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Abstract: For subjects with amyotrophic lateral sclerosis (ALS), the verbal and nonverbal commu-
nication is greatly impaired. Steady state visually evoked potential (SSVEP)-based brain computer
interfaces (BCIs) is one of successful alternative augmentative communications to help subjects with
ALS communicate with others or devices. For practical applications, the performance of SSVEP-
based BCIs is severely reduced by the effects of noises. Therefore, developing robust SSVEP-based
BCIs is very important to help subjects communicate with others or devices. In this study, a noise
suppression-based feature extraction and deep neural network are proposed to develop a robust
SSVEP-based BCI. To suppress the effects of noises, a denoising autoencoder is proposed to extract
the denoising features. To obtain an acceptable recognition result for practical applications, the
deep neural network is used to find the decision results of SSVEP-based BCIs. The experimental
results showed that the proposed approaches can effectively suppress the effects of noises and the
performance of SSVEP-based BCIs can be greatly improved. Besides, the deep neural network
outperforms other approaches. Therefore, the proposed robust SSVEP-based BCI is very useful for
practical applications.

Keywords: denoising autoencoder; steady state visually evoked potential; brain computer interface;
noise suppression; deep neural network

1. Introduction

Amyotrophic lateral sclerosis (ALS), which causes an interruption of the output of
the central nervous system to the muscles, would degrade the communication ability [1,2].
Thus, a subject with ALS will no longer be able to communicate with others or devices
without assistance. Since ALS does not affect the sensory nerves and the autonomic
nervous of a subject with ALS, the steady state visually evoked potential (SSVEP)-based
brain computer interfaces (BCIs), which are independent of muscle control, are very suitable
for implementing an alternative augmentative communication (AAC). However, the noises,
which are always appeared and acquired for the practical applications, would severely
degrade the performance of SSVEP-based BCIs. Thus, developing a robust SSVEP-based
BCI is very important for practical applications.

Subjects with ALS can rely on AAC to facilitate communication [3–7]. Hornero et al.
developed a communication board to help subjects with speech disabilities [3]. Using this
AAC device, the subjects can touch the command sheets on the communication board to
pronounce a specified speech. To help subjects with severe disabilities, Jafari et al. proposed
a tongue drive system, which uses voluntary tongue movements as the input interface, to
help people with accessing their environment [4]. Anila and Radhika used the Morse code,
which is detected from the lip contour, as a human communication interface [5]. Thus, the
patients can easily communicate with others when they are familiar with the Morse code.
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Garcia et al. proposed a wearable AAC device to help subjects identify the pre-defined
words, which are adopted to present the specified needs, by using the information of
discrete breathing patterns [6]. Radici et al. designed an AAC app, which uses a speech
symbol technology, to express complex communication needs [7]. However, operating
AAC systems is dependent on muscle control, which is very difficult for subjects with ALS.
Therefore, developing an interface, which does not use muscle control, can effectively ease
the communication of subjects.

BCIs had been widely developed to allow subjects to control devices or communicate
with others by modulating their brain signals [8–18]. Generally, the BCIs use near-infrared
spectroscopy, functional magnetic resonance imaging, magnetoencephalography, or elec-
troencephalogram (EEG) to monitor a user’s brain activities [8–10]. Using the EEG as the
recording methods has a relatively lower cost [11,12], thus the EEG had been successfully
used in BCIs. For electrical BCIs, SSVEP, motor imagery, and P300 potentials had been
widely used to represent the results of brain activity. For SSVEP-based BCIs, a visual
stimulus with a specific frequency is applied to evoke the specified electrical activities,
and then, the EEG signals can be recorded. The frequency of the elicited SSVEP signal
should be the same with the multiples of the frequency of the visual stimulus. In the last
decades, many researches had shown that the SSVEP-based BCIs can achieve an excellent
signal-to-noise ratio [13,14]. Therefore, the signal stability of SSVEP-based BCIs is better
than other approaches [15]. Thus, the complexity of the signal process can be effectively
reduced and it is suitable to develop practical applications. However, for the practical
applications, the EEG signals always contain noises and the performances of SSVEP-based
BCIs are severely degraded [16,17]. Thus, developing robust SSVEP-based BCIs allows to
increase the performance and the values of SSVEP-based BCIs.

Recently, many noise suppression approaches have been proposed to improve the
performance of applications, especially for speech or image applications [19,20]. Moreover,
deep learning approaches always outperform other traditional approaches. For denoising
autoencoder-based neural network, the inputs are perturbed by artificial noise and then, the
neural network is trained to remove the noisy components for constructing clean outputs.
Many applications showed that using denoising autoencoder-based neural networks can
achieve acceptable results of noise reduction. Therefore, the denoising autoencoder-based
neural network would be very useful in developing a robust SSVEP-based BCI.

In this study, a robust SSVEP-based BCI is proposed to help subjects communicate
with others or devices. To effectively elicit the SSVEP signal, the visual stimuli with specific
frequencies are displayed on an LCD monitor. To precisely represent the characteristics of
SSVEP signals, the denoising autoencoder-based neural network is proposed to extract the
denoising features. To correctly find the results, deep neural networks (DNN) are adopted
as the decision models for finding the commands of a subject.

The rest of this paper is organized as follows. The proposed robust SSVEP-based BCI
is described in Section 2. Section 3 then presents a series of experiments conducted to
evaluate the performance of our approach. Conclusions and recommendations for future
research are finally drawn in Section 4.

2. Robust SSVEP-Based BCIs

The flowchart of proposed robust SSVEP-based BCI using denoising autoencoder-
based neural networks and DNN is shown in Figure 1. First, the visual stimuli with
different flicking frequencies are displayed on the LCD monitor and then, a subject uses
the visual stimulus to elicit the corresponding EEG signals. Second, the elicited EEG
signals are acquired and the denoising autoencoder-based neural network is designed and
used to extract the corresponding robust features. Finally, a DNN is adopted to identify
the decisions, which are used to represent the designed commands or messages. These
procedures are detailed in the following subsections.
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Figure 1. The flowchart of the proposed robust SSVEP-based BCI.

2.1. Visual Stimulation and SSVEP Signal Acquisition

In this study, five blinking boxes were designed as the visual stimuli and used to elicit
the SSVEP signal of a subject. Therefore, only five commands were assigned to these five
blinking boxes and selected by a subject. The five blinking boxes were displayed on the 20”
LCD monitor and placed as pentagons for effectively reducing the interference between
each visual stimulus. Since the refresh rate is 60 Hz, the blinking frequencies for the five
blinking boxes were 6.00 Hz, 6.67 Hz, 7.50 Hz, 8.57 Hz, and 10.00 Hz [13].

The subjects were asked to sit in front of the LCD monitor and the distance measured
from the subject’s nasion to the monitor was 55 cm. A NuAmps EEG amplifier, which was
supplied by the Neuroscan Company, was used to acquire the elicited SSVEP signals by
using Neuroscan Quickcap electrode cap with 40 channels. The EEG signals were then
acquired from the Oz channel, which was connected to the visual cortex of the brain. The
reference and ground electrodes were placed at A1 and A2.

2.2. Robust Feature Extraction

The flowchart of feature extraction by using denoising autoencoder-based neural
networks is presented in Figure 2. An acquired EEG signal x(t) is the sum of an ideal SSVEP
signal, s(t), and a noise signal n(t) and it can be written as

x(t) = s(t) + n(t). (1)

Sensors 2021, 21, x FOR PEER REVIEW 3 of 10 
 

 

 
Figure 1. The flowchart of the proposed robust SSVEP-based BCI. 

2.1. Visual Stimulation and SSVEP Signal Acquisition 
In this study, five blinking boxes were designed as the visual stimuli and used to 

elicit the SSVEP signal of a subject. Therefore, only five commands were assigned to these 
five blinking boxes and selected by a subject. The five blinking boxes were displayed on 
the 20″ LCD monitor and placed as pentagons for effectively reducing the interference 
between each visual stimulus. Since the refresh rate is 60 Hz, the blinking frequencies for 
the five blinking boxes were 6.00 Hz, 6.67 Hz, 7.50 Hz, 8.57 Hz, and 10.00 Hz [13]. 

The subjects were asked to sit in front of the LCD monitor and the distance measured 
from the subject’s nasion to the monitor was 55 cm. A NuAmps EEG amplifier, which was 
supplied by the Neuroscan Company, was used to acquire the elicited SSVEP signals by 
using Neuroscan Quickcap electrode cap with 40 channels. The EEG signals were then 
acquired from the Oz channel, which was connected to the visual cortex of the brain. The 
reference and ground electrodes were placed at A1 and A2. 

2.2. Robust Feature Extraction 
The flowchart of feature extraction by using denoising autoencoder-based neural net-

works is presented in Figure 2. An acquired EEG signal x(t) is the sum of an ideal SSVEP 
signal, s(t), and a noise signal n(t) and it can be written as 

( ) ( ) ( )x t s t n t= + . (1) 

 
Figure 2. The flowchart of denoising autoencoder-based neural networks for robust feature extrac-
tion. 

Ideal
SSVEP signal, s(t)

Evoked
SSVEP signal, x(t)

Encoder

Decoder

Hidden 
representation

Denoising
Autoencoder

y(t)

Reconstructed
SSVEP signal, x'(t)

L(s, x')

Figure 2. The flowchart of denoising autoencoder-based neural networks for robust feature extraction.



Sensors 2021, 21, 5019 4 of 10

However, the ideal SSVEP signal cannot be obtained. In this study, si(t) of the i-th
visual stimulus was assumed as a sine wave and it can be defined as

si(t) = A sin(2π fit + ϕi), (2)

where A, fi, and ϕi are amplitude, ordinary frequency and phase, respectively. In the
training stage, the cross correlation was adopted to estimate ϕi from x(t) and a sine wave.

The denoising autoencoder-based neural network would estimate a denoising SSVEP
signal x′(t) such that x′(t) is very similar to s(t) and n(t) in Equation (1) can be effectively
suppressed. First, the denoising autoencoder-based neural network would use a determin-
istic mapping function Mθ = {W, b} to map x(t) to a hidden representation y(t). W and b
are the weight matrix and the bias vector. In this study, the y(t) was adopted as the robust
feature and it can be written as

y(t) = Mθ(x(t)) = Wx(t) + b, (3)

Second, denoising autoencoder neural network attempts to reconstruct x′(t) via
a reconstruction mapping function M′θ′ = {M′, b′}. Thus, x′(t) can be obtained and
written as

x′(t) = M′θ′(y(t)) = W ′y(t) + b′, (4)

Finally, the traditional squared error is adopted as the loss function L in this study.
Therefore, the parameters θ and θ′ can be estimated by minimizing reconstruction errors
and written as

θ̂, θ̂′ = argmin
θ,θ′

1
K

K
∑

i=1
L(x′ i(t), si(t))

= argmin
θ,θ′

1
K

K
∑

i=1
L(M′θ′(Mθ(x(t))), si(t))

(5)

where K is the number of training samples.

2.3. Deep Neural Network-Based Response Recognition

The DNN, which is a standard feed-forward fully connected neural network, is
adopted as the recognition model and is illustrated in Figure 3. The input of DNN is
the robust features extracted from the denoising autoencoder-based neural network. For
each hidden and output layer, the weighted sum z of the inputs, which are the outputs
of previous neurons, is computed. Then, the activation function used in this study is a
parametric rectified linear unit f (z), which is defined as

f (z) =

{
0, if z ≤ 0
z, if z > 0

, (6)
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To train the DNNs, the back-propagation algorithm, which is the most widely used
approach, is applied to update the parameters of DNNs. In the back-propagation algorithm,
the gradient of prediction loss is computed in one layer at a time, then it iterates backward
from the output layer through the entire network. The training process of DNN is provided
as follows.

Step 1. Randomly select the input data yn, which is obtained from the denoising autoencoder-
based neural network.
Step 2. Generate the corresponding target data of output layer ôn.
Step 3. For yn, the corresponding output can be obtained from the output layer and the
Euclidean loss function is selected and defined as

E =
1

2N

N

∑
n=1
‖ôn − on‖, (7)

Step 4. According to the loss and the back-propagation algorithm, the parameters of DNN
are updated as

w(i + 1) = w(i)− η
∂E

∂w(i)
, (8)

where w(i) is the weight at i-th iteration and η is the learning rate.
Step 5. Repeat step 3 to step 4 until the loss is minimized.

3. Experimental Results and Discussions

To evaluate the proposed robust SSVEP-based BCI, a visual stimulation procedure with
5 sets of stimulation sequences is designed. Each set of stimulation sequences consists of
3 stimulation frequencies, which were randomly selected from the given 5 frequencies. Each
set of stimulation sequences follows the procedure: each set begins with a 5 s countdown
delay, then it is followed by a series of 10 s of visual stimulation and 10 s rest. Afterward,
one minute of compulsory rest time is provided for the subject after every set of stimulation
sequences. The acquired EEG signals are then blocked into 10 non-overlapping frames.
The duration for a segment is one second, and the sampling rate is 100 Hz.

In this study, 15 healthy subjects (11 males and 4 females) aged between 21 and 23 years
were asked to participate in the experiments and they signed the agreements to attend the
test of the project. The subjects did not have previous experience using SSVEP-based BCIs
and were asked to collect data in three days. Leave-one-out cross validation was used to
objectively evaluate the proposed robust SSVEP-based BCI. Therefore, a subject was left as
the testing data set and then others were treated as the training data set. In the following
subsections, the detailed results of the proposed robust SSVEP-based BCI are examined.

3.1. The Experimental Results of Noise Suppression

In this subsection, the signal-to-noise ratio (SNR) is applied to evaluate the perfor-
mance of noise suppression in the time domain. Moreover, the canonical correspondence
analysis (CCA), which has been widely used in SSVEP-based BCIs [21], was adopted to
evaluate improvement of system recognition rate. The number of harmonics for CCA was
set to be 4 in this experiment.

For designing the ideal SSVEP signals, a zero-phase sine wave was treated as the
target of the denoising autoencoder-based neural network, and the network would cause
enhanced SSVEP signals to be zero-phase signals (denoted as DAE_AP). In this approach,
the phase of the input SSVEP signal would be adjusted and then it would increase the
complexity of denoising autoencoder. To reduce the complexity of denoising autoencoder,
the phase of the ideal SSVEP signal and the input SSVEP signal should be the same.
Therefore, cross correlation was used to estimate the phase of the input SSVEP signal.
According to the estimated phase, an ideal SSVEP signal could be generated (denoted
as DAE_IP).
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The number of hidden nodes for denoising autoencoder was examined and the results
measured by using SNR and recognition rate are shown in Tables 1 and 2. According to
the results, when the number of hidden nodes is 25, DAE_AP and DAE_IP can obtain an
acceptable performance. When the number of hidden nodes is increased, the performances
measured by using SNR and recognition rate are slightly improved. Therefore, when the
number of hidden nodes is 25, the proposed approach can balance the computational
complexity and accuracy. Moreover, the recognition rates for stimuli with different flicking
frequencies are shown in Table 3. It is clear that the recognition rates of DAE_AP and
DAE_AP are greatly improved, compared with that of original SSVEP signals. Thus, the
effects of noises can be effectively reduced by using denoising autoencoder-based neural
networks. Besides, the worst recognition rate for DAE_IP is 92.15% and it still can obtain
an acceptable performance for practical applications.

Table 1. The experimental results of DAE_AP and DAE_IP in SNR.

The Number of Hidden Nodes

20 25 50

DAE_AP 1.001 dB 1.918 dB 1.974 dB
DAE_IP 1.255 dB 6.733 dB 6.884 dB

Table 2. The recognition rates (%) of DAE_AP and DAE_IP.

The Number of Hidden Nodes

20 25 50

DAE_AP 82.51 92.04 92.84
DAE_IP 84.24 94.01 95.44

Table 3. The detailed recognition rates (%) for stimuli with different flicking frequencies (Hz).

Frequency of Stimuli

6.00 6.67 7.50 8.57 10.00

Original SSVEP signal 93.56 91.44 93.22 89.89 86.11
DAE_AP 95.89 91.67 93.78 91.44 87.44
DAE_IP 96.82 92.82 95.71 96.15 92.15

3.2. The Experimental Results of DNN

In this subsection, the CNN is selected as the baseline system for comparison. The
DNN-based classifier, whose features are extracted by using DAE_AP and DAE_IP, is
examined. The experimental results are shown in Table 4. The results showed that the
performances of DNN are higher than that of CNN and the error reduction rate is 54.81%.
Therefore, the DAE_AP and DAE_IP can effectively remove the effects of noises and they
are very useful in developing robust SSVEP-BCIs. Besides, when the number of hidden
nodes is 150, the recognition rate (95.63%) is very similar to that (95.64%) with 300 hidden
nodes. DNN with 150 hidden nodes would greatly reduce the computational complexity,
compared to DNN with 300 hidden nodes. Therefore, the results showed that the proposed
approach is acceptable for developing an alternative augmentative communications for the
practical applications.
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Table 4. The recognition rates (%) of DNN and CNN.

The Number of
Hidden Nodes

DNN
CNN

DAE_PA DAE_NPA

60 77.56 78.33 72.69
90 83.11 84.88 77.11

120 89.66 91.33 86.67
150 94.31 95.63 90.33
300 94.33 95.64 90.75

Comparing the results in Table 4 with those in Tables 1 and 2, it is clear that the
noise suppression by using DAE_IP outperforms that by using DAE_AP. However, the
performance of DAE_AP is lower than that of DAE_IP. Since the difference between
DAE_AP and DAE_IP is the phase information, the effects of phase in DAE_AP and
DAE_IP were examined by using bubble charts. The phase information of enhanced SSVEP
signals for DAE_AP and DAE_IP are shown in Figure 4a,b, respectively. Ideally, the phase
of the enhanced SSVEP signal for DAE_AP and DAE_IP should be zero and diagonal,
respectively. In Figure 4, the phase information of DAE_IP is close to diagonal, but the phase
information of DAE_AP is not close to zero. To detail the distortion, which is measured by
using the Euclidean distance, the probability density functions of DAE_AP and DAE_IP
are shown in Figure 5a,b, respectively. The experimental results showed that the distortion
for DAE_AP is greater than that of DAE_IP. Thus, denoising autoencoder-based neural
network cannot effectively adjust the phase of an input SSVEP signal. Therefore, DAE_IP
is very useful in developing robust SSVEP-based BCIs.
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3.3. Comparison with Other Approaches

In this subsection, the classifiers by using support vector machine (SVM) and Gaussian
mixture model (GMM) are considered as baseline systems and compared with proposed
approaches. Moreover, the traditional autoencoder was selected as a baseline for feature
extraction. The structure of neural network for traditional autoencoder is the same as the
proposed denoising autoencoder. In the training procedure, the ideal SSVEP signals are
the input SSVEP signals. The experimental results are shown in Table 5. Using the features
of DAE_IP, the recognition rates can be effectively improved from 90.32%, 80.64%, and
89.63% to 95.63%, 94.23%, and 94.13% for DNN, SVM, and GMM, respectively. Besides,
the performances of using the features of DAE_AP are higher than those of the traditional
autoencoder. Thus, the proposed DAE_AP and DAE_IP are very suitable to extract robust
features for different classifiers.

Table 5. The detailed recognition rates (%) for stimuli with different flicking frequencies (Hz).

The Classifiers Traditional
Autoencoder DAE_AP DAE_IP

DNN 90.32 94.51 95.63
SVM 88.64 92.39 94.23
GMM 89.63 92.73 94.13

Finally, the experimental results evaluated by using SNR, CCA, and different classifiers
using DAE_AP and DAE_IP showed that the denoising autoencoder-based neural network
can effectively reduce the effects of noises. Therefore, the proposed approaches can be
adopted to extract robust features. When the recognition rates of DNN were compared
with that of SVM and GMM, the experimental results showed that the proposed DNN can
allow to obtain the highest results. Therefore, the architecture of DNN is very suitable in
developing a classifier for SSVEP-based BCIs.

Previous research had shown that the characteristics of SSVEP signals for young
subjects are different from those for elder subjects or subjects with ALS [22]. The SNR of
SSVEP signals is larger than those values in elder subjects and subjects with ALS. In this
study, the results show that the effects of lower SNR can be effectively reduced, thus the
proposed approaches may reduce the effects of SNR for elder subjects and subjects with
ALS. However, in this study, only young and healthy subjects were asked to examine the
performance of the proposed approaches. This is a limitation of this study and it can be
improved by extending the number and different types of users.

4. Conclusions

In this study, a robust SSVEP-based BCI using denoising autoencoder-based neural
networks and DNN is proposed. The denoising autoencoder-based neural network can
effectively extract the robust features for representing the characteristics of SSVEP signals
for the practical applications. Moreover, the effects of noise components can be effectively
reduced. DNN can correctly map the robust features to the decision results and the
recognition rate of DNN is higher than that of SVM and GMM. The experimental results
showed that the proposed approaches can effectively suppress the noises and then allow
to obtain an acceptable recognition rate. Thus, the robust SSVEP-BCIs can be used for
practical applications, and it can then help subjects communicate with others or devices.
In the future, the elder subjects and the subjects with ALS can be asked to participate in
the experiments to evaluate the value of the proposed approaches in real applications.
Moreover, the different types of neural networks, such as U-Net, ResNet, MobileNet, and
long short-term memory neural networks can be applied to improve the performance
of classification.
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