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THE BIGGER PICTURE Time-of-flight mass spectrometry (ToF-MS) is a mainstream analytical technique
widely used in biology, chemistry, andmaterials science. ToF-MSprovides quantitative compositional anal-
ysis with high sensitivity across a wide dynamic range of mass-to-charge ratios. A critical step in ToF-MS is
to infer the identity of the detected ions. Here, we introduce amachine-learning-enhanced algorithm to pro-
vide a user-independent approach to performing this identification using patterns from the natural isotopic
abundances of individual atomic andmolecular ions, without human labeling or prior knowledge of compo-
sition. Results from several materials and techniques are compared with those obtained by field experts.
Our open-source, easy-to-implement, reliable analytic method accelerates this identification process. A
wide range of ToF-MS-based applications can benefit from our approach, e.g., hunting for patterns of bio-
markers or for contamination on solid surfaces in high-throughput data.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Mass spectrometry is awidespread approach used towork out what the constituents of amaterial are. Atoms
and molecules are removed from the material and collected, and subsequently, a critical step is to infer their
correct identities based on patterns formed in their mass-to-charge ratios and relative isotopic abundances.
However, this identification step still mainly relies on individual users’ expertise, making its standardization
challenging, and hindering efficient data processing. Here, we introduce an approach that leverages modern
machine learning technique to identify peak patterns in time-of-flight mass spectra within microseconds,
outperforming human users without loss of accuracy. Our approach is cross-validated on mass spectra
generated from different time-of-flight mass spectrometry (ToF-MS) techniques, offering the ToF-MS
community an open-source, intelligent mass spectra analysis.
INTRODUCTION

Mass spectrometry is a widespread approach for revealing what

constitutes a solution or a material. An array of techniques are

used in the life sciences, geology, and materials science. Among

this arsenal, time-of-flight mass spectrometry (ToF-MS) is one of

themainstream techniques in which an ion’smass-to-charge (m/

z) ratio is determined via a ToF measurement.1 It can provide a
This is an open access article under the CC BY-N
quantitative analysis of the composition of the sampled material

with high precision and for a wide range of atomic and molecular

masses.2 The principles of ToF-MS are common to techniques

such as matrix-assisted laser desorption/ionization (MALDI),

secondary ionmass spectrometry (SIMS), or atom probe tomog-

raphy (APT). Each of these techniques relies on a different

concept to emit the ions from the sample, and this versatility

means that their common underlying analysis approach viz.
Patterns 2, 100192, February 12, 2021 ª 2020 The Author(s). 1
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Figure 1. Examples of peak patterns under

various experimental conditions

(A) Perfect peak pattern.

(B) Peak pattern with broadened peak width due to

primary spatial distribution of ions.

(C) Peak patterns with long thermal tails.

(D) Peak patterns with short thermal tails.

ll
OPEN ACCESS Article
ToF-MS has found use in chemical reaction studies, large-

molecule characterization, and the quantification of dopants in

semiconductors or the atomic-scale distribution of impurities

at grain boundaries in metallic alloys, for instance.3–8

The ToF-MS data are essentially a plot of the counts as a func-

tion of them/z ratio—typically a peak appears for each isotope of

each element present—and the amplitude is proportional to the

relative amount of each species within the sampled volume. Fast

and accurate identification and interpretation of the rich patterns

and correlations in the spectral data are of great importance and

can lead to discoveries.9 Yet the interpretation and identification

rely on the user’s expertise, making it slow and prone to error and

hindering reproducibility.

Challenges in the development of automatic ToF-MS data

analysis are two-fold. First, in ToF-MS, ions of the same species

typically show distribution in their velocity or distribution in their

instant of departure from the specimen. These lead to distribu-

tion in flight times. As a result, depending on the experimental

conditions, ToF-MS peak patterns can take various shapes

and are not always simple to recognize (Figure 1).10 Second, mo-

lecular patterns are commonly encountered in ToF-MS spectra,

i.e., not only signals from atomic ions are detected.11–15

Combining individual atoms into a molecular ion usually leads

to a new pattern comprising the distribution of the combination

of isotopes from each individual element. Building a database

for all possible molecular formula is practically impossible.

Machine learning (ML) is well known for its powerful ability to

recognize patterns and signals.16 Recently, the mass spectrom-
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Figure 2. Flowchart of ML-assisted time-of-flight mass spectrum iden

An atomic pattern recognizer takes a mass spectrum as input and identifies all

constructed by combining atomic patterns from elements with non-metal elemen

machine-learning-basedmolecular pattern recognizer assignsmolecular identitie

and the molecular fingerprints in mass spectra.
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etry community has embraced ML techniques for large-scale

data analysis. The data-analyzing speed of ion-trap-based

mass spectrometry has been dramatically accelerated,17,18

whereas ToF-MS data analysis still largely relies on database

searching.19,20

Some pioneering works demonstrated the potential of

applying statistical/ML techniques to ToF-MS spectra analysis.

For example, unsupervised ML has been used in exploratory

data analysis for ToF-SIMS and ToF-MALDI.21–24

Lately, a Bayesian approach has been adopted for peak iden-

tification in APT.25,26 The Bayesian approach implemented by A.

Mikhalychev et al.26 is able to identify and deconvolute many

different types of ToF-APT mass spectra simultaneously. With

reasonable prior information, this method can lead to robust re-

sults. However, prior knowledge is often provided by users. If a

bad prior is assumed, the computation can become very

expensive.

Here, we introduce a ML-based approach that automates the

process of assigning elemental andmolecular identities to peaks

and series of peaks within ToF-MS spectra. Moreover, uncer-

tainties are attached to these identities indicating to what extent

the peak patterns are affected by the noise level and shape

features. We name this approach ‘‘ML-ToF.’’ It is shown that

ML-ToF can handle various ToF-MS spectra without prior

knowledge of composition information and from the analysis of

a variety of materials systems and techniques. Indeed, we

cross-validate ML-ToF on ToF-APT and ToF-SIMS spectra.

The materials investigated include a high-strength Al alloy
+
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tification (ML-ToF)

atomic patterns (mainly pure metal elements). A molecular database is then

ts (e.g., hydrogen, oxygen, nitrogen). Trained in such an on-the-fly database, a

s to non-atomic patterns. In such a way, ML-ToF recognizes both the elemental



A B Figure 3. Examples of peak detection param-

eters in the SciPy Python package

(A) Schematic diagram showing the definition of

peak prominence. Peak prominence is defined as

the vertical distance between the peak and the

lowest contour line (the dashed lines).

(B) Peak detection example from the ToF-APT da-

taset, showing the interpeak distance between de-

tected peaks and peak height. Blue and dark green

regions represent the range of peaks assigned by

human users.
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developed for aerospace applications, medium-Mn steel found

in automotive applications, Cu-In-based materials used in

solar cell absorbers, and SmCo-based permanent magnets.

Furthermore, we benchmark the results by comparing ML-ToF-

assigned labels with those yielded by field experts. ML-ToF

drastically reduces the duration of the peak recognition process.

In general, it takes ML-ToF microseconds to obtain a labeled

spectrum, whereas human users could take minutes or even

hours. An overview of our approach is shown in Figure 2.

RESULTS

Peak pattern detection
Mass spectra can be regarded as a one-dimensional array

whose values are always positive.We focus on patterns with suf-

ficient signal-to-background level to demonstrate that our

approach can work properly with discernible patterns. We

import the peak detection algorithm from a Python library (SciPy

package, de facto standard package for signal processing in Py-

thon) that finds the peak positions and the corresponding inten-

sity values.27 The peak detection algorithm takes the mass

spectra as input and searches for local maxima by a simple com-

parison of intensity. A subset of these peaks can be further cho-

sen by specifying conditions of peak properties. There are three

major peak properties: peak height, interpeak distance, and

peak prominence. The prominence is defined as the intensity dif-

ference between the peak’s height and its adjacent local minima,
Element 1: Abundance Ratio 
Gaussian Noise
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Element N:

Peak Patterns

Inter-peak Distance
     Ratio Filter

Abundance Ratio 

Abundance Ratio 
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Probable Labels

Training Dataset

Probability>=0.9

Abundance Ratio

Confirmed Labels

Mass/charge Matching

Machine Learning

Classification
as indicated by Figure 3A. In Figure 3B,

one can find the definition of peak height

(the absolute count value in log scale).

Throughout ToF-APT examples we used

the same parameters for the detection
(see Figure 3): peak height = 4 (log count); interpeak distance =

0.25 Da; prominence = 0.5 (log count). By visual inspection,

the peak detection algorithmwith this set of parameters can cap-

ture the vast majority of peaks.

In the manual procedure, users need to select a start and end

position for each peak, as shown in Figure 3B. This procedure

is often referred to as ‘‘ranging,’’28 and this process can lead to

errors due to the different peak shapes, which depend in part

on the instrument used and the experimental conditions. For

instance, the laser pulse energy or the base temperature was

shown to have an influence.29–31 Here, we confine the task of

ML-ToF to the identification of elemental or molecular patterns

and assume the intensity represents the peak intensity at the de-

tected position instead of the entire peak range. This assumption

works well in practice: ML-ToF can recognize the peaks even

when they exhibit long tails. Tails originate fromeither energy def-

icits or uncertainty on the instant at which the ion left the speci-

men’s surface32–35 (see Discussion). The detected m/z ratios

and the corresponding intensity serve as the input of ML-ToF.

ToF-MS pattern recognition
In general terms, patterns existing in the mass spectra can be

categorized into two types: (1) atomic pattern, exhibiting the nat-

ural abundance ratio of one particular element, and (2) molecular

pattern, formed by two or more elements with mixed abundance

ratio distribution. In this section, we introduce a systematic

approach that identifies both types simultaneously. Two main
Figure 4. Protocol of atomic pattern recog-

nizer

Patterns to be recognized are peaks with interpeak

distance ratio and their respective abundance ratio.

After the probable labels are obtained, a database

search based on mass to charge is performed to

identify the exact composition.

Patterns 2, 100192, February 12, 2021 3
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Figure 5. Training history

(A–D) Training histories of the LightGBM model for

three- (A), four- (B), five- (C), and seven- (D) peak

patterns are shown. In the training histories of

objective function L, we have training and validation

curves (indicated by training and valid_1, corre-

spondingly). In all four cases, training and validating

loss histories are almost the same. Hence, the two

curves overlap completely.
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aspects are addressed, i.e., the strategy to construct a reason-

able database and the search and identification of the most

probable patterns.

Atomic pattern recognizer

First, we introduce the atomic pattern recognizer designed to

identify all the atomic patterns. The general protocol is demon-

strated in Figure 4.
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Database. ML can produce optimal results only if it is trained

in a good database. In our case, the atomic pattern database

consists of three parts: the number of isotope peaks, the nat-

ural abundance ratio, and the interpeak distance ratio (IDR).

The IDR is defined as the distance between two neighboring

peaks divided by the smallest neighboring distance within a

group of peaks. For example, Fe+ has four peaks at 54, 56,
Zr Ca RandomZr Ca Random
d label

Gd Yd Random
d label

Figure 6. Confusion matrix

(A–D) Confusion matrices for three- (A), four- (B),

five- (C), and seven- (D) peak patterns. The confu-

sion matrix indicates that the models achieve 100%

accuracy on the abundance ratio classification task.

Small randomness is introduced in the training/

testing splitting. Therefore, the size of the test da-

taset is not always 1,000 but quite close to it.
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57, and 58 Da. So the distance ratio is (56 � 54)/(58 �
57):(57 � 56)/(58 � 57):(58 � 57)/(58 � 57) = 2:1:1. As such,

even if Fe is in the form of charge state 2 with four peaks at

27, 28, 28.5, and 29 Da, the IDR is still 2:1:1. We do not

have to impose any constraints on the specific charge state

of the elements. This is important, as the charge-to-state ratio

can vary significantly (i.e., element Fe can have 1+, 2+, or 3+

charge state) based on the experimental parameters and even

within a single dataset.36

The database contains the most commonly encountered ele-

ments (excluding the inert gases) and some lanthanides.

Currently, it contains 37 elements and 3 compounds, such as

S2 and C2. These compounds are included because some ele-

ments have a strong tendency to form molecular ions, as

frequently observed experimentally. Further information

regarding the database can be found under Supplemental

experimental procedure 1.1.

Interpeak distance ratio filter. As can be seen in Figure 4,

matching the IDR is the first step toward a full pattern recogni-

tion. For a given peak pattern, the IDR filter searches for all

possible candidates with matched IDR. Subsequently, the algo-

rithm will examine the abundance ratio of these candidates. In

practice, ToF mass spectra often contain calibration errors.

Therefore, ML-ToF rounds the m/z ratio’s digits up to 0, 1/4, 1/

3, 2/3, 3/4, and 1 Da so that the IDR can be correctly calculated.

Learning the abundance ratio. The next step is concerned with

pattern recognition of the isotopic abundance ratio. Classifica-

tion of the abundance ratio is not a trivial task. Different patterns

sometimes aggregate at similar m/z ratios. It is often very difficult

to deconvolute them. The ML technique is naturally suited to

data-driven classification tasks, thanks to its ability to learn

and improve from experience without human intervention16
Atomic patterns

Cluster 1 

Cluster 2 

Cluster 3 

Unidentified patterns

Cluster 4 

Cluster 5 

Uncertain patterns

Identified Atomic Patterns: Al, Mg, Zn, Zr 

[m/z]
automatically. Unlike the conventional

yes/no answer, ML algorithms produce a

list of possible answers with correspond-

ing likelihoods. Even if an exact match

from the given input to the theoretical

database cannot be found, the ML-based

algorithm can still provide a ranking of

likely labels. In other words, ML looks for

partially retained patterns and thus as-

signs a higher matching probability.

For elements with two isotopes, ML-

ToF calculates the measured intensity
ratio between the peaks (rm = P1=P2) and compares with

the expected ones from the natural abundances (rt). If the ab-

solute value of the deviation (rm � rt)/(rt) exceeded a certain

threshold (here we chose empirically 0.3), then we classified

this as unidentified peaks. For example, the pattern for Cu

has a natural abundance ratio of 69.17:30.83, therefore the

theoretical ratio rt = 69.17/30.83 = 2.24. ML-ToF will not

assign element Cu to this pattern if its abundance ratio

goes outside the range [1.56, 2.91]. For monoisotopic ele-

ments (e.g., Al, As, Co), since there is no abundance ratio,

ML-ToF searches for their different charge states and assigns

the element if two or more of its corresponding charge states

are found (e.g., Al+ at 27 Da and Al2+ at 13.5 Da).

In the present study, we selected Light Gradient Boosting Ma-

chine (LightGBM) as our learning model. LightGBM belongs to

the framework of Gradient Boosting Decision Tree (GBDT).37

GBDT is an ensemble model of weaker learners that are trained

in sequence. In each training iteration, a decision tree learns from

the errors up to the current iteration. Via a gradient descent

approach, every subsequent treeminimizes the loss function be-

tween the actual output and the weighted sum of predictions

from previous iterations. The final model is the weighted average

of all weak learners. GBDT has achieved state-of-the-art perfor-

mance in many ML tasks, such as multiclass classification38 and

ranking tasks.39

Our label-predicting task is essentially a multilabel classifica-

tion task. In such a setting, the algorithm tries to minimize the

objective function L:

L = � 1

N

 XN
i = 1

yi , logðsiÞ
!
: (Equation 1)
Figure 8. ML-ToF identification of a simple

alloy system

Ion mass spectrum of a simple alloy system. The

color of the circle markers indicates the state of the

peaks. Red, green, and blue markers indicate

atomic (identified), unidentified, and uncertain

peaks, respectively; the majority of the ML-ToF

assigned labels are consistent with APT operators.
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Table 1. Peak pattern identity analysis for Al-Zn-Mg-Cu-(Zr) alloys

Cluster

number

1 1 2 2 2 3 4 5 5

m/z 12 12.5 13 13.5 27 28 29 32 33 33.5 34 35 45 45.5 46 47 64 66 67 68 70 63 65

Expert Mg2+ Al2+ Al+ AlH+ AlH2
+ An2+ Zr2+ Zn+ Cu+

ML-ToF Mg2+ (100%) Al2+ Al+ AlH+ AlH2
+ Zn2+ (100%) Random (51%)

Zr2+ (45%)

Zn+ (100%) None

Theory 78.99:

10.00:11.01

None None None None 48.27:

27.98:4.10:

19.20:0.63

51.45:

11.22:17.15:

17.38:2.80

45.85:25.02:

12.26:16.17:

0.71

69.15:30.85

Measure 78.00:

10.13:11.87

None None None None 48.63:27.73:

4.26:18.50:0.87

45.42:15.18:

21.37:18.03

48.63:27.73:

4.26:18.50:0.87

42.41:57.59

Five rows can be found for each individual cluster: mass-to-charge ratio, expert-assigned element, ML-ToF-assigned element, theoretical normalized

intensity (theory), and measured normalized intensity (measurement).
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L represents the cross-entropy. Here, this ML-specific en-

tropy formulation serves as a measure for the difference be-

tween two probability distributions and is used as a loss func-

tion for classification models; N represents the number of

labels, yi is the ground truth, and si denotes predictions of

the ML model. This objective function measures how off the

machine’s prediction is from the truth. The smaller the loss

of objective function is, the closer the prediction of the ma-

chine is to the ground truth. Zero loss would imply that the

model has achieved 100% accuracy. In general, using the

cross-entropy function instead of the sum of mean square er-

rors for a classification problem leads to a faster training as

well as improved generalization.40 In contrast to other black-

box ML models like a neural network, the decision tree enjoys

a unique advantage; namely, it is an explainable ML model,

which provides not only the predictions but also methods to

interpret them. A specific example can be found in Figure S1.

Other parameters of the current LightGBM model and the cor-

responding explanations can be found in Supplemental exper-

imental procedure 1.2.

We generate 5,000 data points for each element. During the

training, the total dataset is further split into a first one used

for the training (around 4,000 data points) and a second

(around 1,000 data points) to validate the trained model.

More details of database construction can be found in Sup-

plemental experimental procedure 1.1. Figures 5A–5D illus-

trate the training histories of the LightGBM model for three-,

four-, five-, and seven-peak patterns. The model for three-

peak classification achieves near-zero loss after about 200 it-
Al+
Mn+

Fe+

Fe+
Cluster 2Cluster 1 

C+

Al2+

N+

O+

Cluster 3

Al3+

Identified Ato

[m/z]
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erations and then plateaus at zero. Loss histories of four-

peak, five-peak, and seven-peak patterns show similar trends.

Notably, the four-peak pattern model converges to zero at a

much faster rate, reaching near-zero loss at 100 iterations.

Thus this model stops early at 500 iterations. Training and

validating losses are almost identical in all four cases, result-

ing in two completely overlapping curves.

Confusion matrix is a useful tool for visualizing the perfor-

mance of a model. It enables a direct comparison between

the ML prediction and the ground truth on the test dataset.

These confusion matrices (shown in Figures 6A–6D) indicate

that the LightGBM models can perfectly predict the element

given its abundance ratio. In addition, the training dataset

introduced ‘‘redundancy’’ to deal with the partial pattern or

overlapped pattern. For instance, three patterns are assigned

to Fe: (1) atomic mass 54, 56, 57, 58 Da; abundance ratio

5.8:91.8:2.1:0.3; (2) atomic mass 54, 56, 57 Da; abundance

ratio 5.8:91.8:2.1; and (3) atomic mass 56, 57, 58 Da; abun-

dance ratio 91.8:2.1:0.3. This is because sometimes the

signal-to-noise ratio of some peaks is too weak to be de-

tected. Or a strong Ni presence (major peaks at 58 Da) de-

stroys the first pattern of Fe. In these cases, ML-ToF is still

able to recognize the presence of Fe. Such a redundancy

scheme guarantees that ML-ToF has a certain degree of

robustness against various noise sources.

Matching the mass-to-charge ratio. A ‘‘probable label’’ is

defined as a peak pattern with more than 90% certainty (as-

signed by the LightGBM model). However, the probable label

is not yet the final identified label. For example, if a pattern
 

Atomic patterns

Molecular patterns
Unidentifed patterns

mic Patterns: Al, Fe, Mn Figure 9. Identification of Fe-Mn-C-Al alloy

system

Ion mass spectrum of Fe-Mn-C-Al alloy. Markers

are colored based on the indicated state of the

peaks (red for identified and green unidentified,

yellow suggests molecular ions); dashed lines are

used to separate clusters; peaks identified by the

atomic pattern recognizer are indicated. ML-ToF

identifies the majority of the peaks, among which

atomic patterns constitute 98% intensity of the de-

tected peaks, and about 1% are of possible mole-

cule origins.
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Atomic patterns 
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Figure 10. Identification of Sm-Co-based

hard magnet

Ion mass spectrum of an Sm-Co-based hard mag-

net. The color of the circle markers indicates the

state of the peaks.

ll
OPEN ACCESSArticle
satisfies both the IDR and the abundance ratio of element Fe,

it is still possible that this pattern can be another element.

Therefore, as the last step, the probable label is confirmed

if its m/z ratio can be matched to a m/z ratio database, i.e.,

a pattern with the same IDR and abundance ratio of an

element. In the case of Fe, for instance, if its m/z ratio were

54, 56, 57, 58 Da, then ML-ToF would predict Fe+, but if its

m/z ratio were 60, 72, 73, 74 Da, ML-ToF would indi-

cate FeO+.

Molecular pattern recognizer
When two or more elements with a different natural abundance

ratio combine, the resulting molecule forms a new fingerprint.

As we mentioned in the introduction, the new fingerprint differs

not only in the atomic number but also in the abundance ratio.

This type of combination is often found between the non-metal

elements (e.g., carbon, oxygen, nitrogen, sulfur) and sometimes

metallic elements too.41 This poses a significant challenge to the

database’s construction, since it is impossible to search for all

combinations by brute force. To identify the molecular finger-

print, we introduce amolecular pattern recognizer, which adopts

a different workflow compared with the atomic pattern recog-

nizer, as outlined in Figure 7.

For any undetermined patterns, a molecular pattern recog-

nizer first performs a heuristic search (Figure 7) by matching their

m/z ratios to an on-the-fly molecular label database and assign a

molecular label to this pattern if a match is found. This on-the-fly

database contains all possible recombinations between the

identified atomic patterns and the non-metal elements. The

range of this newmolecular database depends on the maximum

detected m/z ratio. If there are multiple possible candidates, an

abundance-ratio-based LightGBM will be trained and will find

the most probable labels. This part is similar to the atomic

pattern recognizer.
Table 2. Peak pattern identity analysis for Fe-Mn-C-Al alloy

Cluster

number

1 1 1 1 1 1 1 1 1 2 2 2

m/z 2 6 9 12 13.5 14 16 17 18 24 26 27.

Expert H2
+ C2+ Al3+ C+ Al2+ N+ O+ HO+ C3

2+ C2
+ CN+ Mn

ML-ToF H2
+ C2+ Al3+ C+ Al2+ N+ O+ HO+ C3

2+ C2
+ CN+ Mn
DISCUSSION

Atom probe tomography
APT is a microscopy and microanalysis technique that provides

the three-dimensional compositional mapping of materials at the

near-atomic scale.13,42,43 Accurate analysis of atom probe data

typically involves assigning an elemental nature to each ion

based on its m/z-ratio in the ToF-APT mass spectrum. In this

section, we evaluate the performance of our approach on ToF-

APT spectra from different alloy systems.

Aerospace high-strength Al alloy

Al-Zn-Mg-Cu-(Zr) alloys are widely employed in aerospace and

automobile applications due to their low mass density and high

strength.44,45 These alloys are strengthened by a high-volume

fraction of nanoscale precipitates.46,47 ToF-APT of this alloy sys-

tem generally has clear peak patterns and involves only a few

molecular ions (demonstrated in Figure 8). This first example

shows three possible categories for these detected peaks: iden-

tified peaks, unidentified peaks, and uncertain peaks. Overall,

the patterns identified by ML-ToF are consistent with the ex-

pert’s indexing, and the ML-ToF-identified peaks account for

99.9% of the total intensity of detected patterns.

The peaks are grouped into five clusters to facilitate visual-

ization, and they are separately described in Table 1. We pro-

vide a list of tables that compare expert-assigned elements

to those assigned by ML-ToF. For clusters 1, 3, 4, and 5,

theoretical and measured normalized intensity (all involved

normalized intensities sum up to 100) are also present.

More specifically, one can observe that for clusters 1, 3,

and 5, ML-ToF and expert are in complete agreement; ML-

ToF assigns 100% certainty to its selected candidates

(shown in parentheses after the assigned element). However,

in cluster 4 (m/z ratio: 45, 45.5, 46, 47 Da), the ML algorithm

is confused between a random (51%) and a Zr pattern (45%).
2 2 2 2 2 3 3

5 27 28 28.5 29 32 36 40 44 54

56 57 58

55

+ Fe2+ O2
+ Fe O 2+ FeC2

2+ None Fe+ and

FeH+

Mn+

+ Al+ and

Fe2+
O2

+ Fe O 2+ FeC2
2+

and C2O
+

and CN2
+

AlOH+ Fe+ and

FeH+

Mn+

Patterns 2, 100192, February 12, 2021 7



Table 3. Molecular pattern database

Molecular ion FexHaCbNcOd AlxHaCbNcOd MnxHaCbNcOd HaCbNcOd

Database size 329 455 222 750

x = 1, 2; a = 0, 1, 2; b = 0, 1, 2, 3, 4; c = 0, 1, 2, 3, 4; d = 0, 1, 2, 3, 4; charge state = 1, 2 and mass-to-charge ratio is restricted to below 75 Da, since no

peaks are detected beyond such. The search of molecular pattern is performed within this dataset.
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Two main reasons lead to this result. The first relates to the

detection criteria: the fifth peak intensity is too low, such that

a peak at 48 Da is not detected. The second relates to the

abundance ratio: the measured abundance ratio significantly

differs from Zr’s natural abundance ratio. The normalized in-

tensity of the second peak (in theory, the percentile is

11.22% but measured to be 15.18%) deviates 36% from the-

ory. This deviation likely originates from the detection of Zr-H

peaks.48 Despite the uncertainty, ML-ToF still ranks Zr as the

second most likely candidate, with 45% certainty.

Moreover, in the case of the green-colored peaks within

cluster 5, ML-ToF is not able to assign any identity to peak

patterns with m/z ratio values of 63 and 65 Da, while the

expert would assign them as Cu+. This is owing to the fact

that ML-ToF makes predictions of two peak patterns based

on a simple threshold method. In this case, the measured in-

tensity ratio between the two peaks is 0.73. Meanwhile, if it is

stand-alone element Cu, this ratio would be 2.24. Hence ML-

ToF observes a remarkable deviation (67.1%) and rejects

candidate Cu, contrary to an expert assignment. Cu in its

1+ charge state is also prone to be detected as CuH2
1+,

which will then lead to CuH2 to overlap with the Zn peak

at 67 Da, which, in part, explains the discrepancy between

the measured and the theoretical ratios for Zn, which did

not affect ML-ToF’s capacity to identify Zn correctly. In gen-

eral, when ML-ToF associates a peak with two or more

atomic/molecular labels, one can apply the element deconvo-

lution technique49 to differentiate different labels in the same

peak in terms of their spatial distribution.

Medium-Mn steel

Medium-manganese steels are promising candidates for the

automotive industry owing to their excellent mechanical prop-

erties.50 Atom probe studies help us understand the local

chemistry, particularly the crystal defects, such as disloca-

tions and grain boundaries,51–54 thereby providing insights

into the atomic-scale mechanisms at play in this class of

steels. Figure 9 illustrates a mass spectrum for the more com-

plex Fe-Mn-C-Al alloy system. More than 99% of the ions are
Table 4. Peak pattern identity analysis for Sm-Co-based hard magn

Cluster

number

1 1 1 1 2

m/z 27 28

28.5 29

29.5 31.5

32.5

30 30.7

31 31.3 32

45 45.5 46

46.5 47

47.5 48

Expert Fe2+ Co2+ Cu2+ Zr3+ Zr2+ and ZrH2+

ML-ToF Al+ and Fe2+ CO2+ Cu2+ Zr3+ (85%) Zr2+ (48.3%)
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within detected peaks assigned an identity that is consistent

with that given by the field expert.

ML-ToF successfully identified the existence of the ele-

ments Fe, Mn, and Al. Non-metal elemental patterns of O,

N, and C are identified too. Therefore, a new database is pro-

posed, which contains four different types of molecular pat-

terns: FexHaCbNcOd, AlxHaCbNcOd, MnxHaCbNcOd, and

HaCbNcOd. The number of metals (x) is set to 1, 2, 3, 4; H

(a) to 0, 1, 2; and C (b), N (c), and O (d) to 0, 1, 2, 3, 4

and charge state to 1, 2. These ranges include almost all

the common types of molecular patterns. In addition, the

search for molecular patterns is restricted to values below

70 Da since no peaks occur beyond this value. Combining

all the above-mentioned conditions, we construct a molecular

pattern database shown in Table 3.

Table 2 shows both the expert’s and ML-ToF’s assignment

of peaks. In cluster 2, both Al+ and Fe+ were assigned to the

peak at 27 Da, a known overlap that makes the quantification

by APT of Al in Fe or Fe in Al challenging. Even in the pres-

ence of Al, the atomic pattern recognizer is still able to recog-

nize the Fe isotope pattern with 100% certainty. At 40 Da, the

algorithm offers some multiple candidates (FeC2
2+, CN2

+,

C2O
+, with the same number of atoms) compared with the ex-

pert’s choice of FeC2
2+. In such a case, the algorithm would

also choose FeC2
2+ since Fe is the most abundant element

(80% of intensity is assigned to element Fe).

Sm-Co-based hard magnet

Sm-Co-based materials are known for their outstanding mag-

netic properties related to their complex microstructure.55,56

By changing the pinning mechanisms and pinning strength,

the coercivity of the alloy Sm2(Co, Fe, Cu, Zr)17 can be

controlled by substituting Fe for Co.57 In this example (Figure

10), ML-ToF shows its robustness against broadened peaks

due to the relatively high laser power used for this analysis.

As shown in Table 4, in cluster 1, ML-ToF identified

aluminum due to the detection of peaks at Al+ (peak at 13.5

Da) and Al2+ (peak at 27 Da). Also, ML-ToF identifies Zr3+,

albeit with reduced certainty (85%). This is likely due to the
et

2 3 3 4

48.3 49.7 50

50.751.3

56 57

58

59 60 72 73 74

74.5 75 76 77

Mn+ Fe+ Co+ and

CoH+

Sm2+

Peak not

detected

Peak not detected Co+ and

CoH+

Sm2+



Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

Cluster 9

Cluster 10

Cluster 11

Cluster 12
Cluster 13

Identified Atomic Patterns: In, Cu, S, O

[m/z]

Figure 11. Identification of Cu-In-S system

Ion mass spectrum of a solar cell absorber system.

Because most of the peaks are molecular pattern,

for better visualization, circular markers with

different colors are used to separate different clus-

ters. The atomic pattern recognizer has identified In,

Cu, S, and O as the atomic elements.
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long thermal tails of the peaks. In cluster 2, ML-ToF identified

Zr2+ with 48.3% certainty at 45, 45.5, 46, 47, and 48 Da. This

relatively low probability (still considerably higher than the

second-highest pattern: random [30%]) indicates the exis-

tence of other types of ions, which is pointed out by an expert

as ZrH2+. ML-ToF fails to assign any labels to peaks at 48.3,

49.6, 50, 50.6, and 51.3 Da. This is largely due to their rela-

tively low signal-to-background ratio, which does not meet

our detection criteria. In cluster 3, peaks at 56, 57, and

58 Da are not detected due to their low signal-to-noise ratio

but still labeled by experts as Fe+. Finally, at cluster 72, 73,

74, 74.5, 75, 76, and 77 Da, the element Sm is identified.

Elemental signatures like N+ (peak at 14 Da), As+ (peak at 75

Da), Sc+ (peak at 45 Da), and Ca2+ are identified too. But since

we did not detect other charge states from these one/two

peak elements, ML-ToF rejects these possible candidates.

This can be considered as an inherent limit of the instrument it-

self rather than ML-ToF.
Solar cell absorber
Here, we showcase ML-ToF’s application to a much more

complex mass spectrum. Cu(In,Ga)S2 is a compound semi-

conductor with a direct band gap, which can be tuned be-

tween 1.55 and 2.4 eV for pure CuInS2 and CuGaS2, respec-

tively.58 It is, therefore, suitable as an absorber material in

solar cells, especially as a top junction in tandem solar cells,

to overcome the Shockley-Queisser limit.59 However, the

microstructure, especially the composition-structure relation-

ships of grain boundaries, for this material is not well

known.60,61 Here, we present for clarity only the mass spec-

trum of the Cu-In-S system (without Ga).

Indexing the complex mass spectrum, shown in Figure 11,

is more difficult than the previous two cases. ML-ToF iden-

tifies atomic fingerprints: In, Cu, S, and O. As they tend to re-

combine with one another, the newly formed molecular

pattern will change in terms of not only the atomic number

but also the abundance ratio. Such an example is shown in

Table 6. Cu and S form a compound (CuS) with atomic

numbers of 95, 97, and 99, and a new abundance ratio of

63.7:32.2:1.3. Table 7 shows that the size of the new molec-

ular database is also considerably larger than in the case of

medium-Mn steel. Nevertheless, as we can see in the peak

identity analysis in Table 5, ML-ToF provides a result almost

identical to that of the field expert without any prior

knowledge.

As can be seen from Table 5, for clusters 1, 2, 4, 7, 8, 10, and

11, ML-ToF’s choice of element identity is identical to the ex-
pert’s. For cluster 3, ML-ToF fails to assign any labels to peak

48 Da, whereas the expert assigns Ti+. This is because the back-

ground signal is relatively higher compared with the side peaks

of Ti. Therefore only one peak is detected, whereas, in theory,

element Ti should show five peaks. Regarding cluster 5 (81–83

Da), the expert chose CuOH2
+, while ML-ToF chose CuOH+

and CuOH2
+.

Two other interesting cases are worth mentioning. The first

case is CuN2
+, which is identified at (91–93 Da, cluster 6) but

not confirmed by ML-ToF. A closer look reveals that this am-

biguity is due to the fact that ML-ToF did not identify the

pattern associated with nitrogen at 7 or 14 Da, i.e., N2+ and

N+. Therefore no N-containing compounds in the new molec-

ular pattern database involve nitrogen. In the second case,

ML-ToF can predict the identity (Cu4S2
+ and InS+) at 142–

145 Da (cluster 9), while the user did not assign any identity

to them.

Overall, ML-ToF has shown high fidelity in handling compli-

cated cases, even identifying some peaks for which humans

did not assign any label. More importantly, it takes ML-ToF

only a half-second to complete the task. Experts would

have taken 15 min on average, sometimes even longer,

when scientists had no prior experience with the material

system.
Secondary ion mass spectrometry
ToF-SIMS is another analytical imaging mass spectrometry

technique, which provides unique insights into surface

chemistry.62–64 The large-scale and high-dimensional data

generated by contemporary ToF-SIMS instruments consists

of x-y-z spatial information and mass spectrum associated

with each pixel. In comparison to APT, the strength of

SIMS is its sensitivity associated with the larger probe vol-

umes. The associated drawback is lower spatial resolution.

A single ToF-SIMS dataset contains hundreds to thousands

of mass spectra. In comparison to APT mass spectra, peak

patterns of ToF-SIMS generally have a high signal-to-noise

ratio. Although many peak patterns have very low intensity,

these peaks are still of great importance and need to be

identified. Hence the detection criteria are also different

from those for ToF-APT: peak height = 0.0001 (log count); in-

terpeak distance = 0.25 Da; prominence = 0.0001 (log count).

In the following examples, we demonstrate the efficiency of

ML-ToF on ToF-SIMS mass spectra of different complexities.

Here we omit the tabular peak analysis and directly insert

ML-ToF-assigned-labels as the expert-assigned labels are

available for only a few peaks.
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Table 6. An example of a new molecule pattern formation ( Cu

and S form CuS)

m/z ratio 63 65 (Cu) 32 33 34 (S) 95 97 99 (CuS)

Abundance

ratio

69.1:30.9 95:0.8:4.2 65.7:32.2:1.3

Molecule CuS shows a new pattern.
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Corrosion and wear Co-based alloy

The chemical composition (wt%) of this alloy characterized

by nanoscopic SIMS is Ni 0.32, Cr 0.20, Al 0.08, and Y

0.4, balanced with Co, which is designed as a corrosion-

and wear-resistant alloy employed in turbine blades.65 The

mass spectrum shown in Figure 12 was constructed by

TOF-SIMS Explorer 1.3.1.0 software from the total ions infor-

mation of the scanned region. In this spectrum, ToF-ML

identifies Al+, Cr+, Co+, Ni+, Ca+, Ti+. This composition is

relatively simple. However, abundant complex molecular fin-

gerprints are identified by ML-ToF, as evidenced in

Figure 12.

Unknown alloy from mine dump

Finally, ML-ToF was tested on an unknown alloy sample from a

mine dump in Erzgebirge, Germany (Figure 13). There is no spec-

ification for nominal composition. The spectrum is produced by

dynamic SIMS, showing complex peak patterns. ToF-ML iden-

tifies a variety of elements and compounds: Na+, Al+, Fe+, Co+,

Cu+, Ni+, As+, Mo+, Bi+, NaO+, MnO+, and CuO+. ML-ToF is

able to extract rich information even with no prior knowledge

on the material.
Conclusions
We have developed a gradient-boosting-decision-tree-based

approach that converts raw ToF mass spectra to its

elemental or molecular identified form. The training dataset

is generated based on natural abundance ratios, which

does not require any human labeling. The workflow is vali-

dated on experimental datasets from APT and SIMS. Its out-

puts are compared with identification provided by different

operators.

The main bottleneck of our approach mainly lies at the

detection limits. Higher signal-to-noise ratio of the spectrum

will lead to more identified patterns. Maximum peak intensity

can be very sensitive to various noise sources (e.g., shot

noise). To further increase the robustness of ML-ToF, one

can use integral intensity as the input. A suggested criterion

for such integration is to start from the maximum peak posi-

tion and continue to the position whose peak intensity is 3 s

above the surrounding noise level. Sigma is the standard
Table 7. New database

Molecular ion CuxSyOaHb InxSyOaHb SyOaHb

Database size 2,059 1,602 450

x = 1, 2, 3, 4; y = 1, 2, 3; a = 0, 1, 2, 3; b = 0, 1, 2; charge state = 1, 2, and

mass-to-charge ratio is restricted to below 300 Da, since no peaks are

detected beyond that. The search of molecular patterns is performed

within this dataset.



Al+

Ca+
Ti+

Cr+

Ni+Co+

Al2O+Co2OH2
2+

AlOC3+

Al2O2
+ Al2O2H+

Detected peaks

Al2O+Co2OH2
2+

AlOC3+

Al2O2
+ Al2O2H+

Figure 12. Identification of spectral patterns

from secondary ionmass spectrometry using

ML-ToF

The region of interest of mass-to-charge ratio

ranges from 20 to 90 Da. ML-ToF also identifies

complex molecular patterns. This can be seen in the

zoom-in region (65–90 Da); note that the count [log]

value is very small, because the spectrum was

already normalized once by the nanoscopic SIMS

software.
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deviation of the surrounding noise level, assuming the noise is

Gaussian distributed; 3 s above means there is a 95% chance

that the signal at this level is not noise.66 Another limitation is

that the atomic dataset does not include all elements in the

periodic table, because sufficient testing and validation must

be performed when new elements are added to the training

data. Mass spectra containing these new elements were not

typically available at the time the method was being devel-

oped. The next step is to collect more data and extend ML-

ToF to more element types, thus making ML-ToF a universal

technique for ToF spectral data analysis. Currently, ML-ToF

still relies on brute-force search of molecular ion combina-

tions. To accelerate this search process, one could envision

a heuristic search algorithm to be integrated into the ML-

ToF (e.g., beam search67), which rules out impossible combi-

nations of ions.

The identification of monoisotopic species is another bottle-

neck of ML-TOF. Current ML-ToF could be improved using

the mass defects (i.e., actual atomic masses) as an indicator

for the existence of monoisotopic species, if ToF mass

spectra were accurately calibrated. Finally, the implementation

of real-time ML-ToF for mass spectra pattern recognition dur-

ing the atom probe experiment has the potential of avoiding

peak overlapping problems, thus further boosting the accu-

racy of APT. Finally, our method is open source, easy to

implement, and capable of making instant, accurate, and

consistent predictions. A wide range of ToF-based techniques

can benefit from this approach, e.g., hunting for patterns of

biomarkers in high-throughput ToF-MALDI data or for contam-

ination on the solid surface in SIMS data, etc. ML-ToF en-

ables significant acceleration of the identification process

and paves the way for more reliable and more reproducible

data analysis.
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