoresistance (125).

PPAR-g is thought to function as a ligand-activated nuclear
transcription factor. The activation of PPAR-g and the
subsequent regulation of the transcription of various genes can
be directly mediated by the binding of ligands and molecules
(126), which leads to heterodimerization with SIRT1 and the
subsequent binding of the heterodimers to peroxisome
proliferator response elements (PPREs) (127, 128).
Accumulated evidence has demonstrated that PPAR-g can also
be activated through other mechanisms, including SIRT1-
mediated deacetylation. Preclinical studies indicated that
PPAR-g can function as a tumor suppressor and play an
important role in cell proliferation, cell differentiation, and
apoptosis through a variety of mechanisms (129–133). The
activation of PPAR-g was also reported to inhibit lung tumor
progression (134–137). Moreover, PPAR-g is highly expressed in
NSCLC, while PPAR-g expression is highly correlated with
tumor histological type, pathological differentiation status, and
FIGURE 3 | Regulation of metabolic microenvironment via SIRT1/PGC-1a/PPAR-g signaling pathways under hypoxia conditions. Several potentially effective
molecular mechanisms of regulation of metabolic microenvironment have been shown in non-small cell lung cancer under hypoxia conditions, by which SIRT1
mediated deacetylation modified of downstream transcription factors and modulated metabolic adaptation. SIRT1, Silent information regulator 1; PGC-1a,
Peroxisome proliferator—activated receptor-g coactivator-1a; PPAR-g, Peroxisome proliferator activated receptor-g; EGFR, Epidermal growth factor receptor; VEGF,
Vascular endothelial growth factor; HIF-1a, Hypoxia inducible factor-1alpha; OXPHOS, Oxidative phosphorylation; ROS, Reactive oxygen species; NAD+,
Nicotinamide adenine dinucleotide; AMPK, Adenosine monophosphate activated protein kinase.
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clinical stage (138–140). The expression of several tumor-
associated genes was reported to be triggered by the inhibition
of PPAR-g activity through EGFR-mediated PPAR-g
phosphorylation and degradation, which, in turn, promoted
nuclear EGFR/NF-kB signaling activation (141).

In NSCLC, PPAR-g ligands (thiazolidinediones, such as
rosigl itazone and pioglitazone) can promote tumor
differentiation and inhibit tumor growth, metastasis, and
angiogenesis (138, 142). Investigation of the interplay between
troglitazone and chemotherapeutic drugs (cisplatin or paclitaxel)
in xenotransplantation models indicated that chemotherapeutic
drugs can induce PPAR-g; moreover, the authors identified a
sequence-specific synergy between PPAR-g ligands and
chemotherapeutic agents in the treatment of lung cancer (143).
PPAR-g activation may also protect cells against cisplatin toxicity
by reducing metallothionein expression, proteins that promote
resistance to cisplatin therapy. Additionally, PPAR-g agonists
synergistically increase the antitumor activity of gefitinib. For
instance, Ni et al. showed that PPAR-g activation can inhibit the
proliferation of EGFR-TKI-resistant lung adenocarcinoma cells
and lead to a better survival rate (135). Increasing evidence has
indicated that PPAR-g agonists may serve as master modulators
for overcoming classic obstacles associated with targeted NSCLC
therapies, including resistance to therapy and tumor genetic
heterogeneity (144–146). These examples strongly suggest that
PPAR-g has potential as a molecular target for NSCLC treatment
(129, 147–149).

Hypoxia-induced chemoresistance through a variety of
mechanisms is associated with the metabolic signature of
hypoxic cancer cells (Figure 2). The levels of PPAR-g are
influenced by changes in oxygen tension, which plays a critical
role in the regulation of metabolism in cancers. Under hypoxic
conditions, PPAR-g expression can be induced via HIF-1a-
dependent mechanisms (150). Hypoxia-induced repression of
PPAR-g can promote chemoresistance in NSCLC through the
downregulation of uncoupling protein 2 (151). Cruz-Bermúdez
et al. also reported a novel metabolic reprogramming-based
cisplatin-resistance mechanism in NSCLC cells involving
increased PGC-1a expression, oxidative metabolism, and
mitochondrial biogenesis (152). Several studies have confirmed
that some drug-resistant tumor cells are particularly strongly
dependent on PGC-1a-mediated metabolic activity, and the
inhibition of PGC-1a expression sensitizes some tumor cells to
treatment, including lung cancer cells (153). The expression of a
subset of known PGC-1a-regulated genes appears to be altered
indirectly by changing the metabolic state of cells exposed to
hypoxia and nutrient deprivation (154). Interestingly, PGC-1a is
a regulator of PPAR-g activity, and the dysregulated expression
of PGC-1a may affect PPAR-g function. In the late stage of
tumor progression, PGC-1a is also considered to be an auxiliary
activator of PPAR-g and is closely involved in the resistance of
tumors to chemotherapy (155).

Furthermore, one of the physiological consequences of
hypoxia is reduced mitochondrial oxidative phosphorylation
(OXPHOS) . The act ivat ion of PGC-1a s t imulates
mitochondrial biogenesis and OXPHOS promoting cell
Frontiers in Oncology | www.frontiersin.org 8
mobility and metastases. High levels of PGC-1a are associated
with increased OXPHOS-dependent metabolism in cells, while
PGC-1a can also mediate accelerated mitochondrial OXPHOS
and glycolysis in the heterogeneous tumor microenvironment
(156, 157). Additionally, a study investigating the development
of NSCLC resistance to EGFR-TKIs found that gefitinib-resistant
NSCLC cells acquire metabolic flexibility characterized as a
ligand-independent translocation of EGFR to mitochondria,
which might contribute to the upregulation of mitochondrial
function and capacity for OXPHOS (158). These observations
indicate that the dependence on mitochondrial OXPHOS is a
recurrent mechanism of cancer resistance to cisplatin treatment,
while PGC-1a-mediated enhancement of mitochondrial
biogenesis and OXPHOS is crucial for the development of
chemoresistance in NSCLC under hypoxic conditions.
Therefore, that PGC-1a/PPAR-g have important roles in
metabolic regulation, apoptosis, and drug resistance suggests
that nuclear genes may be involved in hypoxia-induced
resistance to chemotherapy through regulating mitochondrial
biogenesis in the NSCLC microenvironment. Mitochondrial-
dependent metabolic also underlines the significance of tumor
microenvironment and cellular plasticity in cancer progression
and drug resistance.
SIRT1/PGC-1a/PPAR-g IN HYPOXIA-
INDUCED CHEMORESISTANCE IN NSCLC

The resistance of NSCLC to therapy is mediated by several
factors, among which hypoxia may be a key player. The
acetylation of transcription factors, independently of histone
modifications, has a central role in tumorigenesis and
subsequent drug resistance. SIRT1, in addition to serving as an
intermediary in cellular metabolism in gene silencing and aging,
also functions as a pivotal regulator of various intracellular
biological processes, including energy metabolism, DNA
damage responses, the maintenance of genome stability, and
tumorigenesis (159). SIRT1 may be associated with the
susceptibility of the elderly to hypoxic injury, which leads to
cell death via energy depletion and increased oxidative stress
(160). Metabolic stress and biosynthetic stress are key factors
affecting the NAD+ pool and NAD+-dependent SIRT1 activity
(161). In the context of hypoxia-induced chemoresistance,
SIRT1-dependent deacetylation may be primarily related to its
ability to target and modulate the activity of signal transduction
pathways and transcription factors such as P53, PPARs, PGC-
1a, AMPK, FOXO proteins, and NF-kB (99, 162, 163). A
mechanistic study in senescent WI-38 cells and animal tissues
confirmed that both PPAR-g and SIRT1 can bind to PPREs,
which can be interpreted directly with SIRT1 to exert
transcriptional activation in a ligand-dependent manner, partly
by deacetylation (164). The inhibition of the SIRT1/PGC-1a/
NRF2 pathway via the suppression of PPAR-g transcriptional
activity was reported to increase the susceptibility of wild-type
P53-harboring cancer cells to oxidative stress and therapeutic
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agents (165). Among the targeting agents, studies have shown
that the PPAR-g agonist rosiglitazone facilitated the
antiproliferative effects of gefitinib by upregulating PTEN
expression in NSCLC A549 cells (166), while combination
differentiation-based therapy involving PPAR-g ligands and
HDAC inhibitors enhanced the growth inhibition of lung
adenocarcinoma cells (167).

The mitochondrion is an emerging therapeutic target in
tumor cells (168), especially under hypoxic conditions. Cellular
hypoxia can significantly decrease the expression of
mitochondrial genes (169, 170) and induce metabolic
adaptations in cancer cells (171). Tumor oxygenation
responses to EGFR-TKI therapy appear to be mediated via
effects on the hypoxia-regulated transcription factor HIF-1a
and downstream expression of VEGF (37). Relevant research
suggested that drug-resistent NSCLC of hypoxia-driven is
associated with expression of HIF-1a and VEGF; and in
tumors driven primarily by the EGFR pathway, targeting HIF
or key HIF-regulated genes may further enhance the effect of
EGFR inhibition alone and delay drug resistance (45). Similarly,
high HIF-1a expression is associated with acquired resistance to
EGFR-TKIs in NSCLC (172). These findings support hypoxia
targeting in EGFR mutant tumors in the EGFR inhibitor–naive
and refractory settings, which is the potential value of clinical
testing and use of VEGF inhibitors in combination with EGFR-
TKIs, but not just lung cancer. In response to hypoxic conditions,
the posttranslational regulation of molecular mediators such as
SIRT1, HIF-1a, PGC-1a, and AMPK may play a critical role in
the control of the glycolytic-mitochondrial energy axis
(Figure 3) (171, 173). SIRT1 and PGC-1a are supposed to
exist in the mitochondria of tumorigenesis, where they
function as critical inducible factors for intercellular energy
metabolism and gene regulation (154, 174). SIRT1 is known to
promote mitochondrial biogenesis. Considering to SIRT1,
known as a modulator of PGC-1a activity, and is associated
with metabolism and transcriptional responses through its
NAD-dependent activity (175–177). Indeed, PGC-1a is a
substrate of SIRT1, and regulates the activity of antioxidant
enzymes and mitochondrial biosynthesis (178). Resveratrol, a
well-known potent activator of SIRT1, has been shown to
increase mitochondrial numbers by activating the SIRT1/PGC-
1a pathway and inhibit VEGF induction through HIF-1a in
ovarian tumor cells under hypoxic conditions (154).

Interestingly, numerous studies have demonstrated that an
increase in SIRT1-mediated mitochondrial biogenesis plays
prominent roles through both PGC-1a-dependent and
PGC-1a-independent pathways. The SIRT1-mediated
deacetylation of specific lysine residues activates PGC-1a,
which then promotes mitochondrial biosynthesis, maintains
mitochondrial function, and reduces cell apoptosis (179, 180).
Meanwhile, HIF-1a is involved in the regulation of
mitochondrial biogenesis and the modulation of nucleus-
mitochondria communication independently of PGC-1a
(181). Li et al. also introduced a novel mechanism in cell
assays and an orthotopic transplantation model whereby
SIRT1 enhances PGC-1a-mediated mitochondrial biogenesis
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and increases cell metabolism (182); While AMPK also
enhances mitochondrial biogenesis and oxidative metabolism
by promoting the transcriptional activity of PGC1a (183).
Hypoxic microenvironment might inhibit the activation of
AMPK targets, as well as apoptosis, by decreasing PGC-1a
through SIRT1 deacetylation-dependent mechanisms; which
may regulate the cytotoxic response to cisplatin and
doxorubicin by licensing an apoptotic process controlled by
mitochondria in NSCLC (66).

Emerging evidence has suggested that epigenetic modification
may mediate primary resistance and contribute to acquired
resistance during immunotherapy through the profound effect
on many aspects of antitumor immunity (94, 95). Vorinostat (an
HDAC inhibitor) has been shown to epigenetically restore BCL-
2 protein family functions, which in turn restores the sensitivity
of EGFR-mutated and gefitinib-resistant NSCLC to gefitinib.
Clinical trials investigating the performance of epigenetic
targeting agents, such as histone deacetylation, combined with
adaptive T-cell transfer in patients with hypoxia-driven acquired
resistance to prior immunotherapy are ongoing (96). The
acetylation state of histones results from an imbalance between
the activities of various histone acetyl transferase and the
functioning of HDACs such as SIRT1. Additionally, a study of
ongoing immunometabolism-targeted clinical trial also
per formed ant i -PD-1 p lus /minus PPAR-g agonis t
(rosiglitazone) in many solid tumors, such as non-small-cell
lung carcinoma(NCT04114136) (41).

In general, we speculate that SIRT1/PGC-1a/PPAR-g
signaling may represent a molecular metabolic mechanism
underlying hypoxia-induced chemoresistance in the NSCLC
microenvironment, and targeting hypoxia-related metabolic
adaptation may be a potential therapeutic strategy for
overcoming chemoresistance in NSCLC.
CONCLUSION

In summary, the current review focused on SIRT1/PGC-1a/
PPAR-g as a possible mechanism underlying hypoxia-induced
chemoresistance in NSCLC at the epigenetic and metabolic
microenvironment level. This review offers a preclinical proof-
of-concept for the targeting of the SIRT1/PPAR-g/PGC-1a
signaling pathway. The heterogeneity of metabolic adaptation
under hypoxia-induced acquisition of chemoresistance has,
until recently, remained unappreciated. Targeting signaling
pathways of cancer metabolic dependency under hypoxia
microenvironment could be explored as a new therapeutic
combination strategy for overcoming chemoresistance
in NSCLC.
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