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Abstract
Response-based dose individualization or dose titration is a powerful approach to 
achieve precision dosing. Yet, titration as an individualization strategy is under-
used in drug development and therefore not reflected in labeling, possibly partly 
because of the data analysis challenges associated with assessing dose/exposure–
response under dose titration, where there is an inherent risk of selection bias 
because poor responders would get high doses, whereas good responders would 
get low doses. In a recent article, this issue of selection bias was termed the “ti-
tration paradox.” In this study, we demonstrate by means of simulation that the 
titration paradox may be overcome if longitudinal data from dose titration tri-
als is analyzed using a population approach that accounts for the fact that dose/
exposure–response relationships differ between individuals. We show that with 
an appropriate sample size and missing data missing at random, stepwise dose/
exposure–response modeling based on data obtained under dose titration is not 
by definition subject to model selection bias or bias in parameter estimates. We 
also illustrate the challenges of graphical exploration of data obtained under dose 
titration and discuss the use of model diagnostic tools with such data. Our study 
shows that if, at every timepoint in the course of a trial, there is a clear causal 
relationship between the response and the dose/exposure level, and a population 
approach is used, it will in many cases be possible to develop, estimate, and ap-
propriately qualify a dose/exposure–response model also for data obtained under 
dose titration, thus overcoming the titration paradox.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Dose titration is underused in drug development and therefore not reflected in 
labeling, which may partly be because of the data analysis challenges associated 
with assessing dose/exposure–response under dose titration, where there is a risk 
of selection bias—the “titration paradox.”
WHAT QUESTION DID THIS STUDY ADDRESS?
How should dose/exposure–response data from dose titration trials be analyzed 
to overcome the titration paradox?
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INTRODUCTION

Precision dosing, that is, individualization of drug doses to 
optimize the benefit–risk balance for individual patients, is 
receiving increasing attention. Several authors have pointed 
out the importance of moving away from a one-size-fits-all 
approach for dose selection in drug development1 and for 
providing dosing recommendations in drug labeling2 not 
only for the benefit of the patients but also to address the in-
creasing focus from prescribers and payers on using the most 
cost-effective dose for each individual patient in the broader 
real-world population.3 Precision dosing moves beyond the 
common adjustment of the dose based on body size, demo-
graphic factors, renal or hepatic impairment, concomitant 
medication, and so on and can be guided by observed drug ex-
posure, biomarkers of response, or even observed response.1–3

Response-based dose individualization is particularly 
powerful, and simulations have shown that the responder 
rate, which is often modest with a single fixed dose level, 
can be substantially increased by individual dose titra-
tion.4 Yet, titration as an individualization strategy is 
underused in pivotal trials and therefore not reflected in 
labeling.2,5 An analysis of drugs approved by the US Food 
and Drug Administration from 2013 to 2017 revealed that 
only 39% of the drugs considered amenable for titration 
had information about this in labeling, and only for 53% 
of these drugs had titration been studied in pivotal trials.5 
One reason for this may be additional trial complexity not 
only in confirmatory trials, where more visits and longer 
trial durations may be needed, but also in exploratory 
trials, where a wider dose range and broader population 
may have to be studied to generate the data and develop 
the pharmacokinetic–pharmacodynamic and/or dose/
exposure–response models needed to determine an ap-
propriate dose titration strategy for confirmatory trials.1 
Another possible reason and an important factor to con-
sider in general for dose/exposure–response modeling 
using data obtained under dose titration is how to avoid 
the selection bias that is inherent to such situations.

Selection bias in this context is bias in the estimated dose/
exposure–response relationship due to individuals with poor 
response receiving high doses and individuals with good re-
sponse receiving low doses. In a recent article, the issue was 
called “the titration paradox” because of the paradoxical re-
sults observed in an analysis of clinical data with titration of 
two anesthetics and one vasoactive drug, where the dose–
response relationships based on average data appeared to be 
inverted, showing decreased response with increasing dose.6 
In addition to reporting the analysis of the clinical data, the 
authors show by mathematical proof and Monte Carlo sim-
ulations that a negative or zero correlation between dose 
and response is in fact the expected finding for the analysis 
of dose–response data under dose titration, when data are 
naïvely pooled across individuals, and they speculate that 
using a mixed-effects model for the analysis of multiple data 
points per individual could be more appropriate. Regulatory 
guidelines also recognize the risk of obtaining misleading 
or inverted dose/exposure–response curves if variability be-
tween individuals is not properly accounted for, but do not 
provide specific guidance for performing such analysis.7,8 
A recent tutorial on exposure–response analysis does not 
cover this either, as it primarily focuses on an analysis of sin-
gle timepoint change-from-baseline values in parallel-group 
dose–response trials.9

Analysis of dose–response relationships based on 
longitudinal data from dose titration trials has previ-
ously been investigated using marginal structural models 
(MSM) with inverse probability of treatment weighting 
(IPTW)10,11 and with dynamic linear mixed-effects mod-
els (DLME).12 Both approaches focus on a situation where 
the current response depends not only on the current 
dose but also on previous doses trough a dependence on 
previous responses. Obtaining unbiased results with the 
MSM approach is challenging,11 but it may be an appro-
priate choice in observational studies where the dose-
modification algorithm is not well defined12 because it 
implicitly includes the development of a model for the 
dose-modification process. However, when a deterministic 

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This study shows that the use of dose titration does not by definition cause issues 
with selection bias. If there is a clear causal relationship between dose/exposure 
and response, using a population approach will often allow appropriate infer-
ences to be made.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
If analyzed properly, longitudinal data from dose titration trials can be just as, if 
not more, powerful than data from fixed dose trials for the development of dose/
exposure–response models to support drug development and inform labeling.
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dose-modification algorithm is implemented, such as in 
well-controlled clinical trials, the DLME approach may 
outperform the MSM approach.12 In formal statistical 
terms, the dose-modification process is independent of 
the measurement process in such cases, making it unnec-
essary to jointly model the two processes and allowing the 
dose to be handled as a time-varying covariate in the anal-
ysis of the observed responses when using maximum like-
lihood estimation.13 This is analogous to the problem of 
longitudinal data analysis with missing responses, where 
unbiased estimates can be obtained with maximum like-
lihood under the missing-at-random assumption without 
explicitly modeling the missingness mechanism.13

A special case of the dose titration scenarios previously 
considered is when the current response only depends 
on the current dose,13 and there is a clear causal relation-
ship between the current dose and the current response, 
for example, a situation where the response is measured 
at a timepoint where steady state has been achieved for 
the associated effects of a given dose, whereafter the dose 
is titrated based on the observed response using a deter-
ministic titration algorithm. This is, for example, the case 
for titration of insulin doses based on measurements of 
plasma glucose, where weekly adjustments of the dose 
of basal insulin according to a prespecified titration algo-
rithm aiming to achieve a certain fasting plasma glucose 
(FPG) target has been the norm for clinical trials ever since 
the so-called treat-to-target trial14 was reported. In this 
trial, basal insulin treatment was initiated in patients with 
Type 2 diabetes and inadequate glycemic control using a 
common starting dose for all patients followed by individ-
ual weekly dose adjustments based on patient-performed 
measurements of FPG using a progressive titration algo-
rithm with an FPG target of 100 mg/dl (5.6 mmol/L), and 
most patients quickly and safely achieved hemoglobin 
A1C ≤7%, as recommended in guidelines for diabetes man-
agement.15,16 Today, 2 decades later, the approved labels 
for the two most commonly used basal insulin analogs for 
once-daily administration (insulin glargine17 and insulin 
degludec18) still only recommend a starting dose level and 
that the dose should subsequently be adjusted based on 
the individual's metabolic needs, blood glucose monitor-
ing results, and glycemic control goal, but no specific dose 
titration algorithm is given, and, to our knowledge, dose–
response models for FPG based on data from the many 
treat-to-target clinical trials performed for these insulin 
analogs have not been published. This may in part be at-
tributed to a concern about the associated risk of selection 
bias and the methodological challenges with the analysis 
of data from dose titration trials.6,10–12

In this article, we demonstrate by means of a simula-
tion study that dose–response model development based 
on data from a dose titration trial may be feasible without 

selection bias if the data are analyzed using a population 
approach. We use an example that mimics an exploratory 
trial for a basal insulin analog. We investigate model devel-
opment in terms of model discrimination aspects (linear 
vs. nonlinear dose–response and absence vs. presence of a 
time effect due to disease progression) as well as bias and 
variance of the estimated model parameters, and we do this 
for two different trial designs and across different missing 
data scenarios. We also illustrate the challenges with graph-
ical exploration of such data, investigate the performance 
of some common model diagnostic tools, and discuss how 
to appropriately apply these in dose titration trials.

METHODS

Simulation scenarios

The simulation example used in this article mimicked a 
single arm in an exploratory basal insulin trial, which are 
typically of 16–26 weeks duration, include 50–100 subjects, 
and apply weekly dose titration based on prebreakfast self-
measured plasma glucose (SMPG) values measured by the 
subjects at home to reach a certain SMPG target (e.g., 3.9–
6.0 mmol/L). The following two scenarios were simulated:

1.	 A rich-data scenario with 100 subjects for 26 weeks, 
and

2.	 A limited-data scenario with 50 subjects for 16 weeks.

Titration algorithm

A treat-to-target approach to dose titration was simulated 
with a starting dose of 10 units of insulin per day and 
weekly dose adjustments based on prebreakfast SMPG 
according to a progressive algorithm with an increase of 
four insulin units per day for SMPG >7.0 mmol/L, an in-
crease of two insulin units per day for SMPG between 6.0 
and 7.0 mmol/L, no change for SMPG between 3.9 and 
6.0 mmol/L, and a decrease of two insulin units per day 
for SMPG in the hypoglycemic range <3.9 mmol/L.

Simulation models

Four different variants (with or without nonlinearity and 
with or without disease progression) of the following basic 
dose–response model were used for generating simulated 
data sets:

SMPG=a−b∗
DOSE

1+c ∗DOSE
+d∗WEEK+�, �∼N(0,Σ)



      |  1595OVERCOMING THE TITRATION PARADOX

The model describes the relationship between the insulin 
dose in a given week and the resulting SMPG. Parameter 
a represents the SMPG without insulin treatment, param-
eter b represents the glucose-lowering effect of one unit 
of insulin in the linear variants of the model (c = 0) and 
is equivalent to the maximum effect (Emax) divided by the 
dose producing 50% of the maximum effect (ED50) in the 
classic Emax model in the nonlinear variants of the model 
(c > 0), parameter c essentially describes the degree of de-
viation from a linear dose–response relationship and is for 
the nonlinear variants of the model equivalent to 1/ED50, 
parameter d describes disease progression over time,19 
and variable ε represents the day-to-day variability for 
SMPG measurement.20 Although a linear dose–response 
model has some unfortunate properties when extrapo-
lated to high doses, it is often an appropriate model for 
basal insulins in the clinically relevant dose range.21,22 
The model was used in a mixed-effects version with 
log-normally distributed between-subject variability in-
cluded on parameters a and b with a positive correlation. 
Although also allowing ED50 to differ between subjects in 
an Emax model would usually be relevant, for simplicity 
we decided not to include additional variability terms in 
the nonlinear variants of the model. The parameter values 
used for simulation with the four different variants of the 
model are summarized in Table 1. The parameter values 
were selected to match average observed SMPG and dose 
data from a clinical trial with insulin degludec.

Missing data scenarios

For each of the overall scenarios, the following five differ-
ent scenarios for missing data attributed to dropout were 

simulated: (1) no dropout, (2) 15% random dropout, (3) 
30% random dropout, (4) 15% nonrandom dropout, and 
(5) 30% nonrandom dropout. Random dropout was simu-
lated by assuming that 15% or 30% of all subjects dropped 
out at random times after Week 2, corresponding to a 
missing-completely-at-random scenario in statistical lit-
erature. Nonrandom dropout was simulated by assuming 
that the 15% or 30% least responsive subjects (highest ratio 
between parameters a and b in the simulation model) 
dropped out at random times after Week 2, corresponding 
to a missing-not-at-random scenario in statistical litera-
ture (because dropout depends on the unobserved values 
of a and b), although it could be argued that the scenario 
is close to a missing-at-random scenario (if dropout had 
been based on observed values of a and b, e.g., preliminary 
estimates of the parameters).

Simulation and estimation

For each missing data scenario in each overall scenario, 
N  =  1000 replicates of the trial were simulated using 
each of the four variants of the simulation model. Each 
replicate was used for estimation with the true model 
to evaluate estimation performance and for estimation 
with alternative models to evaluate model discrimina-
tion. Figure  1 shows which alternative models were 
tested for each true model. All tests were likelihood 
ratio tests based on an assumption of a χ2 distribution 
with one degree of freedom, and model discrimination 
was evaluated by calculating empirical Type 1 (false 
positive) and Type 2 (false negative) error rates based 
on tests of each alternative model versus the true model 
using a p value of 0.05. From the Type 2 error rate (�), 

T A B L E  1   Parameter values used for simulation with the four different variants of the simulation model

Parameter Linear model Nonlinear model
Linear model with disease 
progression

Nonlinear model with 
disease progression

a [mmol/L]a 10.0 10.7 10.0 10.7

b [(mmol/L)/unit]a 0.103 0.200 0.103 0.200

c (1/unit) 0 0.015 0 0.015

d [(mmol/L)/week] 0 0 0.077 0.077

BSV − a (%CV) 20 20 20 20

BSV − b (%CV) 60 60 60 60

BSV correlation − a–b 0.5 0.5 0.5 0.5

Σ [(mmol/L)2] 1 1 1 1

Parameter a represents the SMPG without insulin treatment, parameter b represents the glucose-lowering effect of one unit of insulin in the linear variants of 
the model (c = 0) and is equivalent to Emax/ED50 in the classic Emax model in the nonlinear variants of the model (c > 0), parameter c describes the degree 
of deviation from a linear dose–response relationship and is for the nonlinear variants of the model equivalent to 1/ED50, parameter d describes disease 
progression over time.Abbreviations: BSV, between-subject variability; %CV, percentage coefficient of variation.
aRounded to three significant digits.
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the empirical model discrimination power was derived 
as 1 − �. Estimation performance was evaluated by cal-
culating the relative bias for all parameters and the 
relative root mean square error (RMSE) and coverage 
probability for the fixed-effect parameters as follows:

Here, �̂i is the estimate and �̂i the standard deviation, �∗ 
is the true value, and I() is a binary indicator function. 
Model estimation was performed in NONMEM Version 
7.3 (ICON plc) using the first-order conditional estima-
tion algorithm, and simulation, plotting, and calculation 
of summary statistics was performed in R Version 3.5.3 (R 
Foundation for Statistical Computing).

Graphical data exploration and model 
diagnostics

To illustrate the challenges with graphical analysis of 
data from dose titration trials, data from one simula-
tion data set was used for plotting the observed dose–
response relationship based on various data subsets 
and summaries. The same data set, and a re-estimated 
true model based on this data set, was used to illustrate 

the performance of some standard goodness-of-fit plots 
and to demonstrate how a meaningful visual predictive 
check (VPC)23 may be performed under dose titration. 
The goodness-of-fit plots were plots of observed SMPG 
versus population and individual predictions of SMPG, 
plots of conditional weighted residuals (CWRES) versus 
population predictions and time, a QQ-plot of CWRES, 
and a density plot comparing the distribution of CWRES 
to the standard normal distribution. The VPC was per-
formed by plotting the means and 5th and 95th percen-
tiles of the observed doses and SMPGs by time on top of 
95% confidence intervals for the means and 5th and 95th 
percentiles based on 1000 simulations of the trial with 
the estimated model. As part of the simulations, titration 
as defined by the titration algorithm was also simulated. 
R Version 3.5.3 was used for this.

RESULTS

Graphical data exploration

Data from one simulation data set for the rich-data sce-
nario with no dropout and the linear dose–response 
model without disease progression is shown in Figure 2. 
Figure  2a,b shows the time courses of insulin dose and 
SMPG and illustrates how observed SMPG is gradually de-
creasing toward the target range of 3.9–6 mmol/L as the 
insulin dose is gradually increased. Figure 2c shows the 
observed dose–response relationship based on pooled data 
from all subjects at all timepoints, Figure 2d shows the ob-
served dose–response relationship based on the medians 
of all doses and SMPG values over time for each subject, 
Figure 2e shows the observed dose–response relationship 
based on the end-of-trial dose and SMPG for each subject, 
and Figure 2f shows the true dose–response relationship 
used for simulation.

Relative bias (%) = 100% ∙
1

N

N∑

i=1

�̂i − �∗

�∗

Relative RMSE (%) = 100% ∙

√√√√
√ 1

N

N∑

i=1

(
�̂i−�∗

)2

�∗2

Coverage probability (%) =

100% ∙
1

N

N∑

i=1

I
(
|||
�𝜃i−𝜃∗

|||
<1.96 ∙ �𝜎i

)

F I G U R E  1   Overview of models used 
for simulation and estimation. Arrows 
indicate tests performed to investigate 
model discrimination performance and 
calculate Type 1 and Type 2 error rates.
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Model discrimination performance

Table 2 shows the outcome of simulation and estimation 
in terms of discrimination between alternative models as 
assessed by means of empirical Type 1 and Type 2 error 
rates for the rich-data scenario across the five missing data 
scenarios. Table S1 shows similar results for the limited-
data scenario.

Estimation performance

Table 3 shows the outcome of simulation and estimation 
in terms of relative bias, relative RMSE, and coverage 
probability for the estimated parameters for the rich-data 
scenario across the five missing data scenarios for all four 
variants of the simulation model. Table S2 shows similar 
results for the limited-data scenario.

F I G U R E  2   Simulated data from one example data set illustrating the difficulty of visualizing the underlying dose–response (D–R) 
relationship based on observed data obtained under dose titration. (a) Time course of insulin dose. (b) Time course of self-measured 
plasma glucose (SMPG). (c) Observed D–R based on pooled data from all individuals at all timepoints indicates the right direction of the 
D–R relationship at low doses but wrongly shows that it flattens out at high doses. (d) Observed D–R based on medians of all doses and 
SMPG values over time for each individual wrongly shows a flat D–R relationship at low doses and indicates the wrong direction of the 
D–R relationship at high doses. (e) Observed D–R based on end-of-trial doses and SMPG values wrongly shows a flat D–R relationship. (f) 
True dose–response curves used for simulation. Light blue points/lines are individual subject values/profiles, and dark blue points/lines are 
(population) mean values/profiles (in five equally sized bins for c–e).



1598  |      KRISTENSEN and AGERSØ

Model diagnostics

For illustrative purposes, Figure 3 shows standard 
goodness-of-fit plots based on the data from the simula-
tion data set in Figure 2 and the estimated model based 
on this data set, and Figure 4 shows a VPC for dose and 
SMPG based on the same model and data set.

DISCUSSION

Our simulation study shows that development and es-
timation of dose–response models may also be feasible 
under dose titration if the data are analyzed using a mixed-
effects model that accounts for the fact that dose–response 
relationships differ between individuals.

In the rich-data scenario with 100 subjects for 26 weeks, 
and across all missing data scenarios we considered, model 

discrimination performance was high with Type 1 error 
rates below the nominal 5% and Type 2 error rates very 
close to zero in all cases (Table 2). The low Type 2 error 
rate corresponds to a model discrimination power close 
to 100% in this scenario. In the limited-data scenario with 
50 subjects for 16 weeks (Table S1), model discrimination 
power was 75%–95% for the missing data scenarios with 
no or random dropout and 60%–90% for the missing data 
scenarios with nonrandom dropout. Importantly, the Type 
1 error rate was still below the nominal 5%. These results 
show that with an appropriate sample size and missing 
data missing at random, stepwise dose–response model 
development based on data obtained under dose titration 
is not subject to model selection bias in our example. We 
particularly note that we can correctly distinguish be-
tween linear and nonlinear dose–response relationships 
and that we are able to correctly identify if a time effect 
due to disease progression is present. A specific risk with 

T A B L E  2   Type 1 and Type 2 error rates for model discrimination tests in the rich-data scenario with 100 subjects for 26 weeks

Missing data scenario Model discrimination test
Type 1 (false positive) 
error rate (%)

Type 2 (false negative) 
error rate (%)

No dropout Linear vs. nonlinear 2.1 0.0

Linear vs. linear + progression 4.0 0.0

Nonlinear vs. nonlinear + progression 4.2 0.0

Linear + progression vs. 
nonlinear + progression

1.2 0.0

15% random dropout Linear vs. nonlinear 2.6 0.0

Linear vs. linear + progression 4.6 0.0

Nonlinear vs. nonlinear + progression 4.8 0.0

Linear + progression vs. 
nonlinear + progression

1.5 0.0

30% random dropout Linear vs. nonlinear 2.2 0.0

Linear vs. linear + progression 4.3 0.0

Nonlinear vs. nonlinear + progression 4.4 0.0

Linear + progression vs. 
nonlinear + progression

1.7 0.0

15% nonrandom dropout Linear vs. nonlinear 0.6 0.0

Linear vs. linear + progression 1.7 0.0

Nonlinear vs. nonlinear + progression 3.7 0.0

Linear + progression vs. 
nonlinear + progression

0.1 0.0

30% nonrandom dropout Linear vs. nonlinear 0.3 0.2

Linear vs. linear + progression 1.6 0.0

Nonlinear vs. nonlinear + progression 3.7 0.0

Linear + progression vs. 
nonlinear + progression

0.0 0.0

Parameter a represents the SMPG without insulin treatment, parameter b represents the glucose-lowering effect of one unit of insulin in the linear variants of 
the model (c = 0) and is equivalent to Emax/ED50 in the classic Emax model in the nonlinear variants of the model (c > 0), parameter c describes the degree 
of deviation from a linear dose–response relationship and is for the nonlinear variants of the model equivalent to 1/ED50, parameter d describes disease 
progression over time.
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F I G U R E  3   Standard goodness-of-fit plots based on the example data set in Figure 2 and the re-estimated true model based on this data 
set. Top row: observed self-measured plasma glucose (SMPG) values versus population and individual predictions of SMPG. Middle row: 
conditional weighted residuals versus population predictions and time. Bottom row: QQ-plot of conditional weighted residuals and density 
plot comparing the distribution of CWRES to the standard normal distribution.
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dose–response analysis under dose titration, mentioned 
in regulatory guidelines, is confounding of dose and time 
effects,8 but we see no evidence of that in our example 
and would only expect complete confounding in very rare 
cases.

In terms of estimation performance, the rich-data 
scenario had low levels of bias for all parameters in all 
models in the missing data scenarios with no or random 
dropout (Table  3). For the fixed-effect parameters and 
random-effect variances, relative bias was less than 6%, 
and for the random-effect correlation parameter, relative 
bias was less than 12%. Relative RMSE was less than 25%, 
and coverage probabilities were close to the nominal 95%. 
In the missing data scenarios with nonrandom dropout, 
relative bias was higher for a few parameters, relative 
RMSE was similar, and coverage probabilities were lower 
for a few parameters. In the limited-data scenario, simi-
lar results were obtained (Table S2), but bias was slightly 
higher, RMSE was higher, and coverage probabilities were 
slightly lower. These results suggest that with an appro-
priate sample size and missing data missing at random, 
dose–response model estimation based on data obtained 
under dose titration is not subject to critical bias or other-
wise poor estimation performance in our example.

As expected, our results furthermore show that if miss-
ing data are not missing at random, model discrimination 
power decreases and bias in the estimated parameters 

increases, stressing the importance of accounting for any 
nonrandomly missing data by explicitly modeling the 
missingness mechanism, if possible, or using an appropri-
ate imputation method.

Our study also highlights some pitfalls associated 
with applying standard approaches to graphical data ex-
ploration and model diagnostics for dose–response data 
obtained under dose titration. Specifically, it shows how 
difficult it is to visualize the underlying dose–response re-
lationship based on observed data when it differs between 
individuals who as a result are titrated to different end-of-
trial doses (Figure 2). A plot based on pooled data from 
all individuals at all timepoints (Figure 2c) may indicate 
the right direction of the dose–response relationship at 
low doses but would tend to wrongly show that it flattens 
out at high doses; a plot based on the averages of all doses 
and responses over time for each individual (Figure  2d) 
would also tend to show a flat dose–response relation-
ship and may indicate the wrong direction, as observed 
in the recent article on the titration paradox,6 and a plot 
based on end-of-trial data only (Figure 2e) would tend to 
show a completely flat dose–response relationship. Apart 
from individual-specific plots, we are not aware of simple 
graphical data exploration methods for appropriately vi-
sualizing the dose–response relationship using observed 
data. In terms of standard goodness-of-fit plots (Figure 3), 
our study shows that these work reasonably well under 

F I G U R E  4   Visual predictive check based on the example data set in Figure 2 and the re-estimated true model based on this data 
set. Lines are means and 5th and 95th percentiles of observed data. Shaded areas are 95% confidence intervals for the same means and 
percentiles based on 1000 simulations. SMPG, self-measured plasma glucose.
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dose titration, except for the plot of observed responses 
versus population-predicted responses, which may 
wrongly indicate that the model is mis-specified although 
the model structure is correct and the parameter estimates 
are unbiased. This is due to different realized dose ranges 
across individuals, where responses are underpredicted 
by the population mean for good responders receiving low 
doses, and responses are overpredicted by the population 
mean for poor responders receiving high doses. In terms 
of the VPC (Figure 4), our study shows that it is possible 
to produce a meaningful VPC under dose titration, if, in 
the VPC simulations, titration as defined by the titration 
algorithm is also simulated and plots are made for both 
dose and response.

In our study, we applied a mixed-effects model for es-
timation to account for the different dose–response rela-
tionships in different individuals, but we would expect 
the results to be similar for a two-stage approach, where 
the parameters are initially estimated for each individual 
separately and then summarized provided that sufficient 
data are available for each individual. Only when data are 
naïvely pooled across individuals, such as in Figure 2c–e, 
is the titration paradox observed.

Although our simulation study focused on dose–
response modeling, we expect the results and conclusions 
to be the same for exposure–response modeling if there 
is a clear causal relationship between the response and 
the exposure level at a given timepoint and the exposure 
level at that timepoint is either measured or can be pre-
dicted based on the current and previous dose levels using 
a pharmacokinetic model. If the response is delayed or 
develops slowly over time such that there is not a clear 
causal relationship between the response and the exposure 
level at a given timepoint, more advanced methods will 
be needed. If a deterministic dose-modification algorithm 
has been used, such as in our simulation example and 
commonly in well-controlled, randomized clinical trials, 
DLME12 can be applied, or a longitudinal mixed-effects 
dose-exposure-response model may be applied, where 
the time course of the response is explicitly modeled. If 
the dose-modification algorithm is not well defined, such 
as in observational studies, MSM with IPTW10,11 can be 
considered because this method implicitly includes the 
development of a model for the dose-modification pro-
cess. However, obtaining unbiased results with the MSM 
approach may be challenging.11

The results of our study show that dose/exposure–
response modeling should not be disregarded upfront 
out of concerns for selection bias if dose titration is ap-
plied in a clinical trial or drug development program. 
Although it cannot be concluded in general that using 
a population approach will always ensure proper model 

discrimination and unbiased parameter estimates, we 
have shown that if there is a clear causal relationship 
between the response and the dose/exposure level at a 
given timepoint, it will often be possible to use such an 
approach to develop, estimate, and appropriately qualify 
a dose/exposure–response model, even though the data 
were obtained under dose titration. The trials amenable 
to using such an approach, provided the assumption of 
causality between dose/exposure and response is fulfilled 
and a well-defined, deterministic titration algorithm is 
applied, would typically be exploratory or confirmatory 
trials with sufficient duration relative to the frequency of 
dose titration to ensure that the majority of subjects reach 
the desired response and therefore have observations of 
response across a range of different doses. In practice, 
a prospective evaluation, in line with the analysis pre-
sented here, of the feasibility of using such an approach 
in a specific case would be recommended, as there will 
also be cases where the specific trial design or titration 
algorithm applied does not produce data that adequately 
support the use of a population approach. For example, 
a high prevalence of nonresponders or individuals who 
do not titrate due to adequate response at the initial dose 
could give imbalances in the data that would lead to bias. 
Likewise, a high prevalence of extreme responders and 
other deviations from a unimodal, normal-type distribu-
tion of responses could lead to bias unless the specific dis-
tribution can be explicitly modeled.

The possible applications of a dose/exposure–response 
model based on data obtained under dose titration are 
many. If developed from exploratory trial data, the model 
could be applied to perform simulations to develop, eval-
uate, and optimize the titration algorithm to be used in 
confirmatory trials, for example, in terms of titration tar-
get, starting dose, and dose increments, thus reducing the 
risks associated with studying a novel titration algorithm 
in pivotal trials and potentially improving on the current 
underuse of titration in such trials and the resulting lack 
of titration guidance in drug labeling.2,5 If applied to a 
larger pool of confirmatory trial data, the model could be 
applied for covariate analysis to investigate the impact of 
demographics and baseline characteristics to facilitate fur-
ther individualization of titration algorithms and optimi-
zation of individual benefit–risk balance.

Based on our study, we conclude that the use of dose ti-
tration does not by definition cause a “titration paradox” and 
issues with selection bias when longitudinal data from such 
trials are analyzed. If, at every timepoint in the course of a 
trial, there is a clear causal relationship between the dose/ex-
posure level and the response, and if a population approach 
is used, it will in many cases be possible to make appropriate 
inferences from the data obtained under dose titration.
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