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The development of the various lymphoid 
lineages is regulated by many transcription 
factors, including the dimerizing basic leucine 
zipper (bZIP) proteins collectively known as 
activator protein 1 (AP-1; Wagner and Eferl, 
2005). The classical AP-1 transcription factor 
consists of a Jun:Fos heterodimer, although  
tissue-restricted bZIP proteins, including several 
of the Maf, Atf, and Batf proteins, provide 
alternative partner choices for Fos and/or Jun 
(Eferl and Wagner, 2003). Properties con-
ferred on AP-1 by dimer composition and 
posttranslational modifications influence the 
DNA targets bound by AP-1 and, in some 
cases, convert what is normally a transcrip-
tional activator into a transcriptional repres-
sor (Eferl and Wagner, 2003; Hess et al., 2004; 
Amoutzias et al., 2006). It is not surprising, 
therefore, that AP-1 plays roles in cell growth, 
differentiation, and apoptosis (Hess et al., 
2004) and that deregulated AP-1 activity is a 
feature of many pathologies, including can-
cer and neurological diseases (Eferl and Wagner, 
2003; Raivich and Behrens, 2006).

Our laboratory studies Batf, an AP-1 pro-
tein which is expressed in immune cells and 
whose overall level of expression is regulated 
by developmental transitions (Li et al., 2001; 
Williams et al., 2001) and environmental cues 
(Senga et al., 2002; Johansen et al., 2003; Jung 
et al., 2004). Batf is the founding member of 
the Batf protein family (Batf, Batf2, and Batf3; 
Dorsey et al., 1995; Aronheim et al., 1997; 
Lim et al., 2006). All three Batf proteins com-
pete with Fos for partnering with Jun and, in 
doing so, generate bZIP dimers that inhibit the 
transcription of AP-1 reporter genes (Echlin 
et al., 2000; Iacobelli et al., 2000; Su et al., 
2008). Previous studies using a thymus-specific 
BATF transgene examined how constitutive 
AP-1 inhibition has an impact on the growth 
and development of T cells in vivo. Results 
showed that although the proliferative response 
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Batf belongs to the activator protein 1 superfamily of basic leucine zipper transcription 
factors that includes Fos, Jun, and Atf proteins. Batf is expressed in mouse T and B lympho-
cytes, although the importance of Batf to the function of these lineages has not been fully 
investigated. We generated mice (BatfZ/Z) in which Batf protein is not produced. BatfZ/Z 
mice contain normal numbers of B cells but show reduced numbers of peripheral CD4+  
T cells. Analysis of CD4+ T helper (Th) cell subsets in BatfZ/Z mice demonstrated that Batf 
is required for the development of functional Th type 17 (Th17), Th2, and follicular Th 
(Tfh) cells. In response to antigen immunization, germinal centers were absent in BatfZ/Z 
mice and the maturation of Ig-secreting B cells was impaired. Although adoptive transfer 
experiments confirmed that this B cell phenotype can be driven by defects in the BatfZ/Z 
CD4+ T cell compartment, stimulation of BatfZ/Z B cells in vitro, or by a T cell–independent 
antigen in vivo, resulted in proliferation but not class-switch recombination. We conclude 
that loss of Batf disrupts multiple components of the lymphocyte communication network 
that are required for a robust immune response.
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analyzed by flow cytometry. No significant difference in 
thymic T cell populations was observed (Fig. S2 A). In the 
periphery, a trend toward a decreased number of T cells and 
an increase in B cell numbers was noted, yet statistical sig-
nificance was established only for CD4+ T cells (Fig. 1 D). 
In agreement with a recent study (Schraml et al., 2009), 
we did not detect increases in any T cell subset in BatfZ/Z 
mice, including Vi NKT cells (unpublished data). This was 
unexpected based on the NKT cell–deficient phenotype 
of p56lckHA-BATF mice (Williams et al., 2001; Zullo et al., 
2007) and on experimental evidence that BATF inhibits 
cell proliferation in several different contexts (Echlin et al.,  
2000; Williams et al., 2001; Senga et al., 2002; Thornton et al., 
2006). Instead, this supports a model where the overexpres-
sion of an AP-1 inhibitor, such as Batf, can have a dramatic 
impact on cells, whereas the impact of deleting Batf might 
be masked by the compensatory actions of other AP-1 in-
hibitors (e.g., Batf3, JunD, FosB, and Atf3; Hess et al., 2004). 
Although a comparative profile of all AP-1 proteins ex-
pressed by various lymphocyte lineages has yet to be com-
piled, Batf and Batf3 are coexpressed in mouse Th1 cells, for 
example (Williams et al., 2001; Hildner et al., 2008). In this 
regard, transgenic mice in which either of these proteins is 
overexpressed during T cell development share phenotypes, 
including the NKT cell defect (unpublished data), whereas 
the absence of Batf or Batf3 has an impact on other cell types 
(Hildner et al., 2008; Schraml et al., 2009). Thus, it is the 
unique functions of Batf that will be revealed by a thorough 
analysis of BatfZ/Z mice.

Th2 and Th17 cells require Batf
The decrease in peripheral CD4+ T cells associated with Batf 
deficiency prompted us to further investigate this phenotype. 
CD4+ T cells represent multiple T helper (Th) cell lineages 
(Zhou et al., 2009). To measure Th cell subsets in Batf+/+ and 
BatfZ/Z mice, CD4+ T cells isolated directly from spleen 
and PP were analyzed by flow cytometry after a brief stimu-
lation. IFN- and IL-4 are well characterized markers of the 
Th1 and Th2 lineages, respectively, and no statistically sig-
nificant difference was noted for either cell type (Fig. 2 A). 
In contrast, a dramatic underrepresentation of CD4+ T cells 
expressing IL-17 (Th17 cells) was apparent in BatfZ/Z mice 
(Fig. 2 A). A small but significant reduction in Foxp3+ CD4+ 
regulatory T (T reg) cells also was noted in BatfZ/Z mice 
(Fig. S2 B).

To investigate if Batf deficiency affects the expression 
of genes that are markers for activated CD4+ Th cell sub-
sets, RNA was prepared from CD4+ Batf+/+ and BatfZ/Z 
splenocytes after stimulation with anti-CD3 mAb for 48 h. 
qPCR was used to quantify transcripts unique to Th17  
(IL-21, IL-23R, and IL-17), Th1 (T-bet), Th2 (Gata3 and  
IL-4), and T reg (Foxp3) cells. Results confirm the underrep-
resentation of Th17 cells, the normal levels of Th1 cells, and  
the modest reduction of T reg cells in BatfZ/Z mice (Fig. 2 B).  
Interestingly, although no significant change in Th2 cells 
was detected by flow cytometry (Fig. 2 A), the low levels of 

of transgenic thymocytes was decreased in vitro, all T cell 
subsets, with the exception of NKT cells, were present in 
normal numbers in vivo (Williams et al., 2003; Zullo et al., 
2007). The exquisite sensitivity of Vi NKT cells to BATF 
overexpression provided the first evidence that downstream 
signaling through the invariant NKT cell receptor, which is 
largely responsible for the unique properties of these cells 
(Kronenberg and Engel, 2007), relies on the precise regula-
tion of AP-1.

In this study, we report the immune system phenotype of 
mice (BatfZ/Z) in which Batf protein expression has been  
eliminated. In these animals, the numbers of peripheral T cells, 
but not B cells, are affected. In agreement with a study pub-
lished while this work was in progress (Schraml et al., 2009), 
we detect a significant decrease in CD4+ T cells and a dra-
matic reduction in Th17 cells. However, we also report that 
loss of Batf has a negative impact on Th2 cells, follicular Th 
(Tfh) cells, and the humoral immune response. Germinal 
centers (GCs) do not form in antigen-challenged BatfZ/Z 
mice and B cells do not undergo productive Ig class-switch 
recombination (CSR), leading to dysgammaglobulinemia. 
These data identify essential roles for Batf in several Th cell 
lineages and in coordinating the transcriptional program re-
quired for the differentiation of peripheral B cells into anti-
body (Ab)-producing cells.

RESULTS AND DISCUSSION
Decreased numbers of peripheral CD4+ T cells in BatfZ/Z mice
To examine the role of Batf in lymphocyte development, we 
first generated Batf knockin (Batf KI) mice in which exon 3, 
the ZIP coding region of Batf, is expressed with a C-terminal 
hemagglutinin antigen (HA) epitope tag (Fig. 1 A). This modi-
fied exon and the Pgk-neo cassette used for ES cell selection are 
flanked by loxP sites, permitting the excision of both elements 
using Cre recombinase. Batf KI mice were crossed to Cre- 
expressing mice (EIIa-Cre), producing heterozygous (Batf+/Z) 
mice which were crossed to generate homozygous BatfZ/Z 
mice and littermate Batf+/Z and Batf+/+ mice for comparison 
(Fig. 1, A and B). BatfZ/Z mice do not produce a functional 
Batf bZIP protein. Immunoblots using BatfZ/Z splenocyte ex-
tracts and anti-HA antiserum failed to detect a protein (Fig. 1 C).  
As predicted, semi-quantitative PCR (qPCR) analysis of RNA 
isolated from BatfZ/Z splenocytes using several primer sets 
detected transcripts representing exons 1 and 2 but no tran-
script specifying the Batf ZIP domain (Fig. S1, A and B).

Batf mRNA and protein are expressed in mouse B cells 
and in all major T cell subsets examined, with the exception  
of double-positive thymocytes (Williams et al., 2001) which,  
interestingly, lack all AP-1 activity (Rincón and Flavell, 1996). 
Mice expressing human BATF throughout T cell develop-
ment in the thymus (p56lckHA-BATF) possess normal num-
bers of CD4+ and CD8+ T cells but are impaired in the 
development of Vi NKT cells (Williams et al., 2003; Zullo  
et al., 2007). To determine if B or T cell development is 
altered by the absence of Batf, cells from the thymus, spleen, 
and Peyer’s patches (PPs) of Batf+/+ and BatfZ/Z mice were 

http://www.jem.org/cgi/content/full/jem.20091548/DC1
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of naive BatfZ/Z T cells to differentiate to T reg cells in vitro 
(Fig. S2 D). Our results also confirmed that BatfZ/Z cells 
cannot be directed toward the Th17 lineage under conditions 
where >40% of control Batf+/+ cells express IL-17 (Fig. S2 E).  
In contrast, attempts to assess Th2 polarization by flow cy-
tometry produced inconsistent results for both Batf+/+ and 
BatfZ/Z cells over several experiments, prompting us to rely 
on qPCR analysis of Th2 transcripts as an indicator of differ
entiation. qPCR with RNA from in vitro–polarized Th17 
cultures was performed in parallel. As shown in Fig. 2 (C and D),  
when compared with control cells, BatfZ/Z cells did not in-
duce significant levels of either Th2- or Th17-specific tran-
scripts. Although Schraml et al. (2009) did not describe a 
defect in polarized Th2 differentiation for their Batf-deficient 
cells, our results would indicate that there is, at minimum, a 
partial defect in the Th2 cell subset that contributes to a de-
creased level of IL-4 in BatfZ/Z mice.

IL-4 and Gata3 mRNA noted in Fig. 2 B suggest a role for 
Batf in Th2 responses. As confirmation that a difference in 
mRNA by this assay reflects a change in protein, ELISA was 
performed on media harvested from stimulated Batf+/+ and  
BatfZ/Z splenocytes. Results showed that BatfZ/Z cells 
secrete normal levels of IFN-, reduced levels of IL-4, and 
extremely low levels of IL-17 (unpublished data).

To compare the ability of Batf+/+ and BatfZ/Z CD4+  
T cells to respond to cues that polarize cells to distinct Th 
cell lineages, naive CD4+ T splenocytes, cultured under well 
defined Th1, Th2, Th17, and T reg cell conditions, were ana-
lyzed by flow cytometry. This general approach was used pre-
viously (Schraml et al. 2009) to demonstrate a role for Batf 
in Th17 differentiation. In agreement with those studies, we 
found that Batf+/+ and BatfZ/Z cells were equally compe-
tent for Th1 differentiation (Fig. S2 C) and that the decreased 
levels of T reg cells noted in vivo did not reflect an inability 

Figure 1.  Profile of T and B cells in BatfZ/Z mice. (A) Schematic of Batf KI and Batf exon 3–deleted (Z) alleles. Batf exons 1–3 are numbered. Filled 
triangles indicate loxP sites. Arrows indicate genotyping primers. Numbered arrows indicate primers used to identify targeted ES clones. S, SpeI; X, XbaI; E, 
EcoRI; B, BamHI; Xh, XhoI; P, PstI. (B) A representative DNA blot from five independent experiments detects homozygous deletion of Batf exon 3 in BatfZ/Z 
mice. (C) Splenocytes from Batf KI/KI and BatfZ/Z mice were stimulated with 2.5 ng/ml PMA and 125 ng/ml ionomycin (P + I) for 6 h. Cell extracts were 
immunoblotted using anti-HA mAb to detect Batf and anti–Hsp-90 mAb as a control for sample loading. A representative blot from three independent 
experiments is shown. (D) Cells from spleen and PP of Batf+/+ and Batf Z/Z mice were analyzed by flow cytometry using anti-CD4 and anti-CD8 mAb to 
detect T cells and anti-CD19 mAb to detect B cells. The mean percentage of total cells of each set is shown on the left, and the mean cell number per spleen 
or per mouse PP is shown on the right. Data are means of three experiments performed with three mice per group (n = 9). Error bars indicate SE. *, P < 0.05.
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stimulate IL-21–producing CD4+ Tfh cells and the B cell  
Ab response (King, 2009). Mice lacking IL-4 and the IL-21 
receptor exhibit severe defects in Ab production (Ozaki  

et al., 2002). To test if the combined 
IL-4– and IL-21– deficient phenotype 
of BatfZ/Z mice results in reduced 
Ig production, circulating IgM, IgG1, 
IgG2c, IgA, and IgE were quantified 
by ELISA. As shown in Fig. 3 A, when 
compared with Batf+/+ animals, BatfZ/Z 
mice displayed a modest reduction in 
circulating IgM. Strikingly, the levels 
of all other Ig classes examined were 
barely detectable in BatfZ/Z mice.

To test if Ig production in BatfZ/Z 
mice remains low in the presence of anti-
gen challenge, Batf+/+ and BatfZ/Z mice 
were injected with sheep RBC (sRBC)  
or mock injected with PBS. After 7 d,  
serum was isolated and circulating Ig  
quantified by ELISA. Again, although 
anti-sRBC IgM was induced in both 
Batf+/+ and BatfZ/Z mice, induction of  
IgG by BatfZ/Z mice was only 26% of  
the control (Fig. 3 B). Immunohisto
chemistry (IHC) confirmed the low levels  
of IgG1 and IgG2c in spleens of BatfZ/Z 

Impaired Ig production in BatfZ/Z mice
IL-21 is required for the differentiation of Th17 cells and, 
in turn, is produced by Th17 cells (and other cells types) to 

Figure 2.  Th17 and Th2 differentiation 
is impaired in BatfZ/Z mice. (A) Cells from 
spleens and PP of BatfZ/Z and Batf+/+ mice were 
surface stained using anti-CD4 mAb. After stimu-
lation with 50 ng/ml P + 1 µg/ml I with 1 µg/ml 
monensin for 4 h, intracellular mAb staining was 
used detect IFN-–, IL-4–, and IL-17–expressing 
cells by flow cytometry. Representative flow plots 
are shown, along with the mean percentage of 
CD4+ cells positive for each cytokine, calculated 
from two experiments with three mice per  
group (n = 6). Error bars indicate SE. *, P < 0.05.  
(B) CD4+ cells from spleens of BatfZ/Z and Batf+/+ 
mice (n = 3) were stimulated with anti-CD3 
mAb for 48 h. RNA was isolated, converted to 
cDNA, and assayed in duplicate for the indicated 
transcripts by qPCR. The mean relative mRNA 
expression is shown. Error bars indicate SE. *,  
P < 0.05. (C and D) Naive T cells from BatfZ/Z 
and Batf+/+ spleens were cultured for 5–6 d with 
5 µg/ml anti-CD3, 2 µg/ml anti-CD28, and  
20 U/ml rhIL-2 and the following skewing condi-
tions: Th2, 20 ng/ml rmIL-4, 10 µg/ml anti–IFN- 
mAb, and 10 µg/ml anti-IL-12 mAb; Th17 was 
described in Wang et al. (2009). Cytokine gene 
expression was detected by qPCR as in B. Data 
shown were averaged from five (Th2) and three 
(Th17) independent RNA preps assayed in dupli-
cate. Error bars indicate SE. *, P < 0.05.
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Figure 3.  Dysgammaglobulinemia in BatfZ/Z mice. (A) ELISA was performed to measure the indicated Ig in sera of Batf+/+ and BatfZ/Z mice. 
Shown are mean results from four mice per group (n = 4) assayed in duplicate. Error bars indicate SE. *, P < 0.05. (B) Sera from Batf+/+ and BatfZ/Z mice, 
immunized with sRBC or mock injected with PBS, were used in ELISA to detect sRBC-specific IgM or IgG. Mean results from one (n = 3) of two experi-
ments are shown. Error bars indicate SE. *, P < 0.05. (C) Spleen sections from mice in B (n = 3 for each genotype) were incubated with primary anti-IgG1 
and anti-IgG2c Abs. Complexes were detected using biotinylated secondary Abs and Vectastain ABC reagent. Shown are representative images, counter-
stained with H (no E) and photographed at 40×. f, follicle. Bars, 50 µm. (D) Spleen sections from mice in B (n = 3 for each genotype) were stained with  
H + E (left) and photographed at 4× (bars, 250 µm) or 20× (insets; bars, 50 µm). GCs (arrows) were detected on additional sections (right) using biotinyl-
ated PNA and Vectastain ABC reagent, counterstained with H (no E; 20×; bars, 50 µm) or using biotinylated PNA, anti–mouse B220, DAPI, and fluores-
cently labeled secondary mAbs (60×; bars, 50 µm).
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mice (Fig. 3 C). The morphology of additional spleen sec-
tions from sRBC-challenged Batf+/+ and BatfZ/Z mice was 
examined (Fig. 3 D). Although hematoxylin and eosin (H + E) 
and peanut agglutinin (PNA) staining demonstrated the pres-
ence of GCs in Batf+/+ mice, PNA+ GCs were conspicuously 
absent in BatfZ/Z mice.

Reduced Tfh cell number and function in BatfZ/Z mice
The production of high-affinity class-switched Ab relies on 
GC interactions between B cells and Tfh cells (King, 2009). 
Tfh cells are characterized by the expression of CXCR5 
(CXC chemokine receptor 5), which directs the homing of 
Tfh cells to B cell follicles in the spleen and lymph nodes 
(Kim et al., 2001). There is strong evidence to suggest that 
IL-21 is critical for Tfh development and that the IL-21 pro-
duced by Tfh cells in GCs is essential for the B cell response 
(Nurieva et al., 2008; Vogelzang et al., 2008; King, 2009). To 
quantify Tfh cells in Batf+/+ and BatfZ/Z mice, CD4+ T cells 
were stained with mAb specific for CXCR5 and CD62L 
and analyzed by flow cytometry (Fig. 4 A). Results show that 
in BatfZ/Z mice, memory-type CD62LCXCR5+ Tfh cells 
are reduced by 70% in the spleen (Fig. 4 B, top) and by 90% 
in PP (Fig. 4 B, bottom). To examine if Tfh cells in BatfZ/Z 
mice are functional, purified CD4+ T cells from PP were 
challenged in vitro to migrate to CXCL13, the CXCR5 li-
gand. Migrating cells were counted and expressed as a per-
centage of CD62LCXCR5+ cells in the initial suspensions. 
As shown in Fig. 4 C, 25% of Batf+/+ Tfh cells were capable 
of chemotaxis, whereas <10% of BatfZ/Z Tfh cells displayed 
this behavior. These results are further support for an essen-
tial role for Batf in CXCR5+ Tfh cells.

Batf deletion has an impact on multiple CD4+ T cell lin-
eages and, in doing so, generates an environment unfavorable 
to a robust Ab response. To demonstrate the T cell depen-
dence of this phenotype, adoptive transfer was used to re-
constitute T cell–deficient mice with CD4+ T cells purified 
from Batf+/+ or BatfZ/Z mice. After transfer, the mice were 
challenged with sRBC and, 8 d later, Tfh cells were quan-
tified and sera assayed for Ig. As predicted, when compared 
with mice reconstituted with Batf+/+ T cells, the spleens and 
lymph nodes of mice reconstituted with BatfZ/Z T cells 
were not populated with CD62LCXCR5+ cells (Fig. 5, 
A and B) and sera from these animals contained less sRBC-
induced IgM and IgG1 (Fig. 5 C).

BatfZ/Z B cells do not express Aicda mRNA  
and do not undergo CSR
To this point, our data implicate defects associated with sev-
eral CD4+ T cell subsets as the underlying cause of Ig defi-
ciency in BatfZ/Z mice. On the other hand, because Batf 
is expressed in mouse B cells (Williams et al., 2001) and 
functions as an inducible growth regulator in human B cells  
(Johansen et al., 2003), the loss of Batf could impact B cell func
tion as well. To examine this possibility, resting B cells from 
spleens of Batf+/+ and BatfZ/Z mice were cultured in con-
trol medium or in medium containing LPS, with or with-
out added IL-4. Cells were analyzed for proliferation by 
BrdU staining after 40 h and for surface and secreted Ig 
after 4 d. Batf+/+ and BatfZ/Z B cells proliferated similarly 
after exposure to LPS or LPS and IL-4 (Fig. 6 A). B cells 
of both genotypes also expressed surface and secreted IgM 
under all three growth conditions (Fig. 6 B). Strikingly, al-
though control cells stimulated with LPS and IL-4 decreased  

Figure 4.  Dysfunctional Tfh cells in BatfZ/Z mice. (A) Cells from 
spleen and PP of BatfZ/Z and Batf+/+ mice were stained with anti-CD4, 
anti-CD44, anti-CD62L, and anti-CXCR5 mAb (or isotype control) and Tfh 
cells detected by flow cytometry. Representative plots (n = 9) showing 
CXCR5 expression after gating on CD44+CD4+CD62L+ or CD44+CD4+CD62L 
cells are presented. (B) Datasets from A (n = 9) are plotted as the mean per-
centage of CD62LCXCR5+ of total CD4+ (left) or number of CXCR5+ cells 
per organ or per total mouse PP (right) with SE. *, P < 0.05. (C) 5 × 105 cells 
from PP were allowed to migrate to rmCXCL13 for 3 h. Migrated cells were 
stained with anti-CD4 and anti-CD62L mAbs and analyzed by flow cytom-
etry. Migration is the number of migrating cells (+ ligand) minus the num-
ber migrating cells (no ligand) expressed as a percentage of CD4+CD62L 
or CD4+CD62L+ cells in the starting population. Mean results from three 
experiments are shown (n = 3). Error bars indicate SE. *, P < 0.05.
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dine deaminase) was undetectable in stimulated BatfZ/Z cells  
(Fig. 6 C). This finding is consistent with the lack of CSR 
and suggests that Batf participates in an essential molecular 
event downstream of B cell activation and upstream of Aicda 
expression, CSR, and somatic hypermutation (Fairfax et al., 
2008; Park et al., 2009).

To confirm that this in vitro result reflects a B cell de-
fect in vivo, Batf+/+ and BatfZ/Z mice were injected with 
TNP-LPS. After 4 d, T cell–independent responses were 
assayed by ELISA and IHC. Although Batf+/+ animals in-
duced TNP-LPS–specific IgG1 (Fig. 6 D) and their spleens 
displayed foci of both IgG1- and IgG2c-producing B cells 
(Fig. 6 E), BatfZ/Z mice showed no T cell–independent 
antigen response by either assay.

The recent work of Schraml et al. (2009) clearly demon
strated a role for Batf in Th17 cell differentiation and cyto-
kine gene regulation. Our studies have confirmed that role 
and have described additional roles for Batf in Tfh and Th2 
cells that are required for the generation of a robust T cell–
dependent antigen response in vivo. Moreover, our studies 
have revealed a role for Batf in the intrinsic responsiveness of  
B cells to T cell–independent stimulation in vitro and in vivo. 
Future studies, in which we exploit our conditional Batf Z 
allele to disrupt Batf function in specific lymphocyte com-
partments or during key developmental transitions, will allow 
us to further dissect the molecular details of these intriguing 
Batf-dependent phenotypes.

MATERIALS AND METHODS
Generation of BatfKI/KI and BatfZ/Z mice. Batf primers with a 5 loxP 
sequence and a 3 HA epitope coding sequence (+ stop) were used to amplify 
a region of intron 2 plus exon 3 ( stop) of the Batf gene. This fragment was 
cloned into pBS KS and modified by insertion of the Batf 3 UTR at SpeI and 
of a loxP-flanked Pgk-neomycin selection cassette at XbaI. The Batf KI sequence 
was excised using EcoRI and cloned into pBS KS ARMS containing 3.5 kbp 
of 5 and 2.7 kbp of 3 Batf genomic DNA. This plasmid, pBS KS CKO, was 
linearized and introduced into 129/SV mouse embryonic stem cells, and the 
correct targeting of drug-resistant clones was determined by PCR with for-
ward (5-GGACTAGTCATCTTGCCTT-3) and reverse primers to detect 
endogenous (5-GGAAGGCATGGGCACTCTATAC-3) or recombined 
(5-CGAGCATAGTGAGACGTGCTAC-3) Batf. The Transgenic Mouse 
Core Facility of the Purdue University Center for Cancer Research produced 
germline chimeras which were crossed to C57BL/6 mice (Harlan). Batf+/KI 
mice were mated to produce BatfKI/KI mice which were crossed to EIIaCre 
mice (JAX). Batf+/Z mice were backcrossed to C57BL/6 mice four to six  
times and were mated to generate BatfZ/Z and littermate control Batf+/Z and 
Batf+/+ mice that were used for experimentation at 7–12 wk of age. The geno-
typing primers for Batf Z are forward, 5-GCTTGTCTCTCACTAGT
GAG-3, and reverse, 5-CTGTAGAGTGACTGGCTC-3. All mice used in 
this study were maintained in a specific pathogen-free animal facility according 
to institutional guidelines. All animal protocols were reviewed and approved by 
the Purdue University Animal Care and Use Committee.

DNA blot hybridization. 20 µg DNA, isolated from tail tips by phenol/
chloroform extraction, was digested with SpeI and resolved by 0.8% agarose 
gel electrophoresis. DNA was transferred to Zeta Probe membrane (Bio-
Rad Laboratories), cross-linked, and probed using the Batf cDNA as previ-
ously described (Williams et al., 2001).

Immunoblot. Protein was isolated from stimulated splenocytes using 
RIPA buffer supplemented with protease inhibitors. Immunoblots to detect 

IgM production and began producing IgG1 and IgE, BatfZ/Z 
cells continued to produce high levels of IgM, indicating that 
Batf is required for efficient CSR.

The inability of BatfZ/Z B cells to undergo CSR after 
stimulation was characterized further using qPCR to ex-
amine the expression of key genes known to participate in 
events critical for B cell maturation and CSR (Honjo et al.,  
2004; Fairfax et al., 2008). As a first indication that Batf was 
regulated as a part of this process, we observed that Batf 
mRNA is induced by LPS in Batf+/+ cells and was increased 
further by costimulation with IL-4 (Fig. 6 C). The absence 
of Batf did not dramatically affect the stimulation-induced 
down-regulation of Pax5 or Bcl-6 mRNA, nor did it prevent 
the up-regulation of Irf4, Prdm1, or Xbp1s mRNAs, although 
BatfZ/Z B cells did appear to resist IL-4-induced modula-
tion of this latter group of transcripts. Interestingly, expression  
of the Aicda gene encoding AID (activation-induced cyti

Figure 5.  Limited response of BatfZ/Z CD4+ T cells to T cell– 
dependent antigen. (A) CD4+ T cells from Batf+/+ or BatfZ/Z mice were 
injected into T cell–deficient mice, which were immunized with 5 × 108 sRBC. 
After 8 d, Tfh cells in spleen and lymph nodes were quantified as in Fig. 4 A. 
Representative plots (n = 3) are shown. (B) Mean number of CXCR5+ cells 
from A per organ or per mouse lymph node (LN) is shown (n = 3). Error bars 
indicate SE. *, P < 0.05. (C) ELISA using sera isolated from mice in A to detect 
sRBC-specific IgM and IgG1. Mean and SE are shown (n = 3). *, P < 0.05.



940 Immunoglobulin production requires Batf | Betz et al.

Figure 6.  BatfZ/Z B cells do not undergo CSR. (A) B cells purified from Batf+/+ and BatfZ/Z mice were cultured in media, or media supplemented 
with 20 µg/ml LPS, with or without 20 ng/ml IL-4. After 24 h, DNA synthesis was quantified by BrdU labeling for 16 h. Shown is mean BrdU incorporation, 
relative to Batf+/+ or BatfZ/Z cells in media (set to 1.0), from three experiments (n = 3) performed in triplicate. Error bars indicate SE. (B) B cells cultured 
as in A were assayed for surface Ig expression by flow cytometry (top) and for secreted Ig by ELISA (bottom). The mean and SE were calculated from three 
experiments (n = 3). N, not detected. (C) RNA from cells in B was assayed for the indicated transcripts using qPCR. Data are averaged from three experi-
ments (n = 3) performed in triplicate and expressed relative to the Batf+/+ media control (set to 1.0). Error bars indicate SE. N, not detected. (D) Sera from 
Batf+/+ and BatfZ/Z mice immunized with TNP-LPS or PBS were analyzed by ELISA for TNP-specific IgG1. Mean results from three mice per group (n = 3) 
are plotted. Error bars indicate SE. (E) Spleen sections from mice in D (n = 3 for each genotype) were stained as in Fig. 3 C to detect IgG1- and IgG2c- 
producing cells. Representative images are shown (20×). f, follicle. Bars, 50 µm.
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